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Abstract—A new approach to recognition of cylindrical objects by single camera views using
camera calibration, surface backprojection, and model matching techniques is proposed. Cylindrical
objects to be recognized can be of different radii and heights. Both the silhouette shapes and the
surface patterns of objects are utilized in the recognition scheme. A new camera calibration technique
is first employed to compute the camera parameters analytically using a single camera view of the
object. A surface backprojection technique is then adopted to reconstruct the pattern on the surface
patch of the input object. The reconstructed surface pattern is finally matched with that of each
object model, using a partial shape matching technique to find the best matching surface patch
pattern of the models, from which the input object is classified accordingly. Experimental results
showing the feasibility of the proposed approach are also included.

Keywords—Object recognition, Camera calibration, Surface backprojection, Model matching,
Surface patterns, Partial shape matching.

1. INTRODUCTION

It is often found necessary to recognize 3-D objects in industrial automation. Among the 3-D
objects, cylindrical objects (e.g., cans) appear frequently. Very few existing 3-D object recog-
nition systems recognize cylindrical objects. And most related works focus on recognizing 3-D
objects using silhouette shape information only; object surface patterns such as special marks or
characters are less utilized. In this study, it is desired to use both the silhouette shapes and the
surface patterns of 3-D objects to achieve better recognition results.

Chin and Dyer [1] presented a good survey of model-based computer vision works. Besl and
Jain [2] discussed 3-D object recognition problems and a lot of 3-D object recognition systems
were reviewed. Many new 3-D recognition systems were proposed in recent years. But few of
them resembled the proposed approach. Since it is impossible to review all existing systems, only
those with their recognition methods closer to the proposed approach are reviewed here.

Silberberg et al. [3] used the generalized Hough transform technique to match input 2-D line
segments and edge junctions with 3-D model line scgments and vertices. For each pair of line
segments being matched, the model line is projected onto the image line, and the corresponding
cell in the Hough accumulator array is incremented if the matching is successful.
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Wang et al. [4) recognized 3-D objects by 2-I) silhouette shapes. Each object model consists
of the three principal axes, the principal moments, and the Fourier descriptors of the silliouette
shape boundaries as viewed from the three principal axes. To recognize an input object, at least
three silhouette views from distinct directions should be taken. Silhouette boundaries are then
combined to produce an object from which the moments and the Fourier descriptors can be
computed and matched against the model library.

Wallace and Wintz {5] used the Fourier descriptors of 2-D silhouette shapes to recognize 3-D
aircraft. A library of 2-D shape descriptors for all discrete viewing directions covering the entire
spherical solid angle is created. Recognition is accomplished by matching input shape descriptors
against all the data in the library. Similar techniques were also used by Dudani et al. {6].

Watson and Shapiro [7] matched 2-D perspective views of 3-D objects with object models
consisting of closed connected curved edges of the objects. Input 2-ID scenes are processed to
extract curves which are also described by Fourier descriptors. Object recognition is accomplished
by comparing the 2-D perspective projections of the model curve with the input curve after the
former is properly rotated and translated.

Liu and Tsai [8] proposed a 3-D curved object recognition system including a turn-table, a top-
view camera, and & lateral-view camera. A 3-D object was recognized by first normalizing the
orientation and position of the top-view silhouctie shape by its principal axis and centroid, and
then matching the shape features of the 2-D silhouette shapes of the input object against those
of each cbject model by traversing a decision tree. Yang and Tsai 9] used 2-D cross-sectional
slice shapes, instead of 2-D silhouette shapes, to recognize 3-D objects in a similar way.

In the previously-mentioned approaches, a common property is that input 3-D objects are
recognized by matching processed input object images or representations against 2-D reference
object models. This type of approach may be said to be 3-D recognition by 2-I) matching. An
advantage of this type of approach is that well-developed 2-D image analysis technigues can be
utilized. However, a shortcoming is that extra effort must be paid to avoid exhaustive matching
of input 2-D data with essentially an infinite number of possible views of each 3-D reference
object.

Aside from the above type of approach, another contrastive type is 3-D recognition by 3-D
matching, i.e., to recognize 3-1 objects by matching 3-D input object data with 3-D object
models. In approaches of this type, it is usually required to acquire 3-D obhject surface data
and to transform them into certain 3-I representations, such as attributed hypergraphs [10],
relational feature graphs [11], generalized cylinders [12], etc., before the final recognition step can
be performed. But such 3-D data acquisition and medeling works usually take long computation
time and cause 3-D recognition by 3-D matching inapplicable in many applications.

