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Abstract

Based on a simple mathematical property, a simple method is proposed for detecting the number of folds »n contained in a
given rotationally symmetric shape. Skills to overcome the difficulty caused by sampling and rounding errors are also discussed.
Experimental results are included to show the feasibility of this new method. As for shape orientation, it is just a by-product of
the proposed method because no extra computation load is needed to get the orientation.

Keywords: Symmetry; Number of folds; Factor; Shape orientation; Sampling error; Rounding error; Computation load

1. Introduction

Symmetry is an important feature for shape per-
ception which is useful for a lot of computer vision
applications. Some benefits are associated with sym-
metry. For example, the storage space representing a
given symmetric shape can be reduced because it only
needs to store one copy of the repeating portions
(Parui and Majumder, 1983). Another example is
that if certain parts of the symmetric shape are miss-
ing, then symmetry provides a clue to recover the
shape. At least two kinds of symmetry can be identi-
fied, namely, mirror symmetry (Atallah, 1985), and
rotational symmetry (Chou et al., 1991).

To make use of the shape symmetry property, it is
usually necessary (Chou et al., 1991) to compute the
number of symmetry axes (or the number of folds)
of a given shape. Several methods (Atallah, 1985;
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Parui and Majumder, 1983) have been proposed to
find the number and orientation of the symmetry axes
contained in a given shape which is mirror symmet-
ric, i.e., symmetric about certain lines called sym-
metry axes. On the other hand, the number of folds »
contained in a given rotationally symmetric shape can
be detected by a method described in (Leou and Tsai,
1987) where n is counted as the frequency that the
boundary of the given rotationally symmetric shape
runs across a special circle related to the given shape.

In this paper we use a simple mathematical prop-
erty shared by all rotationally symmetric shapes to
derive a new method for detecting the number of folds
n contained in a given rotationally symmetric shape.
The approach is simple, and is based on the obser-
vation that if the origin of the coordinate system is
taken to be the centroid of the given rotationally
symmetric shape composed of K sampled points
{(Xx, V&) } K1, then with the convention that i=

—1 and ree'%=x, +1y, it can be derived that

K
kzl ri (X +iye)'=0 (1)
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whenever //n is not an integer. Once the value of 7 is
found by our method, an important feature of the
shape, namely, the orientation of the shape, also
comes out immediately without further computa-
tion. The shape orientation can thus be viewed as a
by-product of our method.

The remainder of this paper is organized as fol-
lows. Equality (1) will be proved in the Appendix by
the use of the angularly periodic property of rotation-
ally symmetric shapes. Based on this equality, a new
method for detecting » using a rotation-matching
technique is described in Section 2. In Section 3, we
discuss the skill to overcome the difficulty caused by
sampling and rounding errors. In Section 4, some ex-
perimental results are given to show that the pro-
posed method really works well. The computation
load is analyzed in Section 5. In Section 6 we show in
detail why the orientations of rotationally symmetric
shapes are just a by-product of our method. We also
explained in that section why this by-product is im-
portant. A summary is given in Section 7.

2. Detecting numbers of folds

A shape S is called an n-fold rotationally symmet-
ric shape (abbreviated as an n-RSS henceforth) if it
becomes identical to itself after being rotated around
its centroid through any multiple of the angle 2n/n
for some n> 1. For simplicity, we assume that no
other larger integer » has this property. The purpose
of this study is to find this value » when the given
shape S has been known to be a rotationally symmet-
ric shape. Throughout this paper, we take the origin
of the coordinate system to be the centroid of S. Let
shape S, when sampled in the X-Y coordinate sys-
tem, be described as

S={(xk,}’k)}f=1 (2)

where K is the number of sampled points in S, i.e., K
is the number of the grid points contained in .S when
S'is covered by a grid (also called mesh ) used for dig-
italization. For any natural number /, define

Drinl_ & i6 ot RS [
xO+iyBO= ¥ pe= N Fl—=+i==
k=1 T Tk

= =i/

K
= 3 Gt ing’ (3)

where the polar length r, and polar angle 6, are de-
fined by the convention

e =m iy, k=1;2;..cK: (4)

Then we have the following theorem (see Appendix
for the proof').

