Robotica (1991) volume 9, pp 393-408

Motion planning for multiple robots with multi-mode
operations via disjunctive graphs*
Chi-Fang Lin{ and Wen-Hsiang Tsaif

(Received: November 12, 1990)

SUMMARY

A new approach to motion planning for multiple robots
with multi-mode operations is proposed in this paper.
Although sharing a common workspace, the robots are
assumed to perform periodical tasks independently. The
goal is to schedule the motion trajectories of the robots
so as to avoid collisions among them. Rather than
assigning the robots with different priorities and planning
safe motion for only one robot at a time, as is done in
most previous studies, an efficient method is developed
that can simultaneously generate collision-free motions
for the robots with or without priority assignment. Being
regarded as a type of job-shop scheduling, the problem is
reduced to that of finding a minimaximal path in a
disjunctive graph and solved by an extension of the Balas
algorithm. The superiority of this approach is demonstr-
ated with various robot operation requirements,
including ‘“‘non-priority”’, “with-priority”’, and ‘multi-
cycle” operation modes. Some techniques for speeding
up the scheduling process are also presented. The
planning results can be described by Gantt charts and
executed by a simple ‘“‘stop-and-go” control scheme.
Simulation results on different robot operation modes
are also presented to show the feasibility of the proposed
approach.

KEYWORDS: Robot Operation; Motion Planning; Schedule
Map; Disjunctive Graph.

1. INTRODUCTION

In a complicated automated industrial environment,
there usually exists many kinds of moving robots
programmed with specified functions, such as inspection,
assembly, packing, etc. In such an environment, a
planner to coordinate the activities of the robots to
prevent collisions is desirable. For example, consider a
flexible manufacturing factory equipped with numerous
autonomous land vehicles (ALV’s) which travel along
prescribed routes to perform certain tasks repetitively.
The fixed routes may be shared by multiple ALV’s to
utilize the workspace more efficiently. Collisions will be
inevitable if their motions are not carefully scheduled in
advance. As another example, cooperation of multiple

*This work was supported partially by National Science
Council, Republic of China under grant NSC79-0404-E009-17.
t Institute of Computer Science and Information Engineering.
i Department of Computer and Information Science, National
Chiao Tung University, Hsinchu, Taiwan 30050 (Republic of
China).

robot manipulators usually is necessary in accomplishing
a difficult task, such as assembling a complicated
workpiece. Again, collisions can cause problems.

The above coordination problem is called the motion
planning problem. In general, the motion planning
problem is solved by first finding the safe path for each
moving object among fixed obstacles (called the path
planning problem), and next scheduling their motion
along the paths for avoiding collisions among the objects
(called the trajectory planning problem). The latter is the
main topic studied in this paper. Proposed in this paper
is a new approach to planning collision-free motion
trajectories for multiple robots which work periodically
and independently along fixed paths and share a common
workspace.

Many previous approaches to motion planning
concentrated on finding paths among fixed obstacles.'™
In general, they are not suitable for the problem
mentioned above. In recent years, the problem of
collision-free motion planning in a time-varying environ-
ment attracts more and more research interest. Some of
the results are briefly reviewed below.

Lee and Lee® presented an approach to motion
planning for two moving robots in a common workspace
by the notions of collision map and time scheduling. Liu,
et al.” proposed a method for planning collision-free
coordinated motion of two mobile robots in the presence
of obstacles. A two-level planner was developed and
used to plan the motion in a Petri net created by the
planner. Both approaches offer solutions to motion
planning for two moving robots.

Some other studies proposed methods for planning a
safe path for a single object among several moving
obstacles. The methods can be modified to plan safe
paths for a set of moving objects by first assigning
different priorities to the objects and then planning the
motion of the objects in a way of handling one object at
a time in a priority order. Fujimura and Samet® solved
the problem by including time as an additional dimension
and treating the moving obstacles as stationary in an
extended world model. A quadtree-type hierarchical
structure is used to represent the model, and a
collision-free path is planned without exceeding the
prespecified range of velocity, acceleration, and centrifu-
gal force. Kant and Zucker’ decomposed the trajectory
planning problem into two subproblems. The first is to
plan a collision-free path for a moving object by ignoring
the other moving obstacles, and the second is to plan a
velocity schedule along that path while avoiding

Owner
文字方塊

Owner
文字方塊

Owner
文字方塊

Owner
文字方塊

394

A 2

1

Fig. 1. A motion planning problem of two moving objects.

collisions with the obstacles. Erdmann and Lozano-
Pérez'” presented another approach to motion planning
for multiple moving objects. A configuration space is
created each time when a certain moving object changes
its velocity, and the configuration space-time of the
object is represented as a series of two-dimensional
configuration space slices at different time instances.
After defining a visibility graph for the configuration
space-time, a collision-free path is searched from the
initial slice to the final one using graph search
algorithms.

The above priority-based planning methods, though
efficient, do not consider all the moving objects
simultaneously when planning the trajectories. A planner
implemented by these methods might design a trajectory
for an object with higher priority and fail to find a
solution for another object with lower priority. A simple
example of such motion planning for two square-shaped
objects is shown in Figure 1, in which object 1 with
higher priority is scheduled first and reaches the goal
position B before object 2 is scheduled, which needs to
reach the position D. In this case, no solution can be
found for object 2 because object 2 always hits object 1
before reaching D. The C-space approach mentioned
previously can be extended conceptually to solve this
problem by planning the motion in a high dimensional
configuration space,'” e.g. by planning the motion of
objects each with k degrees of freedom in an n X k
dimensional space. However, the complexity of the
extended method is greatly increased if a large number
of moving objects need be handled.