In this paper, we propose a new approach to 3-I} object recognition which is basically a
combination of the above two types of approaches but without their disadvantages. Objects to
be recognized are assumed to have cylindrical shapes. The proposed approach consists mainly of
three steps:

(1) 3-D ohject surface data acquisition by a new camera calibration technique;

{2) reconstruction of 2-1 patterns on object surface patches by a backprojection technique;

and

(3) model matching using 2-D patterns on surface patches for object recognition.

In the first step, the side lines and the bottom curve on the object surface in an object image is
extracted, and the camera paramceters arc computed in an on-line fashion using a set of analytical
formulas derived in this study. A backprojection technigue used in computer graphics is then
employed in the second step, to compute the 3-D pixel data of each surface patch appearing
in the input object image and to transform the 3-D data into 2-D patterns. In the final step,
the 2-1D patterns on the input curved object surface are matched against those of each object
model constructed in the learning phase, and the input object is finally classified according to
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the match measures computed in the matching process.
Compared with the previcusly-mentioned approaches, the proposed approach at least has the
following advantages.

(1) Only a single view of each object is needed for recognizing an object. This reduces the
recognition time of each object.

(2) The formulas derived for computing the camera parameters are analytic, making the para-
meter computation work faster, and on-line 3-D data acquisition possible. This contrasts
with most approaches of the type of 3-D recognition by 3-I) matching, which usually spend
large amounts of time in 3-D data acquisition and transformation.

(3) Well-developed 2-D shape matching can be easily applied in the model matching step.

(4) Both the learning and recognition phases follow an identical procedure. This reduces the
complexity of the proposed approach.

(3) Since not only silhouette shapes but also surface patterns are utilized in the recognition
scheme, more features can be extracted and higher recognition rates can be achieved.

In the remainder of the paper, the principle of the proposed cylindrical object recognition
system is first presented. The camera calibration and surface backprojection techniques are then
described. Detailed discussions on the object learning and recognition procedures follow next.
Experimental results and conclusions are presented finally.

2. PRINCIPLE OF PROPOSED APPROACH

In this study, it is desired to utilize object surface patterns as well as silhouette object shapes
to recognize 3-D cylindrical objects. The reason is that a lot of commercial products, like cans
wrapped with paper on their surfaces, are cylindrical in shape and have abundant gray-scale
or color pattern information on their surfaces which can be utilized in recognition. It is also
desired to recognize objects by single views. This will increase the applicability of the recognition
scheme. To accomplish these goals, first the object surface patterns, which are deformed in
the input image due to imaging transformation, must be reconstructed. For this, we employ a
new camera calibration techuique, which can he performed in an on-line fashion, followed by a
surface backprojection technique. After the 2-D surface patterns are obtained, object recognition
is performed using a 2-D pattern matching method.

More specifically, a cylindrical object to be recognized is put on a flat surface within the field
of view of a TV camera which is fixed at a known height. The position of the object with respect
to the camera can be arbitrary. Image processing techniques are then applied to extract the
boundary and normal lines of the object surface in the image (see Figure 1 for illustration).
The equations of the two normal lines and the bottom planar curve are used to compute the
camera parameters. The prionciple behind the proposed camera calibration process is that the
two normal lines and the bottom planar curve contain abundant information about the position
and the orientation of the camera (i.e., about the camera parameters). Analytical solutions for
the camera parameters have been derived in this study for fast computation and this speeds up
on-line object recognition.

After the camera parameters are computed, a surface backprojection technique is then employed
to compute the 3-D coordinates of the pattern points on each surface of the cylindrical object.
From these 3-D data, 2-D surface patterns are then reconstructed. Based on the reconstruction
results, the learning phase and the recognition phase can be proceeded easily.