Theorem 1. If [/ n is not an integer, then

x D 4iyth=(,

Notice that Theorem 1 above does not imply that
x M +iy™ 0 although n/n=1is an integer. In fact,
as will be seen in Section 4, x ™) +1y ™ 0 for almost
every n-RSS and x ™ +iy =0 for some strange n-
RSS. It is therefore not true to say that the smallest
positive value / making x ” +iy ) nonzero is the value
n we want. However, based on this theorem and the
definition of n-RSS, the value » can still be found
easily in the following way. Just evaluate x () +iy
for /=2, then for /=3, and so on, until an /=/, mak-
ing x P41y £0 is found. Theorem 1 above implies
that » must be a factor of this /,. Otherwise, /,/n is
not an integer, and hence x ) +iy /Y =0, which con-
tradicts the definition of /,. Let {p,;}/_, be the set of
all positive factors of /, with

L=p>py>.>p=1, (5)

then ne{p;}!=!. Consequently, the definition of n-
RSS given at the beginning of this section implies that
n is the greatest p, in {p;}/={ satisfying the require-
ment that the shape S is identical to itself if the shape
is rotated through an angle of 27t/p;. In summary, the
following algorithm can be used to find the value n.

ALGORITHM 1. Finding the value # for a given n-

RSS S.

Step 1. Translate the coordinate system so that the

origin O becomes the centroid of the given
shape S.

Step 2. Evaluate the value of x( +1iy? defined in (3)
for /=2, then for /=3, and so on, until an /=/,
making x 41y #0 is found.

Step 3. Arrange all of the positive factors {p,}/_, of/,
in a descending order, namely, [/,=

p>pa>..>pr=1.
Step 4. Set i=1.
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Step 5. If the shape S is identical to the shape Sgor
obtained by rotating S through an angle of 21t/
Di, then go to Step 7. If these two shapes are
not identical, then proceed to Step 6.

Step 6. Increase the value of / by 1, and then go to
Step 5.

Step 7. Output the value p; because it is the value n
we want.

3. Skills to handle sampling and rounding errors

Due to sampling and rounding errors, special skills
should be used to detect the value of /, because it is
not easy to judge whether a complex number
x®+iy® generated by a computer is zero or not (see
Step 2 of Algorithm 1). Similarly, some special rules
should also be used to judge whether a shape S and a
rotated version Sgor of it are “identical” or not (see
Step 5 of Algorithm 1).

For Step 5 of the algorithm, i.e., for the rotation-
matching step, we adopt the rule that shape S and its
rotated version Sgot are said to be “identical” if and
only if more than ninety-nine percent of the sampled
points of S are also some sampled points of Sgor. Of
course, if the grid used for sampling is quite coarse,
then the sample error will become very severe, and
the percentage mentioned here should be lowered
accordingly.

As for the detection of /,, since /, is a multiple of n,
and n> 1 (because by definition a rotationally sym-
metric shape can not just have one fold), we can see
that /, £ 1 is not a multiple of n. Theorem 1 thus im-
plies that the values of x "*D +iy(*1 are theoreti-
cally zero. On the other hand, the definition of /, im-
plies that x“+iy is theoretically nonzero.
Therefore, it seems reasonable to expect that the
computed value of |x ) +iy )| will be much larger
than those of |x* D +iy* 1| Hence, in practice
when sampling and rounding errors both exist, in-
stead of defining /, as the smallest positive integer
making x W +iy W £0, we define /, as the smallest
positive integer making

|x M +ipt)| max{|x U1 +jpth-1| |
|x(ll+l)+iy(ll+l)l}’ (6)

or equivalently, making

|x(11)+iy(11)|/K>>max{|x(/|—l)+iy(11—l)'/K’
|x(l|+l)+iy(h+l)|/K}
(7)

where the K appearing above is the number of sam-
pled points contained in the shape. Dividing both
sides of (6) by K'to get (7) means taking the average
among sampled points. We prefer (7) to (6) because
if the shape is sampled, say, in a 256 X256 grid with
the readings being 0, 1, ..., 255 on both of the hori-
zontal and vertical axes, then the computed values of
|x 1 ED 4y =D could be as large as several thou-
sands although they are theoretically zero; and divid-
ing them by K makes them look more natural, i.e.,
much closer to zero.