A new approach to planning safe motion for multiple
robots with or without priority assignment is proposed in
this paper. The motion is planned in such a way that all
the moving robots are considered and scheduled
simultaneously. The concept of schedule map introduced
in ref. 11 is used, and the planning problem is reduced to
that of finding a minimaximal path in a disjunctive graph
by the assistance of the maps. The Balas algorithm'?
accompanied by a process of validity checking is
employed to plan collision-free motion schedules for the
robots with various operation modes. Some techniques
for speeding up the process of planning are also
presented. The scheduling results can be represented as
Gantt charts, and it is easy to execute by a controller by
simply issuing a sequence of “STOP” and “GO” control
signals to the robots.

Multiple robots

The major contributions of this study include the
following:

(i) The problem of motion planning for multiple
robots, which is believed hard to solve, is reduced to a
path-finding problem in a disjunctive graph which can
then be solved by traditional approaches like the Balas
algorithm.

(ii) The techniques for implementing a motion planner
are developed. The planner can be used to schedule the
motion of multiple robots under the requirements of
various robot operation modes.

(iii) The complexity of the proposed methods is not
greatly increased when a large number of robots are
scheduled; the scheduling results can be obtained in a
reasonable amount of time and are easy to execute.

The paper is organized as follows. Section 2 includes
an overview of the basic concepts of the proposed
approach. In Section 3, the Balas algorithm is briefly
reviewed first, followed by the presentation of the
proposed planning method. Collision-free motion plan-
ning for various robot operation modes are also
discussed. In Section 4, some methods for speeding up
the planning process are presented. Simulation results
are given in Section 5. Discussions and conclusions are
presented finally in Section 6.

2. BASIC IDEA OF MULTI-ROBOT MOTION
PLANNING VIA DISJUNCTIVE GRAPHS

The objective of this study is to develop techniques for
coordinating the motion of multiple robots before they
are actually put into operations so that collisions among
the robots can be avoided. The robots are assumed to
work periodically and independently and share a
common workspace. The working path of each robot is
programmed independently in a teaching stage to
complete a certain task and is not changed thereafter.
Overlapping of robot paths is possible because the
workspace is shared by multiple robots, so collisions may
occur if the robot operations are not carefully scheduled.
Thus it is desired to avoid collisions among the robots by
planning their motion in advance. This can be regarded
as a problem similar to job-shop scheduling in which
space is the shared resource.

The job-shop scheduling problem'*"” is a problem of
finding an optimal processing sequence for a set of jobs
on a set of machines such that the completion time for all
the jobs is minimized under the following constraints: (1)
each job is processed on a set of machines in a
prespecified order; (2) no more than one job is allowed
to be performed on a single machine at any time; and (3)
once an operation pertaining to a certain job is executed
on a particular machine, it may not be interrupted by
another operation until it is completed on that machine,
i.e., a nonpreemptive constraint is enforced. It has been
shown that the job-shop scheduling problem is
NP-complete just like the traveling salesman
problem."®" So, a good approximate solution instead of
the best one usually is recommended in most studies on
job-shop scheduling. Many previous researchers formu-
lated this type of problem as one of finding a

Multiple robots

Fig. 2. Graphic representations of arcs. (a) A conjunctive arc.
(b) A pair of disjunctive arcs.

minimaximal path in a disjunctive graph.'>'> A brief
description of this graph-theoretic formulation and a
simple illustrative example are given below.

Let {i|i=1,2,...,J} be a set of jobs in which job i
and n; operations indexed from (XiZin,)+1 to Yi_, n,
(specifically, job 1 has operations indexed from 1 to n,,
job 2 has operations indexed from n, + 1 to n, + n,, and
soon), and {k|k=1,2,..., M} be a set of machines.
Also let N=Y/_,n, and n =N+ 1. A disjunctive graph
is a directed graph defined as G = (¥'; €, 9), where (1)
V" is a set of nodes including N nodes corresponding to
all the N operations pertaining to the jobs as well as two
additional dummy nodes, node 0 and node n, indicating
the source and the sink of the graph, respectively; (2) €
is a set of conjunctive arcs with each element (i,)
representing the operations pertaining to an identical job
in the prespecified order; € also includes, for each job k,
two additional arcs (0, i,) and (ji, n) where i, and j, are
the first and the last operations of job k, respectively; (3)

Job (1) 1|11 |2]2(3]|3]3
Operation (j) 1(2(3|4(|5]|6]|7|8
Machine (k) 1|2(3 (3|1]1]2]3
Duration (d()) [3 |2 |2 |1 |3 |2]! |4

(b)

Fig. 3. A graphic representation of a job-shop problem. (a) A
(3x3) job-shop problem. (b) The corresponding disjunctive
graph.

395

9 is a set of disjunctive arc pairs with each pairs of arcs
(4, /) and (j, i) representing the operations pertaining to
different jobs but performed on a single machine. For
any arc pair (i, j) and (j, i) in 9, (j, i) is termed as the
complement of (i, j). Associated with each arc (i, j) in
€U 9 is the processing time d(i) of operation i. The
time d(0) associated with each arc (0, i) is defined to be
zero. A conjunctive arc in € is depicted as an arc in a
single direction, and a pair of disjunctive arcs in & as two
arcs in contact with opposite directions as shown in
Figure 2. A simple example of a (3 x3) job-shop
problem and its disjunctive graph representation are
shown in Figure 3.