3. PROPOSED CAMERA CALIBRATION TECHNIQUE

3.1. Coordinate Transformations

Figure 1 shows the global coordinate system associated with a cylinder, which is used in this
study. Let lines L; and L» denote the two normal lines. The values h and R are the height and
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Figure 1. The global coordinate system attached on a cylinder to be recognized,
where L1 and Lq are the normal lines and 1 is the bottom curve {(a circle).

the radius of the cylinder, respectively. In the right-handed global system, the Z-axis and the X-Y
plane are chosen to be parallel to the normal lines and the bottom planar curve, respectively.
And on the bottom planar curve which is an ellipse in the image, the center of the ellipse, the
major axis, and the minor axis are selected to be the origin, the X-axis, and the Y-axis of the
global system, respectively.

The camera location with respect to the global coordinate system is represented by three
position parameters X, Y, and Z. and three orientation parameters , & and §, where ¢, ¢
and & are called the Eulerian angles [13], or the pan, tilt, and swing angles of the camera,
respectively. In this study, it is assumed that the parameter Z. (i.e., the camera height) is
known in advance, and it is desired to solve the remaining five camera parameters in terms of
the equation coefficients of the two normal lines and those of the bottom planar curve.

Let (x, ¥, z) and (%, v, w) represent the coordinates of a point P in the 3-1J space with respect
to the global coordinate system and with respect to the camera coordinate system, respectively.
Then, the coordinate transformation from (z, y, z) and (u, v, w) can be described as follows [14]:

(u, v, w, 1) = (z, y, 2, 1} T(X,, ¥, Zc) R.(p) Rz(8} R, (6) Try (1
=(z, ¥, 2, H M, {2)
where
ro1 0 0 07
0 1 0 0
T(Xc: Y., ZC) = 0 0 1 ol (3)
L—Xc _Yc *Zc 1_
[cose  —sing 0 0
__{siny cosp 0 D
Rip)= | 0 1 ol (4)
| 0 0 0 1]
[1 0 D 07
0 cosf# —sinfd 0O
R:(6) = 0 sinf cosd OQ|° (5)
Ky 0 0 1]
fcosd —siné 0 07
sind coséd 0 0O
0 0 0 1]
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1 0 0 0
Ty = g é _01 g ) and (7)
00 0 1
M = T(X., Y., Z:) R.(} Re(8) R(6) Ty, (8
with
i Va2 V3 0
Vi Vs Vg 0O
M=y % ow ool (©)
3y Oz O3 1
Vi = cosp cosd — sing cos siné, (10)
12 = —cosyp siné — siny cosf cos b, (11)
V3 = sin sind, (12)
V4 = siny cosd -+ cosy cos#d sin d, (13)
Vg = —sinip siné + cosp cosf cos 6, (14)
Ve = cosy sinf, (15)
V7 = sin @ sin 4§, (16}
Vi = sin# cos é, (17)
Vo = —cos?b, (18)
O1=-XWV =Y. Vy— 2Z.Vq, (19)
O =X Vo - Y. Vs - 2. V3, (20)
Oy =X V3 -Y. Vo~ Z. V. (21)

Note that all the elements ¥ of matrix M in the above equations are in terms of o, 8 and 4
only. V; will be called the global orientation parameters, while O; the global position parameters.
3.2. Proposed Method for Camera Calibration

Let P’ be the projection of Point P described in Section 3.1 in the image plane with image
coordinates (U, V'}. Then, according to imaging geometry [15], we have

U= f:ﬂ—” (22)
v=1, (23)

where f is the camera focal length and (u, v, w} are the coordinates of P in the camera coordinate
gystem.

Let the equations of the corresponding projections of the two normal lines L, and L» in the
image plane be

L’i: ut+hv+e =0,
) (24)
Ly U+rbsvtea=0,
and the equation of the bottom planar curve C) in the global coordinate system be
Az 4 Bay+ Cy?  + D+ Ey+ F =0, and z = 0. (25)
Also, let the equation of the projection C} of € in the image plane be
A+ Buv+ VP + Du+ Fv+ F =0 (26)

CAMMA 27:8-H
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Then, by comparing the corresponding coeflicients A through F and A’ through F’, the global
orientation parameters V1, Vo, ..., Vs and the global position parameters O, Oa, and O3 can be
solved as follows (the details are omitted) [16).