4. Experimental results of detecting numbers of folds

We show in this section some experimental results
of detecting numbers of folds using the algorithm
provided in Section 2. The effect caused by sampling
and rounding errors has been taking into account, i.e.,
the value of /, is taken to be the smallest positive in-
teger making (7) hold (instead of making x "+
iy £0); and the two sets S and Sgor are said to be
“identical” if they differ from each other only in a
very small portion of the total area (see the second
paragraph of Section 3 for explanation).

A 4-fold rotationally symmetric shape is sketched
in Fig. 1(a). The number of sampled points con-
tained in this shape is K=12181 when the shape is
sampled in a 256x256 grid. The values of
|x 41y | /K corresponding to /=1, 2, 3, ..., 8 are
listed in Fig. 1(b). Note that we did not compute
|xM+iy V| /K because

|x D +iyM| /K= I8 (e +iye) | /K
=| (Zf=1xk)+i(zf=1Yk)|/K
=10+i0] =0

is an immediate consequence of the requirement that
we always translate the coordinate system so that the
origin coincides with the centroid of the given shape.
|xM+iy| /K is listed here just for reference use.
From that list of {|x+iy|/K}}_,, we see that
|x+iy®| /K has a sharp increase as / goes from 3
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12181 sampled points
27+ O /K

l

1 Zero

2 0.00000677
3 0.06872168
4 94.06779355
5

6

7

8

0.07474513
0.00010043
0.11169840
80.90273462

(a) (b)

()
Fig. 1. A 4-fold rotationally symmetric shape and its correspond-
ing values of |x?+iy®|/K. (a) The shape. (b) The values of
{Ix®P+iy®|/K}}_, for this shape shows that /,=4. (c) The
shape remains unchanged if it is rotated through an angle of 2/
/,=2m/4. Hence, the shape is judged to be 4-fold.

to 4, then a sharp decrease as / goes from 4 to 5. Hence,
[, =4 meets the requirement stated in (7). The set of
the positive factors of 4 are {4, 2, 1}, so we have
p1=4>p,=2>p;=1. According to the algorithm, we
should use 2rn/p,=2mn/4 as the rotation angle in the
first try of rotation-matching test. Immediately, we
found that there is no need to try the remaining p,
because the shape is found to be identical to itself
when it is rotated through an angle of 2n/4. Hence,
n=p,=4is the detected value used for output.

The shapes sketched in Fig. 2 have 3, 4, 5, and 6
folds, respectively. Analogously, the computation re-
sults listed there also show that /, =3, 4, 5, and 6, re-
spectively, because they are the smallest positive in-
tegers making (7) hold. After a rotation-matching test
with the rotation angle being 2r//, for each of the
cases, we found that the shape is unchanged after the
rotation. Hence, the detected value of n is /,, i.e., 3,
4,5, and 6, respectively. Again, the detected value of
n for each case is exact!

11743 sampled points

|0 + iyO|/K —|

l

1 zero

2 0.18979682
3 73.41740861
4 0.23981518
5

6

7

8

0.26024903
52.24475213
0.39950036
0.27397838

18481 sampled points
l J |z0) +iyO |/ K

i zero
191 x 107
1.48 x 1071®
31.38926749
6.72 x 10716
2.29 x 10714
3.87 x 10718
21.71325449

oo«rlcsm.awm

25410 sampled points

1] =9 +30)/K

1 zZero
0.19911809
0.14686640
0.27219356
36.69398282
0.33027821
0.09821857

2

3

4

5

6

7

8 0.12342570
40937 sampled points
ﬂ |20 + 50|/ K
1 Zero

2 0.62949276
3 0.15918286
4 0.10564380
5 0.09614510
6 11.50829694
] 0.05603174
8 0.12041471

Fig. 2. Some rotationally symmetric shapes and their corre-
sponding values of { |xV+iy V| /K}5_,.