A feasible schedule for a given job-shop problem,
which is represented by a disjunctive graph G defined
above, can be obtained by selecting one arc from each
pair of arcs in D such that the resulting graph does not
contain any cycle (i.e. the graph is circuit-free). Let
F={F, E, ..., F,} be the set of feasible schedules for
G and 9={G,, G,, ..., G,} be the set of circuit-free
graphs corresponding to &. A path from node 0 to node i
in a graph is defined as a sequence of arcs, and the length
of a path is defined as the sum of the processing times
associated with the arcs in the path. The length of the
longest path from node 0 to node i, which is denoted as
C,, in a circuit-free graph G, in % is computed as follows:

C = max (C; +4d())),

Vj,(j,i)is an arc in Gy, (1)
C()=O

where d(j) represents the processing time of j. The
longest path from source to sink in G,, which may not be
unique, is called a critical path in G,. The completion
time of a feasible schedule F, can be seen as the length of
a critical path in G, (i.e. C,, in equation (1) if n, is the
sink of G},), and is called the cost of the schedule and the
corresponding graph henceforth. Also, we define the
optimum schedule to be the schedule with the minimum
cost. As an example, a feasible schedule for the problem
depicted in Figure 3 is shown in Figure 4. The critical
path is shown by the bold lines, and the cost is 14. A
critical path in G, is called a minimaximal path (a path
with the maximal length from source to sink and the
minimum cost) in G if the corresponding feasible
schedule F, is the optimum schedule with the minimum
cost

C,,= min C,, 2)

VG,e%

where n; represents the sink of graph G;. Thus, it is easy
to see that the problem of job-shop scheduling is
equivalent to that of finding a minimaximal path in a
disjunctive graph. This concept is employed in this study
to solve the problem of motion planning. The principle is
described briefly below; the details are described in the
next section.

Assume that r robots (r >2) indexed from R, to R, are
considered in the motion planning procedure. The first
step is to construct a schedule map MAP, , for each pair
of robots (R,, R,) using the method presented in ref. 11

396 Multiple robots

where 1=p<g=r. The schedule map is a two-
dimensional figure with the horizontal axis representing
the execution time of robot R, to complete a periodical
task and the vertical axis representing that of the other
robot R, to complete another periodical task, both of
which can be obtained in the teaching stage. The axes
are further decomposed into two series of small time
intervals, each with a constant time value A (i.e. the
length of each axis is assumed to be composed of a
multiple of k). Accordingly, the map looks like a

G, chessboard with the resolution determined by the
numbers of the time intervals specified for the two
(a) robots. The task performed on each robot conceptually

can be divided into a series of pseudo subtasks

0 2 s 7 9 14 corresponding to the time intervals on the axis. Each

Job 1 NN [Ay subtask requires an identical amount of processing time.
B The completion of the task is achieved by accomplishing
0 510 LEM the corresponding sequence of pseudo subtasks. See

Iob 2 &\\\\\\\\\\\\\ \\N 4 1 5 N Figure 5(a) for an example. Some squares in the maps,
which are shown shaded in Figure 5(a), indicate that

g 2= 19 14 collisions will occur if both robots perform the pseudo

Job 3 ‘ 6 ’7 &\ \ N 8 ’ subtasks of the corresponding tinrie intervals psimul-
taneously. They are termed as collision squares in the
sequel. Two additional processes, namely, the trajectory

(b) modeling process to model the trajectory information of

Fig. 4. A feasible schedule for the problem shown in Figure 3. a moving rpbot anc'l .the collision detection Process to
(a) A circuit-free graph which represents a feasible schedule. ~ detect possible collisions between two moving robots

(b) The feasible schedule represented by a Gantt chart. using the modeling results, are required to determine the

MAPl'z MAP],) MAP1.3
= I

—_ N —_ N

* [T N FENN

= \E& =S NEREE N
N\ = N =
o = =

1 2 3 45 1 2 3 4 5 6 7 8 9
Rl Ry R

(b)

Fig. 5. A graphic representation of the multi-robot scheduling problem. (a) Schedule maps for the three robots R;, R,, and R;. (b)
The corresponding disjunctive graph.

Multiple robots

collision squares in the map. The details can be found in
ref. 11.

By regarding each robot task as a job and the
sequence of the constituting pseudo subtasks of the task
as the operations pertaining to the job, the problem of
multi-robot motion planning can be formulated as a
job-shop scheduling problem, which can then be
represented by a disjunctive graph. Each subtask is
represented by a graph node, and each collision square is
represented as a pair of disjunctive arcs that join the two
nodes (subtasks) corresponding to the two time intervals
spanning that square. The graphic representation of the
example shown in Figure 5(a) is depicted in Figure 5(b).

3. MOTION PLANNING FOR MULTIPLE
ROBOTS WITH MULTI-MODES

The appeal of the disjunctive graph representation
scheme for the multi-robot motion planning problem is
that we can plan collision-free motion schedules for
multiple robots by finding a minimaximal path in the
graph under certain conditions. Collision-free motion
planning for various robot operation modes can also be
achieved. The details are discussed in this section.