From the information of the two normal lines, the global orientation parameters V7, Va, and V5
can be derived to be as follows:

1
Vp = me—— 27
’ A¥ (1 + 'Us + vg") ( )
VB = Vs Vﬂ (28)
Vo = v V7, (29)
where
_ C] —Ca

v —blcg—bgcl1 (30)

- fba--fh
vo = b1 Cg — bg 1 ) (31)

Axnd from the information of the bottom planar curve, the global orientation parameters Vi, Va,
and V3 can be derived as follows:

1

Vi = - m——, 32
\/(1+vg+v3:) (32)
v’? = U2 Vl: (33)
Va = vV, (34)
where
o G3+\JG§—4G102
vy = — 2G2 1 (35)
_=Vr—uwls
Ty = ‘/g ) (36)
with
G = Hy — Hy, {37)
(Gg = Hyg — Hay, {38)
Gy = Hig — Haa, (39)
where
H;j; = hp(vj3i-2, U5,3i-1: Vi,31)s fori=1,2 j=1,2
= ha(V1,3i-2, V1,3i-1, V1,30, V2,3i-1. ¥2,3i) fort=1,2, 7=3, (40)
with

he(u, v, w) = A' f2u® + B fPuv+ C" PP + D fuw + E fow + F'uw?,
(1)
ha(u1, v, wi, v, v, wy) = 24" fPuy ug + B' f? (urve + up 1) +2C" 2y vz
+ D' f2 (uy wa + ugwy) + E f (v wp + vawn)
+ 2F 1wy wy. (42)
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And using the orthonormal constraints among V1, Va,..., Vi, the global orientation parameters
Vs, V5, and Vg can be solved to be as follows:

Va=W V2 - VsV, (43)
V=V Vs -V W1, {44)
V=WV -V, (45)

Now for this study, since the value of Z, is known in advance, i.e., since the distance between
the origin point O of the global coordinate system and the origin point C of the carnera coordinate
system, is given, the global position parameters Op, Oz, and Oz can be solved to be as follows:

Or=-X V1 -Y. Va—Z, V7, (46)
Or=-X. Vo - Y, Vs - Z. V4, (47)
O3 =X V5 =Y. Vg — Z: V0, (48)
01 = e13 03 + e, (49)
Oy = ep3 O3+ eaq, (50)
with
oL, = By By — By By
3= s
Eiy By — Epp En -
— 3.4, 51
B ‘:E11E2j_Ele2j J (51)
¥ E ) Fo— Bz En’
where
(B, E2) = (2A fPVi+ B 2V + D' fVa, B 2V + 20 2 Vo + E' §V3),
DxC*
(E13, Er4) = (—D'fVl —E' fVy —2F' V3, C ) .
(Eo1, Ex) = (2A' fEVy + B' f2Vo + D' f Vi, B' f2Vy + 20 2 V5 + B § V),
ExC*
(Ess, Eat) = (—D'm ~ B Vs~ 2 Vo, ~ ) :
(52)
with
c* = h.g(Vq, V5, %) (53)

Substituting equations {49) and {50) into equations (46} and (47), respectively, and rearranging
the results and equation (48), we get

X Vi+Y Vi+esOs=—-Z. V7 — ey, (54)
X Vot Yo Vs +epUs=—-7,.Va - g, (55)
Xc V3 +Y;:V‘ﬁ+ 03 = -7, Vg. (56)
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Accordingly, the parameter Os, X, and ¥, can be solved to be as follows:
—-Z.Vi—e Vi en

—Z. Vg —eas Vi eus
~ZVe Ve 1

Xc: T ’ 57
Vi Vi e (57)

Vo V5 ex

vV, Vi 1

Vi —~Z:.Vr~eq ez
Vo —Z.Vg—ex e

Va —Z2.Vq 1
Y. = , 58
Vi Vi e (58)
Vo Ve ex3
Ve Vg 1

Vi Vo —Z.V7—en
Vo Vo —Z.Vz—exn
Va Vs —Z.Vy

Os =" Vi Vi e ’ (59)
Vo Vs e
v, Vi 1

The other two position parameters (3 and 2 can be solved using equations (49) and (50),
respectively.