Our experience is that, although n=/, holds for al-
most every rotationally symmetric shape, some
strange shapes (usually artificially-created ) do have
/> n. An example is given in Fig. 3. The 4-fold shape
in Fig. 3(a), which is artificially-created, is intro-
duced in (Lin et al., 1992). It was designed in such a
way that it has the property x*+iy™® =0+10=0
(see (Lin et al., 1992) for details). Therefore, the
value of |x® +iy )| /K is also (theoretically) zero.
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48315 sampled points
=0+ aO/K
zero
0.00647269
0.00591212
0.00982650
0.00364557
0.00268533
0.00304035
13.19616575
0.00469254
0.00267312
0.00556702
7.11539952
0.00448080

Olo|(|o|on| s |w =]~

—
o

-
—

-
5]

—
w

(a) (b)

() (d)

Fig. 3. An n-RSS of which the value of /, is not n. (a) The shape.
(b) The values of {|x+iy|/K}§_, for this shape show that
1, is 8 instead of 4. (c) The shape is not identical to itself if it is
rotated through an angle of 2n//,=2n/8. Hence, the shape can
not be 8-fold. (d) The shape is identical to itself if it is rotated
through an angle of 2n/p,=2n/4 (where p,=4 is the second larg-
est factor of /;). Hence, the shape is judged to be 4-fold by the
proposed algorithm.

Hence, the computation result shown in Fig. 3(b) in-
dicates that /, is 8 instead of 4. Since the set of all
positive factors of 8 is {8,4,2,1}, we set p,=8>
p>=4>p;=2>p,=1. Then we used 2n/p, =2n/8 as
the rotation angle in the first try of the rotation-
matching test and found that the shape Skor
(sketched in Fig. 3(c)) is different from the original
shape S (sketched in Fig. 3(a)). Therefore, we used
2n/p,=2m/4 as the rotation angle in the second try
and found that the shape Sgor (sketched in Fig.
3(d)) is identical to the original shape S. Hence,
n=p,=4 is the detected value for output, which is
correct.

5. Computation load and an alternative version

The computation load of Algorithm 1 is of order
Kn only (as usual, Kis the number of sampled points
and 7 is the number of folds). To see this, just note
that most of the computations are done in Steps 2
and 5 of Algorithm 1. We first prove that Step 2 is of
order Kn only. The evaluation of the values
{(xD+iy®1 1+ has computation load of order KI,
because for each sampled point (x;, y,) the evalua-
tion of the {|xi+iyi|((Xe+ive)/|xe+iyel)'}i2s"
has computation load of order /,. When (x;, yx)
ranges over all K sampled points to take the >£_, op-
erator used in (3), we see that Step 2 of Algorithm 1
has computation load of order K/, and hence, of or-
der Kn because /,=n for almost every rotationally
symmetric shape, and /, =2n, 3n, etc., for some very
strange shapes (but the latter case seldom occurs).
As for Step 5, there are two parts, namely, rotation
and matching, respectively. The job of rotating a K-
point shape (through an angle of ) is of order K be-
cause we only have to multiply each point x;+1iy; by
a complex number cos f+1sin f to generate the cor-
responding rotated point in the complex plane. The
job of comparing two binary-valued 256-by-256 im-
ages, or equivalently, the job of comparing two bi-
nary-valued 256-by-256 matrices representing .S and
Sror, €ach with K entries being ones and
256%256—K entries being zeros, is of order
256 %256. On the other hand, K is proportional to
the number of the grid points, for example, if a
512x 512 grid is used instead of 256 X 256, then the
value of K will be approximately four times larger.
Hence, we may also say that the job of comparing the
two binary-valued matrices is of order K. Therefore,
Steps 2 and 5 together has work load of order Kn.

A SUN workstation, whose computation speed is
3 megaflops, was used to compute the value of #, and
the total time used for each shape is six seconds for
the shape sketched in Fig. 3 and no more than four
seconds for each of the shapes sketched in Figs. 1 and
2. The total time used for each shape includes the time
for doing several jobs such as reading in a 256-by-256
matrix representing the given shape S; finding the
value of /;; generating a 256-by-256 matrix represent-
ing Srot; comparing the contents of the two matrices
representing S and Sgot; etc.