3.1 Proposed method for planning collision-free motion
schedules

The enumeration algorithm presented by Balas'? for
finding a minimaximal path in a disjunctive graph is
briefly reviewed first. The Balas algorithm solves the
problem by generating a sequence of circuit-free graphs
and maintaining a search tree. Each graph G, in the
sequence is obtained from some previously generated
graph G, by complementing one of the disjunctive arcs
(i, j) (i.e. by replacing arc (i, j) with arc (j, i)) which are
on a critical path in G,. Whenever a new graph G; is
generated with G, as the preceding graph, a new node G;
and a new arc (G,, G;) indicating that G; is a descendant
of G, and G, is an ancestor of G; are added to the search
tree. The complemented arc (i.e. arc (j, i)) in the newly
created graph is then fixed and called a fixed arc'® in the
sense that it cannot be complemented any more in this
new graph, and in any of the descendants of the graph in
the search tree. The next possible candidates to be
complemented are those disjunctive arcs which are not
fixed yet and are on a critical path in the current graph.
By using the minimum cost among all the graphs
generated so far as the current upper bound and the cost
of the current partial graph containing only the fixed arcs
and the conjunctive arcs as the lower bound, a
branch-and-bound technique is employed to reduce the
number of nodes generated in the tree. If the lower
bound computed in G; is greater than or equal to the
current upper bound, then graph G, with all its potential
descendants in the search tree is abandoned, and the
search is backtracked to the graph from which G; was
generated (because generating the tree further cannot
bring any improvement on the upper bound). When
backtracking from G; to G,, arc (i, j) in G,, is also fixed if
G, was previously generated from G, by complementing

arc (i, j).

397

The Balas algorithm starts with any graph that
contains a feasible solution corresponding to a feasible
schedule as the root node in the search tree, and
gradually improves the feasible solution by the above
procedure. The algorithm terminates when backtracking
is necessary for the root node. The optimal sequence of
operations is then given by graph G* which contains the
minimum cost among all the graphs in the search tree,
and any critical path in G* is called the minimaximal
path in G. A possible root node of the search tree is the
graph containing only the conjunctive arcs and the
normal disjunctive arcs (arc (i, j) in & is called normal if
i <j). A simple example is illustrated in Figure 6 with
critical paths shown as bold lines. Other related but
different approaches can be found in refs. 13, 14, 17.

The Balas approach is not directly applicable to
motion planning of multiple robots. Actually, the
optimal schedule obtained by the Balas approach may be
an unsafe motion schedule for multiple robots. Before
the reason is given, we first introduce the notion of
schedule paths on schedule maps and next define valid
and invalid schedule paths.

As mentioned previously, the work path of each robot
for a particular task is taught in the teaching stage and
not allowed to change thereafter. However, the
trajectory information of each robot path can be
modified by inserting waiting times into the original time
schedule to prevent possible collisions. The following
two assumptions are made in this study for easier
implementation of a motion planner:

(1) the time instances at which waiting times can be
inserted are the ends of the time intervals on the axes of
the collision maps; insertions in between are not allowed
(i.e. the subtasks are performed in a nonpreemptive
manner); and

(2) the length of each inserted waiting time duration is
restricted to a multiple of 4, which is a time interval to
process a subtask.

Based on these assumptions, a schedule path L, , on
map MAP, , can be represented by any line as follows:

(1) non-decreasingly coming from the lower left
corner of the map to the upper right corner; and

(2) being composed of three basic types of line
segments with horizontal (processing the corresponding
subtask on the horizontal axis only), vertical (processing
the corresponding subtask on the vertical axis only), and
45° (simultaneously processing the corresponding sub-
tasks on both axes) directions.

A simple example is shown in Figure 7(a).

The method of constructing L, , on MAP, , based on
the precedence relations described in a circuit-free graph
G, is presented as follows. The path is constructed from
the lower left corner of MAP, , to the upper right corner
by piecewisely adding a series of basic line segments.
Assume that square (i, j) is in consideration where i is on
the horizontal axis of the map and j is on the vertical
axis, and the corresponding subtasks are performed on
R, and R,, respectively. The method includes the
following three steps:

1. if i is a predecessor of j (i.e. if there exists a path

398 Multiple robots

o o o
v =10 v = 10;
A={(43), Dk A = {(4.3), (L5), (6,5)};
B =((56)) B={(27)}
cut

Fig. 6. A simple example to illustrate part of the search tree generated by the Balas algorithm (u is a lower bound; v is an upper
bound; A is a set of the fixed arcs; and B is a set of candidates to be complemented).

MAP MAP,,
oo N o N
7= AN E N\
i} x\ Ly ~1 \ Lis

(@)} (o)}

1 2 3 4 5 1 2 3 4 5
R R}
(a) (b)

Fig. 7. A valid and invalid schedule paths planned on a schedule map. (a) A valid schedule path. (b) An invalid schedule path.

Multiple robots

from node i to node j), add a horizontal line
segment along the bottom edge of square (i, j) to
L, , and continue the process with square (i + 1, j);
2. if j is a predecessor of i, add a vertical line segment
along the left edge of square (i,j) to L, , and
continue the process with square (i, j + 1); and

3. if i and j are not predecessors of each other, add a

45° line segment diagonally over square (i, j) to

L,, and continue the process with square

i+1,j+1).
Note that the condition that both i and j are predecessors
of each other is impossible because G, is circuit-free in
nature. On the other hand, each set of adjacent collision
squares are grouped together in advance to form a
collision region. Any schedule path that enters the
interior of a collision region is not allowed, and it is
termed as an invalid schedule path. This is called the
interference constraint in this study. Although the graphs
generated by Balas are guaranteed circuit-free and
provide feasible schedules for a given job-shop problem
as mentioned in Section 2, their corresponding schedule
paths may possibly violate the interference constraint,
resulting in unsafe motion schedules. To avoid this
problem, we treat each collision region as a polygon and
check the interference constraint for each newly added
line segment when constructing the schedule path.
Relevant methods can be found in Boyse.” See Figure
7(b) for an example.

Finally, the overall motion planning procedure for
multiple robots is stated as follows. The Balas algorithm
is employed and a sequence of circuit-free graphs is
generated. A search tree is also maintained. Whenever a
new graph is created at any stage of the Balas algorithm,
the related schedule paths are constructed first using the
precedence relations described in the new graph as well
as the method presented above (including validity
checking). If none of the schedule paths is checked to be
invalid, the lower bound of the graph is then computed
and tested against the current upper bound for the tree
pruning purpose; otherwise, none of the bounds is
computed and compared. The search tree is updated and
the next graph is generated. The process is continued
until the termination of the Balas algorithm. Finally, the
operation sequence given in G* is taken to be the
optimum collision-free motion schedule for the robots.