After the global orientation parameters and the global position parameters are solved, the
camera orientation parameters ¢, &, and § can he solved as follows:

@ = tan~! (—%) ) (60)
§ = cos (- Va), (61)
§ = tan (%) i (62)

In the case of the proposed approach, the bottom planar curve is a circle, so A = C = 1,
B=D=FE=0, F=—R? After substituting these values into the equations containing A
through F, respectively, the camera parameters can be solved. After the camera parameters are
computed, by comparing the coefficients of F and ' in equations (25) and (26), we can get the
following equation:

A O+ ByOs+ Cy = —R2C”,

from which the radius R can be derived to be

-1

where
(Ag, Bo, Co) = (ha(e1s, €23, 1), halers, €23, 1, €14, €24, ), haleiy, €24, 0)). (64)

The height of the cylinder can also be determined, which will be discussed later in the next
section. Hence, when the value of Z; is given, the camera orientation parameters ¢, #, and § and
the camera position parameter X, Yz, the radius parameter R, and the height parameter h can
all be solved. Cylindrical Objects of different radii and heights can thus be recognized.
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4. METHOD FOR RECONSTRUCTING SURFACE PATCH
PATTERNS USING BACKPROJECTION TECHNIQUE

Once the camera parameters are solved, we can reconstruct the pixel data of the surface
patterns using a surface backprojection technique. In Figure 2, let the coordinates of any point P
in the image plane be (a, b). Then its coordinates in the camera coordinate system are (a, b, f).
The line Ly passing through the origin C of the camera coordinate system and point P is called
the backprojection line of P. By the principle of backprojection [17], the coordinates of any
point P’ on the backprojection line Ly can be specified by {at, b#, ft) with t as a free variable.
Let (z, y, z) be the desired corresponding coordinates in the global coordinate system. Then,
using (2}, we get

W ¥ v 0
_ Va Vo W 0O
@i bt FL =@y, 51 [ 12 00 (65)
01 O O3 1
from which we can derive the following three equations (the details are omitted):
r=2p T8 (66)
my Ly
y="2¢- 26 (67)
T mh
p= Ay T (68)
Ty mh
where
Vi ¥ Vs a Va V2 Vi a Vs i Vi3 a
my=|Vy Vs Ve|, ma =|b Vs Vg|, ma=|Vo b V5|, ma=|Vo Vs b,
Vo o W f w W Vs f W Vi Vo f
O V2 W Ww O W ity O
ms= |02 V5 Vs|, me=|Va Oy V|, mr=|V2 V; O2].
O3 Vg Wy Vi O3 Wy Vi Vo O
(69}

From the above equations, the free variable t remains unsolved. As can be seen from Figure 3,
any point P that lies on the surface of the cylinder and can be seen in the image must lie on
either of the two surface patches, i.e., either on Patch 1 or on Patch 2.

Assume that Point P with global coordinates (z, y, z) lies on Patch 1. Then z? 4+ % = R?,

y > 0 and z < 0. From the constraint z2 + y* = R2, the free parameter t can be solved (the
details omitted) to be

_ (mams +msmg) = /(mams + mams)? — (m3 +m3) (mf +mZ —m] R?)

t
(m3 +mi)

(70)

After substituting the value of ¢ into equations (66)—(68) to get the values of x, ¥, and z, we
can check if y > 0 and z < 0 are satisfied. If not, then Point P must lie on Patch 2 and so is
ignored. By this process, the free variable t can be solved for each Point P lying on Patch 1 of the
cylinder, and the 3-D coordinates (z, y, z) of Point P’ in the global coordinate system are also
determined. In the meantime, the height & of the cylinder can be determined by the following
procedure.
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{a, b, fiz

ccs: camera coordinate system
ges: global coordinate system

{at, bt, f1),.
= {X ¥ Z)a

Figure 2. Illustration of the backprojeclion procedure.

First, substitute a = »; {or ua}, b = v (or va) into equations {68) and (69), respectively. Then,
golve (68), (69), and the equation of z = h simultaneously. This results in

h=ty T (71)

where ¢ is described by (70).

After the 3-D coordinates of all points are determined, the points have also been grouped
according to which surface patch they lie on. Since in most cases only Patch 1 contains pattern
information, only the pattern on Patch 1 is reconstructed in this study. As shown in Figure 4, the
reconstructed P-Q plane is established from the X-Y-Z global coordinate system. The coordinate
of the P-axis is defined to be the length of the arc (seen from the top view) between the X-axis
and Point A (see Figures 4a and 4b) and the coordinate of the (3-axis is the 2-coordinate of the
3-D coordinates (, v, 2). The following procedure is employed in this study to reconstruct the
pattern on Patch 1,

Let A be a point on Surface patch 1 with 3-D coordinates (x, ¥, 2}, and A, denote the point
corresponding to A as seen from the top of the cylinder (see Figure 4b). If x > 0, y > 0, then
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Py, vy) paih 2 LATA

patch1

N~

Figure 3. The Points F;, P2, and two surface patches on a cylinder as seen in an
image.