At the end of this section, we provide an alterna-
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tive version of Algorithm 1 so that there is no rota-
tion-matching step in the alternative version. More
specifically, note first that Step 5 for Algorithm 1, i.e.,
the rotation-matching procedure to check whether n
is /, or not, may be omitted in practical applications
because it is very unusual to have a shape with /, #n
(although the shape sketched in Fig. 3 is an excep-
tion, notice that it is an artificially created shape
which was designed to have /, #n on purpose). The
omission of the rotation-matching step of course re-
duces the computation time significantly. When we
are not sure whether this omission is safe (for exam-
ple, when artificially created strange shapes may pos-
sibly be among the shapes to be processed), if it is
still desired not to use the rotation-matching opera-
tion, one can compute {x ) +iy "} for more / to gen-
erate not only /; but also /,, /5, etc. which satisfy
x W +iyW =0 for all /. Theorem 1 then implies that
n is a common factor of these /. When sufficiently
many /; are generated, our experience is that it is usu-
ally safe to expect that the greatest common divisor
of {/;} is the expected n. For example, for the second
shape sketched in Fig. 2, because /, =4, ,=8, [;=12,
etc., we may then expect that the value of » is 4 be-
cause 4 is the greatest common divisor of {4,8,12,...}.
As for the shape sketched in Fig. 3, because /,=8,
l,=12, =16, etc., we may then expect that the value
of n is 4 because 4 is the greatest common divisor of
{8,12,16,...}.

6. Shape orientation — a by-product of the method

A major advantage of using Algorithm 1 to detect
the number of folds is that an important by-product,
namely, the orientation of the given rationally sym-
metric shape, can be extracted easily from the com-
putation results of Algorithm 1. In fact, the orienta-
tion of the shape comes out immediately without
further computation because the direction can be de-
fined as the half line OA starting from the centroid
0= (0, 0) and has directional angle ®/n where @ is
the polar angle of the complex number x ) +1iy ) if
this complex number is nonzero. For example, the
orientations of the five shapes sketched in Figs. 1(a)
and 2 are thus defined to be the five half-lines ejected
from the corresponding centroids and with direc-
tional angles (1/n) angle (x™ +iy ™) for n= 4, 3,

4, 5, 6, respectively. Two of these five half-lines are
sketched in Fig. 4(a). The reason why we may use
the half-line OA to define the orientation of the given
n-RSS is due to the fact that O4 coincides with the
half-line OB starting from the centroid O and passing
through a shape-specific point B, called the fold-in-
variant centroid (F.I.C.), of the shape (see Fig. 4(b)
for illustrations). In (Lin et al., 1992), with the as-
sumption that the value of # is known, Lin et al. de-
fined the F.I.C. first and then defined the orientation
of the given n-RSS to be the half-line OB. It is proved
in (Lin et al., 1992) that defining the orientation of
the given n-RSS to be OB is suitable because the ori-
entation so defined is independent of the translation,
rotation, and scaling of the coordinate system used.
Therefore, it is also suitable to define the orientation
using OA if we can prove that OA = OB, or equiva-
lently, the F.I.C. has directional angle @/n. But this
fact can be derived easily from the definition of F.I.C.
(see the algorithm given in (Lin et al., 1992) for the
reason).
We emphasize this by-product of Algorithm 1 be-
cause of the reasons listed below.
(1) Shapes orientations are very useful in com-

(a)

(b)

Fig. 4. 5;1 and 573 give the same shape orientation. (a) The shape
orientation defined by OA starting from the shape centroid O and
having directional angle (1/n) angle (x +iy™). (b) The shape
orientation defined by OB. Here, the point O is the shape cen-
troid and the point B is the F.I.C. defined in (Lin et al., 1992).
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puter vision applications related to robotics, geomet-
ric modeling, factory automations, etc.

(i1) Rotationally symmetric shapes belong to a
special kind of shape in the sense that defining their
orientations usually requires special tools because
traditional methods such as using te principal axes
(Rosenfeld and Kak, 1983) or the half-line starting
from the shape centroid and passing through the ra-
dius weighted mean point, which is a special point
introduced in (Mitiche and Aggarwal, 1983), both
fail. The by-product of our method, i.e., the orienta-
tion detected by our method, provides a feasible way
to overcome this difficulty.