3.2 Planning for different robot operation modes
The following three robot operation modes are studied in
this section: (1) the “non-priority” operation mode; (2)
the “with-priority” operation mode; and (3) the
“multi-cycle” operation mode. Before presenting the
methods, various variables are introduced first.

For any nodes i and k in a certain graph G, created
from the Balas algorithm, we define k to be the direct
predecessor of i if (k, i) is an arc in G,. We also define
the critical direct predecessor of i to be the direct
predecessor which is on the longest path from node 0 to
node i. Some notations used in the following discussions
are listed below:

%: the set of critical direct predecessors of i;

399

R:: the set of robots on which the subtasks
corresponding to nodes in %, are performed;

r(i): the robot on which the subtask corresponding

to i is performed

s(i): the start time of i;

e(i): the end time of i;

d(i): the processing time of i; and

t(i): the tardiness of i.

The tardiness #(i) is defined to be the time interval
between the end time of k which is the direct predecessor
of i in the prespecified order (i.e. r(i) and r(k) specify
the same robot) and the start time of i, i.e.

1(i) = s(i) — e(k). 3)

Set %, for each node i can be obtained by collecting those
nodes which satisfy the constraint of the right hand side
of equation (1) in computing the length of the longest
path from node 0 to node i. The methods for planning
collision-free motion schedules for robots under the
requirements of these operation modes are presented
below.

In the “non-priority” operation mode (mode 1), none
of the robots is given the privilege to move in a higher
priority than the other robots. The planning problem can
be solved by using the method presented in the last
section. After the termination of the Balas algorithm, an
optimal planning result described in G* is obtained. The
stop-and-go control scheme (i.e. a sequence of “STOP”
and “GO” control signals for each robot) can be easily
obtained by finding s(i) and e(i) for each node i in G*.
Assume that node j is in . Then the values s(i) and e(i)
are determined as follows:

s(@) =e()) (4)

e(i)=s(i)+d(i), (5)

with the initial conditions being s(0) =0 and e(0) =0.
The way of choosing an initial graph as the root node of
the search tree will be discussed in the next section.

The second case is the “with-priority” operation mode
(mode 2) where different priorities are given to the
robots. The planner implemented under this operation
mode must issue a “STOP” command to hold a robot
with a lower priority to prevent any conflict with the
robot with a higher priority (i.e. the latter is given the
privilege to move first). The planning method of this
mode is similar to that of mode 1, except that an
additional priority constraint for each graph in the search
tree is enforced to check if the requirement of the
“with-priority” is satisfied. The method is stated below.

If the tardiness of a certain node i, i.e. ¢(i), is found to
be greater than 0, then idleness of robot r(i) will occur
because the start time of i is not identical to the end time
of k which is the direct predecessor of i in the
prespecified order. In this condition, r(i) will be held to
wait for the completion of each node in %, before it can
start to process i. Moreover, according to the
requirement of the priority constraint, idleness of r(i) is
said to be invalid if none of the robots in ®;, owns a
priority higher than or identical to that of r(i).

and

400

MAPl

[3%

%
%

N

%
7

7.

%
%

7

N N

%

ITZ1 €1 #1 ST 91 L1 81 61 0T 1T TT

1 2 3 4 5

R

Fig. 8. An enlarged schedule map.

6 7 8 9 10

Therefore, by finding %, and the corresponding %; and
checking #(i) for each node i in a certain graph, the
priority constraint can be verified for this graph. Only
graphs satisfying the interference constraint as well as the
priority constraint are useful in our planning procedure
for this mode.

The last case is the ‘“multi-cycle” operation mode
(mode 3). The planning results of mode 1 and mode 2
discussed above are all based on the assumption that
only “one-cycle” operation is considered, which means
that if a robot has finished its own task, it must wait until
the other robots also complete their tasks before the next
cycle can be started. This restriction can be removed by
duplicating the original maps of the robots along the
horizontal and vertical directions. For example, an
enlarged schedule map MAP, , for a “2-cycle” operation
of R, and a “3-cycle” operation of R, are depicted in
Figure 8. The methods mentioned above can then be
applied directly to such enlarged maps to get
“multi-cycle” planning results.

4. IMPROVING PROPOSED PLANNING
METHOD

Two important issues in the proposed approach that are
related to both of the optimal solution and the searching
time needed for obtaining the solution are discussed in
this section. The first issue is how to select a graph as the
root node of the search tree, and the second issue is how
to reduce the number of disjunctive arcs in the graph.

4.1 Selection of initial graphs
In defining the initial graph G = (7 €, ¥), some
heuristic rules are found useful in selecting the directions

Multiple robots

of the arcs in &. The rules can be used to make decisions
according to the priority sequence and task completion
time. For each pair of the disjunctive arcs, the rules are
as follows.

(1) In mode 1, we choose the arc that points from a
“longer-completion-time” node (i.e. a node
pertaining to a robot which needs more time to
complete a prescribed task) to a ‘“shorter-
completion-time” node; if a tie exists, we choose
the normal one.

(i) In mode 2, we choose the arc that points from a
“higher-priority” node (i.e. a node pertaining to a
robot with a higher priority) to a “lower-priority”
node; if both nodes belong to the robots with an
identical priority, then choose the arc according to
Rule 1.