X
Z4
l
IA (": ¥, Z) Ay, (x.¥)
X -l - — L - v
\Y
(a) The 3-D coordinate of a Point A on a cylinder, (b) The top view of the cylinder where Ao, corre-
sponds to A in {a).
. Ap.q)
Q

P
(c) The reconstructed 2-D coordinate of point A.

Figure 4. The reconstruction of 3-D) points on the cylinder,

Aiop lies in the area Ay, and the reconstructed coordinates (p',¢’) for A in the P-Q plane can be
easily derived to be

L -1£ r__
p—R(tan :c) and ¢ =z (72)

Otherwise, A, lies in the area Ag, and (p’,¢') can be derived to be
¢ =R (ar —tan~! !%I-) and ¢ =z (73}

The binary values of the surface patch points form a 2-D point pattern, which can then be
used for object recognition, as described in the next section.
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5. LEARNING AND RECOGNITION PHASES

5.1. Learning Phase

Figure 5 shows the flowchart of the learning phase. First, if there is any model to be built, then
an appropriate view of the model object is taken. Relevant image operations (thresholding, edge
detection, thinning, and curve fitting [18}) are then applied to the image to get the line boundary
and the points of the surface of the cylinder. The coeflicients of the equations of the normal lines
(L1 and Ls) and the bottom plane curve are also found, and the camera parameters and the
radius and height of the cylinder are computed. The surface patch patterns of the cylinder then
are reconstructed using the surface backprojection technique.

Find the coefficients
of the equations
Is there any model ™ of the normal lines
tobebuilt? Lyand L,
and curve C,
Have three different Find Xz, Ye,
views been taken 7 9 0.5hK
Take an Reconstruct the
appropriate view surface pattern using
backprojection
Process
" the image

Figure 5. Flowchart of the learning phase.

5.2. Recognition Phase

Figure 6 shows the flowchart of the recoguition phase. It starts from the camera calibration
procedure. That is, each time an object is to be recognized, the camera parameters are found
out first. After the calibration step, the surface pattern is reconstructed accordingly. In the step
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of matching, the computed radius and height of the cylinder are first used to reject inappropriate
surface patterns in the object models. Then, a similarity value DWC (distance weighted correla-
tion [15]) between the reconstructed surface pattern of the input object and that of each object
model is computed to decide if the surface patch patterns match well. If the reconstructed surface
pattern matches well with that of a certain object, say A, in the object model, then we conclude
that the object to be recognized is Object A. Otherwise, we decide that the object is unknown,
In this way, cylinder objects of different radii, heights, and surface patterns can be recognized.

START

Match surface
Take an image of p;lttem “nt‘hﬂel
input object ——p ose in
models and find
l the best match
Process
the image
Does the best
match pattern
match well with an
Find the object A 7
coefficients of
the normal line
and curve equatio
Find Xc, Y<, Decide input object Decide input
. object to be
%9,50R tobe object A anknown
Reconstruct the
purface pattern using——
backprojection

Figure 6. Flowchart of the recognition phase.

The partial shape matching method we employ in this study is the coarse-to-fine approach
proposed by Rosenfeld and Vanderbrug [19], which is appropriate for matching point patterns.

6. EXPERIMENTAL RESULTS

Some experiments have been conducted on an IBM PC with an 80286 processor using a CCD
TV camera. Figure 7 shows the diagram of the experimental environment. Once the environment
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has been set up, the parameters Z. and f are fixed. To compute the exact values of f and Z,
a cylindrical object with known radius R; and height h; is used as a calibration object first.
Then Z, and f are estimated roughly. By using these rough values of Z. and f and setting a
reasonable search range (15%) around Z, and f, the equations (63) and (71) are used to compute
the radius and height (denoted as Ry and ha, respectively) of the cylindrical object iteratively until
the difference between the pairs (R, k1) and (25, hs) is within some tolerance. The resulting
values of Z;. and f then are taken as the exact values. Once the exact values of Z. and f are
obtained, any cylindrical object can be recognized accordingly as long as the environment remains
unchanged.
(u,v,w): thecamera

£ coordinate

ey system

(%, y, z) : the global
coordinate
system

Figure 7. The diagram of the experimental environment where f is the focus length
and Z; is the camera height {the difference between the height of the camera lens
center and that of the table).

To show the feasibility of the approach, three eylindrical objects were recognized. Cylindrical
object 1 and Cylindrical object 2 were of the same height but of different radii. Cylindrical
object 2 and Cylindrical object 3 were of the same height and radius. Since the proposed method
can also compute the radius of the cylinder, Cylindrical object 1 can be discriminated imme-
diately from Cylindrical objects 2 and 3. The surface patterns of the objects include numbers,
English characters, and geometric patterns. Figures 8a—c are the results of processing the image
of Cylindrical object 1 with a number pattern on its side surface. Figure 8d is the result of
reconstructing the surface pattern of Cylindrical object 1. Due to possible errors in the image
processing step, some distortion occurs on the boundary of the reconstructed surface pattern of
the cylinder. But such distortion usually does not influence the result of the subsequent surface
pattern matching process because the boundary, which is not essential information for object dis-
crimination, was removed in our experiments hefore surface pattern matching. Similarly, Figures
9a~c and Figures 10a—c are the results of image processing of Cylindrical object 2 (with a char-
acter pattern) and Cylindrical object 3 (with a geometric shape pattern), respectively. Figure
9d and Figure 10d are the results of surface patch reconstruction for Cylindrical object 2 and
Cylindrical object 3, respectively. Table 1 includes the results of the computed camera parame-
ters and the radii and heights of the Cylindrical objects. From the table, we see that the errors
of the computed cylinder radii and heights are less than 5%. Table 2 includes the results of the
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similarity measures between the surface patterns of the objects to be recognized and those of the
object models. The surface pattern of each cylindrical object is assigned correctly (o that of the
model. As the results show, the three cylindrical objects of different. surface patterns were all
recoghized correctly. The recognition rate is over 90%.

(a) Input image of Cylindrical object 1. (b) Result of edge detection

(c¢) Result of thinning (d) Result of surface patch pattern reconstruction.

Figure 8. Experimental results for Cylindrical object 1 with a numnber patiern on its
surface patch.

(a) Input image of Cylindrical object 2. (b) Result of edge detection

(c) Result of thinning (d) Result of surface patch pattern reconstruction.

Figure 9. Experimental results for Cylindrical object 2 with a character pattern on
its surface patch.
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(a) Input image of Cuboidal object 3. (b) Result of edge detection

(¢) Result of thinning (d) Result of surface patch pattern reconstruction.

Figure 1. Hxperimental results for Cylindrical abject 3 with a character pattern on
its surface patch.

T'able 1. Result of computed camera parameters and dimensions of the Cylindrical
objects (the actual values of R and h for Object 1 are 3.5 and 5.0, respectively, while
thuse of @ and h for Object 2 and Object 3 are 3.0 and 5.0, respectively. And the
numbers in the parentheses are the error percents of the size).

Object 1 Ohject 2 Object 3

F (pixel) 1011 1011 1011
X. (cm) —20.59 —10.23 15.49
Y, (cm) 36.3 45.63 30.26
Z, (cm) 37.1 37.1 37.1
@ (o) 40.10 15.15 —265
8 (o) 52,70 51.60 46.54
8(0) —10.08 —10.08 —5.02
RB(om) | 361(3.14) | 3.0301.6) | 3.11(3.7)
fe (e} 4.62(1.8) 5.10{2.Q) 41.93(1.4}

Table 2. Result of computed similarity measures between the surface patterns of the
recognized abjects and those of the object models (“*" means that the measure need
not. he computed).

=

Object 1 Object. 2 Object 3

Model 1 0.61 * *
Model 2 * 0.5% 0.0&
Model 3 * 0.12 0.67

7. CONCLUSIONS

A new approach to 3-D object recognition has been proposed, and some experimental results
have been shown to prove the feasibility of the approach. The approach consists of the steps of
on-line camera calibration, hackprojection for object surface reconstruction, and surface pattern
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matching for object recognition. Cylindrical objects in arbitrary positions can be recognized
by single camera views. This increases the flexibility of the proposed approach. The analytic
solutions of the camera parameters speed up the camera calibration process. The use of the
computed cylinder radius, height, and surface pattern improves the discrimination capability of
the proposed approach.
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