The root graph generated by the above rules has the
following properties: (1) it is obviously circuit-free, and
its corresponding schedule paths satisfy the interference
constraint because the disjunctive arcs are chosen in a
consistent manner; and (2) it satisfies the priority
constraint in operation mode 2 because a high priority
robot is always given the privilege to work first when
conflicting with a low priority robot. So, the selected
graph contains a rough but safe motion schedule for the
robots. On the contrary, if the disjunctive arcs are
selected randomly, possibly violating the rules in 1 and 2,
the graph may contain an unsafe and useless schedule.
Computation time will so be wasted or a safe but more
costly schedule will result. For example, if the reverse
arc of Rule 1 is selected, although the robot performing
the short task finishes its own work first, it still needs to
wait for the completion of the tasks performed on the
other robots before it can start to execute the next cycle.
So, the cost is increased because a robot performing the
long task must be stopped when conflicting with the
robot performing the short task.

4.2 Reduction of arcs in disjunctive graphs

The second issue related to the efficiency of the proposed
approach is how to reduce the number of disjunctive arcs
involved in 9. A graph with a large set & usually needs
more computation time to find the optimal solution than
a graph with a small set 9. As mentioned in Section 2,
the size of ¥ is determined by the number of collision
squares found in schedule maps. However, some squares
in the maps, as found in this study, are redundant for
planning safe motion schedules for multiple robots so
that the corresponding disjunctive arcs can be deleted
from % without changing the final planning result. To
find the redundant squares, the following method is
proposed.

First, a rectangle in a map is designed to fully or
partially cover a collision region by specifying a pair of
collision squares A and B in the region, which are in the
upper left and lower right positions of the rectangle. The
rectangle can be a horizontal or vertical one-square thick
bar as shown in Figure 9. Next, it can be shown that all
collision squares grouped in the region and covered by
the rectangle except A and B are actually redundant.

Multiple robots

401

N

AN

(a)

(b) (c)

Fig. 9. Rectangles designed for detecting redundant arcs. (a) A rectangle specified by two corner squares A and B. (b) A vertical
one-square thick rectangle. (c) A horizontal one-square thick rectangle.

Before the details are given, a fact stated below is proved
first.

Assume that square (i, j) in a certain map is a collision
square, and subtask i precedes subtask j in order. It can
be proved that the schedule path in the map cannot
penetrate into the shaded rectangular area (a, b, c, d) as
shown in Figure 10(a). The proof is given as follows.
Because i precedes j in order, all the predecessors of i
must also precede j for otherwise a circuit is trivially
formed. Therefore, whenever a certain square on the
bottom side of the area, namely, square (i’,j), is
considered in constructing the schedule path with i’
being the predecessor of i, a horizontal line segment
along the bottom edge of square (i',j) is added
according to the rules presented in Section 3 (also see
Figure 10(a)). Moreover, because the schedule path is a
non-decreasing curve connecting the lower left corner of
the map to the upper right corner as defined in Section 3,
it cannot “turn back” and penetrate into the right side of
the area. Thus, it is concluded that the schedule path will
not enter the interior of the rectangular area under this
assumption. The case with the assumption that subtask j
precedes subtask i in order is also depicted in Figure
10(b). The proof for showing redundant collision squares
is now given below.

Assume that the two corner squares A and B are

(a)

(i',j"), and (i", j'), respectively. For any square (i, j) in
the rectangle specified by A and B as shown in Figure
11(a), if (i,j) is a collision square, only one of the
corresponding pair of disjunctive arcs (i, j) and (j, i) is
selected to form a circuit-free graph as stated in Section
2. Assume that arc (i, j) instead of (j, i) is selected (this
means that subtask i precedes subtask j in order). Then,
based on this assumption and the fact proved above, we
claim that arcs (i’, j”) and (", j') must also be selected
for the other two collision squares to obtain a valid
schedule path. Part of the corresponding graph is shown
in Figure 11(b), and the reason is stated as follows:

1. if arc (j",i") instead of (i’,j") is selected (i.e. j"
precedes i’ in order), then none of the schedule
path can be obtained without entering the two
overlapping shaded areas as shown in Figure 12(a),
and the resulting graph is no more circuit-free in
this condition because a circuit containing nodes i,
j, j", and i’ is formed; and

2. if arc (j', ") instead of (i",j') is selected (i.e. j’
precedes i” in order), it can be seen from Figure
12(b) that the schedule path not entering the two
separated shaded areas will enter the interior of the
collision region formed by the three collision
squares and is thus invalid.

Accordingly, the precedence relations described in the

MAP
e h
f
1

(b)

Fig. 10. Two shaded rectangular areas through which the schedule path cannot pass. (a) Area (a, b, c, d) corresponding to arc

(i, j). (b) Area (e, f, g, h) corresponding to arc (j, i).

402

(a)

graph of Figure 11(b) are necessary for obtaining a valid
schedule path. From this picture, it is noted that arc (i, j)
is not an arc on any critical path in the graph because any
path containing (i, j) is always shorter than the path
containing the bold arcs. Therefore, the cost of the
graph, which is just the total processing times associated
with the arcs in a critical path, is not changed if (i, j) is
deleted. Similarly, we can prove that arc (j,i) is
redundant under the assumption that (j, i) instead of
(i,) is selected (this means that subtask j precedes
subtask i in order). The details are omitted, and this
completes the proof. The other cases of the horizontal
and vertical rectangular bars can also be proved
similarly.

According to the foregoing discussion, the method
finally can be described as follows: select pairwisely
collision squares A and B in a collision region and in the
upper left and lower right positions of a rectangle of any
size, and mark as redundant those collision squares
except A and B. The remaining non-redundant squares
are called guiding squares in this study.

MAP
a d
St :Z" N i
o | | N
bi c = .
= N
£ e
i i i

(a)

Multiple robots

(b)

Fig. 11. Square (i, j) is a collision square and can be shown as redundant. (a) The rectangle containing square (i, j) and specified by
A and B. (b) The partial graph corresponding to the three collision squares.

It should be noted that although the redundant arcs
can be deleted from % without changing the planning
result as discussed above, the corresponding redundant
collision squares are still necessary for checking whether
the constructed schedule paths violating the interference
constraint or not and should not be removed from the
maps. The effectiveness of the improved planning
method will be illustrated by several simulation
experiments given in the next section.

5. SIMULATION RESULTS

Three robots (R;, R,, and R;) are used and scheduled in
our simulation experiments. The operation times for R,
R,, and R; to complete prescribed periodical tasks are
assumed to be 10k, 14h, and 17h, respectively, where h
is a constant value. In operation mode 2, the priority
sequence in ascending order for the three robots is
(R3, R3, Ry). A “2-cycle” operation for R, and ““1-cycle”
operation for both R, and R; are planned in operation
mode 3. The collision maps MAP,,, MAP,;, and
MAP; ; are manually constructed for demonstration as

MAP

[
o

[
7
o V1

11
N
= N
Tk
i i i

(b)

Fig. 12. The schedule path cannot enter the interior of the shaded areas. (a) Two over-lapping rectangular areas (a, b, ¢, d) and

(e, f, & h) corresponding to arcs (i, j) and (j", i’), respectivel
corresponding to arcs (i, j) and (j', i"), respectively.

y. (b) Two separated rectangular areas (a, b, c, d) and (i, j, k, [)

Multiple robots

MAPL3
MAPI.Z
i\ { i
7 S &\“ m N
N
Ri R1
MAF’L3
N
o) N

R,

Fig. 13. The schedule maps of R,, R,, and R;.

403

shown in Figure 13 where the collision regions are shown
as shaded. Various operation modes of the three robots
are scheduled using the improved scheduling method
presented in the last section. The initial and optimum
graphs for operation modes 1 and 2 are shown in Figure
14 where the critical paths are marked as bold lines. The
final results associated with the Gantt charts for different
robot operation modes (mode 1, mode 2, and mode 3
with and without priority assignment) are depicted in
Figure 15 through Figure 18. Finally, a comparison table
to show the effectiveness of the removal of redundant
arcs in the improved method is given in Table I. It can be
easily seen from Table I that the number of nodes
generated in the search tree for each robot operation
mode is highly reduced, so the efficiency is greatly
increased.

6. CONCLUSIONS AND DISCUSSIONS

A new approach to motion planning for multiple
robots with various operation modes is presented in this
study. An advantage of the approach over the other
previous work is that it can simultaneously generate safe
motion for multiple robots. The concept of schedule map
introduced in ref. 11 is employed. A map is created for
each pair of the robots. By the assistance of the maps,
the problem can be reduced to that of finding a
minimaximal path in a disjunctive graph which can then
be solved by an extension of the Balas algorithm.
Additional constraints are enforced for various robot
operation modes, and the scheduling results with
minimum completion time are obtained after planning.
The heuristic rules for defining the initial graph for tree
search and the techniques for reducing the overall
processing time are also presented.

The accuracy of the planning results can be improved
by increasing the resolution of the schedule map, i.e. by
increasing the number of the time intervals for each
robot to complete its own task, or just by reducing the

Table I. A comparison table

Number of Value of Processing time+t Total
Operation nodes best for detecting processing
mode generated obtained (h) redundant squares timet
Mode 1 103 19 — 11.70 secs.
Mode 1* 5 19 0.05 sec. 0.17 sec.
Mode 2 23 21 — 1.43 secs.
Mode 2* 2 21 0.05 sec. 0.11 sec.
Mot 3t 4,419 2 — 2.50 hrs.
(non-priority)
*
BN 19 2 0.06 sec. 0.88 sec.
(non-priority)
Mode 3 o
(with-priority) 608 28 375.69 secs.
*
Mods2 18 28 0.06 sec. 0.66 sec.

(with-priority)

* By using the improved planning method.
+ CPU time on PC-386.

404 Multiple robots

N AN~ /S
OG- A0
F N TS N\
) O~ e~
DO

RAPOS- St
w’éwfg'%\a@@@@mo

<

N A LS
O—OFO—ADX O ED—D——0
F N TS/ N

TR AR W W O = W o W W

(b)

N AN /S
O—OO—AD LD D——O
\ N S
W s Ao By W Wy - S W s W W W W W Wy

(c)

D

O—C) vo'o‘a‘o O——
SN TSR
S—O+O+O¥OC >

OAGRIFO+ D000

AN Y

W W AW W e W v W Wy Wy Wy W Wy Wy
(d)

Fig. 14. The graphs corresponding to the root node and the optimal node of the search tree. (a) The initial graph G, of mode 1. (b)
The optimal graph G* of mode 1. (c) The initial graph G, of mode 2. (d) The optimal graph G* of mode 2.

Multiple robots

MAP

1.3
MAP
] N
e = =
N\
N
R, R,
MAP_
N
N\
N
= N
R,
M : guiding square
: collision region
(a)
R,
R, [TTTTTT]
Ry [ILITTTTTTTITTITTIITIT]
4 :go & : stop
(b)

Fig. 15. The scheduling result of mode 1. (a) The schedule
lines. (b) The corresponding Gantt charts.

405

MAP
1,3
MAPI_2
f 5 _\ E -..x
N
N
R, R,
MAP
2,3
N
N
M
= N
R,

B : guiding square
: collision region

(a)

[T 11]
O:go B .
(b)

Fig. 16. The scheduling result of mode 2. (a) The schedule
lines. (b) The corresponding Gantt charts.

stop

406 Multiple robots

i
3
MAP13

\
MAPL2 E
\ \
v v
[} B
. \
N N\ .L N :
N B N \. Y
F :\] Ux L
. \

: N : \

: N TN
Y \
\ \
R, R,
MAP2.3
Q N
DO
R,

M : guiding square
N : collision region
(a)
R LITTTTTTTTITTITTITTITITITI]
R, : el [T TTTTT]
R; ITTTTTITTTITTITITI]
O : go B : stop
(b)

Fig. 17. The scheduling result of mode 3 without priority assignment. (a) The schedule lines. (b) The corresponding Gantt charts.

Multiple robots 407

MAP
MAP N
\ ;
\]
B v
_L [] \ :
i . : 1 = \ .
: S : N
\ B \ \ \\
\ \ TR
R, R,
MAP, |
<
OO
R,
M : guiding square
: collision region
(a)
R, [TTTTTTTTITTITT]
R,
R, IITTTTTITT]
0] :go & : stop
(b)

Fig. 18. The scheduling result of mode 3 with priority assignment. (a) The schedule lines. (b) The corresponding Gantt charts.

408

length of the time interval (i.e. the constant /). But this
also increases the processing time required for the
construction of the maps.

The planner implemented in this study cannot
dynamically solve the planning problem; when one robot
is broken down, the re-planning process which may be
very time consuming is inevitable. This problem is left
for future study.

References

1. T. Lozano-Pérez, “Spatial planning: a configuration space
approach” IEEE Trans. on Computers C-32, 108-120
(Feb., 1983).

2. R.A. Brooks and T. Lozano-Pérez, “A subdivision
algorithm in configuration space for findpath with rotation”
IEEE Trans. on Syst., Man, and Cybern. SMC-15, No. 2,
224-233 (1985).

3. R.A. Brooks, “Solving the find-path problem by good
representation of free space” IEEE Trans. on Syst., Man,
Cybern. SMC-13, No. 3, 190-197 (1983).

4. T. Lozano-Pérez, ““A simple motion-planning algorithm for
general robot manipulators” IEEE J. Robotics and
Automation RA-3, 224-238 (June, 1987).

S. R. Ruff and N. Ahuja, “Path planning in a three
dimensional environment” Proc. Int. Conf. on Pattern
Recognition, Montreal, Canada 188-191 (1984).

6. B.H. Lee and C.S.G. Lee, “Collision-free motion planning
of two robots” [EEE Trans. on Syst., Man, Cybern.
SMC-17, No. 1, 21-32 (1987).

7. Y.H. Liu et al., “A practial algorithm for planning
collision-free coordinated motion of multiple mobile
robots” Im: Proc. IEEE Int. Conf. on Robotics and
Automation, Washington, D.C. (IEEE Computer Society
Press, New York, 1989) pp. 1427-1432.

8. K. Fujimura and H. Samet, “A hierarchical strategy for
path planning among moving obstacles, IEEE Trans. on

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Multiple robots

Robotics and Automation 5, 61-69 (Feb., 1989).

K. Kant and S.W. Zucker, “Toward efficient trajectory
planning: the path-velocity decomposition™ Int. J. Robotics
Research 5, 72-89 (Fall, 1986).

M. Erdmann and T. Lozano-Pérez, ““‘On multiple moving
objects” Algorithmica 2, No. 4, 477-521 (1987).

C.F. Lin and W.H. Tsai, “Trajectory modeling, collision
detection, and motion planning for robot manipulators”
NSC Technical Report No. NSC78-0404-E009-04, National
Chiao Tung University, Hsinchu, Taiwan 30050, Republic
of China (submitted for publication).

E. Balas, “Machine sequencing via disjunctive graphs: an
implicit enumeration algorithm” Operations Research 17,
No. 6, 941-957 (1969).

S. Ashour, T.E. Moore and K.Y. Chiu, “An implicit
enumeration algorithm for the nonpreemptive shop
scheduling problem” AIIE Transactions 6, No. 1, 62-72
(1974).

M. Florian, P. Trepant and G. McMahon, “An implicit
enumeration algorithm for the machine sequencing
problem” Management Science 17, B782-B792 (Aug.,
1971).

H.H. Greenberg, “A branch-bound solution to the general
scheduling problem” Operations Research 16, No. 2,
353-361 (1968).

W.W. Hardgrave and G.L. Nemhauser, “A geometric
model and a graphical algorithm for a scheduling problem”
Operations Research 11, No. 6, 889-900 (1963).

B.J. Lageweg, J.K. Lenstra and A.H.G.R. Kan,
“Job-shop scheduling by implicit enumeration”
Management Science 24, 441-450 (Dec., 1977).

J.K. Lenstra et al., “Complexity of machine scheduling
problems” Ann. Discrete Math. 7, 343-362 (1977).

M.R. Garey, D.S. Johnson and R. Sethi, ‘““The complexity
of flowshop and jobshop scheduling” Mathematics of
Operations Research 1, No. 2, 117-129 (1976).

J.W. Boyse, “Interference detection among solids and
surfaces” Comm. of the ACM 22, 3-9 (Jan., 1979).

	img-100120212328kkk
	img-100120212356
	img-100120212418
	img-100120212437
	img-100120212458
	img-100120212520
	img-100120212543
	img-100120212602
	img-100120212621
	img-100120212646
	img-100120212711
	img-100120212729
	img-100120212748
	img-100120212806
	img-100120212832
	img-100120212853kkk