(i11) Although the method used in (Leou and Tsai,
1987) can also be used to detect the number of folds,
it requires an extra non-neglectable computation load
to execute one of the orientation detection methods,
such as those introduced in (Chou et al., 1991) or
(Lin et al., 1992), if shapes orientations are also of
interest. Our method is a “two-in-one’” method in the
sense that the computation time needed for detecting
both the number of folds and the shape orientation is
almost identical to that of detecting numbers of folds
only.

(iv) Of course, the benefit stated in (iii) is no
more a benefit if our algorithm is a time-consuming
algorithm itself. However, as analyzed in the last sec-
tion, this worry is not necessary because, as stated in
Section 5, the computation load of Algorithm 1 is of
order Kn only, and it takes only a few seconds for each
shape sketched in this paper to get the value of n. As
for the method used in (Leou and Tsai, 1987), it is
slower than ours because besides the rotation-match-
ing step, it also requires the use of some boundary-
detection techniques. Also note that their method re-
quires that the shape has no hole in it while our
method does not (see Fig. 3 and the fourth shape of
Fig. 2 for example).

7. Summary

We have successfully designed a simple method to
compute the number of folds 7, and hence the shape
orientation, of an arbitrarily given rotationally sym-
metric shape. The idea is based on a simple but im-
portant mathematical property shared by all rota-
tionally symmetric shapes. Skills to overcome the

difficulty caused by sampling and rounding errors are
also discussed. The experimental results showed that
this new method works well, and hence it is not only
of theoretical value but also useful in practice. The
orientation of the given rotationally symmetric shape
is just a by-product (without extra computational ef-
fort) when we use our method to detect the number
of folds contained in the shape. The proposed method
is thus “two-in-one” in nature, and this advantage
makes our method superior to the method intro-
duced in (Leou and Tsai, 1987) for detecting the
numbers of folds contained in rotationally symmet-
ric shapes. Another advantage is that the method in
(Leou and Tsai, 1987) requires that the shape has no
hole in it while our method does not.

As a concluding remark of this study, we empha-
size below the simplicity of the proposed method.
First, the proposed method does not require compli-
cated image pre-processing procedures such as the
boundary-detection technique that is used in (Leou
and Tsai, 1987). Second, the operations used are just
some simple operations like addition, multiplication,
division, and comparison of two real numbers. All
these operations are quite basic and standard for all
computers. As a result, the proposed method can be
implemented easily on any kind of computer. Third,
the time complexity is not high. Fourth, shape ori-
entation can also be detected without extra compu-
tational effort. And at last, all the benefits mentioned
above are achieved using a very simple and short
mathematical statement, namely, x¥+iy®=0
whenever / is not a multiple of the number of folds.

Appendix

Proof of Theorem 1

The polar coordinate representation of the given
shape S={(xc, i)} k=1 is

S={r.e®%}k_, . (8)

Since S'is an n-RSS, Eq. (8) can be rewritten as
S= U {r,ei | m=1,2,.., M, and
Jj=1

Hmj=9ml+j2n/n} (9)
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where M is the number of points in a fold S and # is
the number of mutually disjoint folds contained in S.
Therefore k=n-m. Here a fold of S is defined as any
contiguous region of the n-RSS S bounded by an an-
gular range of 21t/ n.

Substituting Eq. (9) into Eq. (3), we have

M n M n
x(l)+iy(l)= Z Z (rmeilemj)z Z Fon Z eilf)mj)
j=1

m=1j=1 m=1

_ 5 rm(i cos(l6,,)+i 3 sin(le,,,,-)). (10)
m=1 j=1 f=1

It suffices to show that both X7, cos(/6,,) and
271 sin(/6,,) are zero whenever //n is not an inte-
ger. By Eq. (9) as well as the assumption that //n is
not an integer, we have

i cos(16,,)= ‘2 cos[l(6,,; +j2n/n)]
j=1 j=1

n

Y [cos(16,,,) cos(j2nl/n)

=1

—sin(/6,,,) sin(j2nl/n)]

cos(16,,,) Z”: cos(j2nl/n)

—sin(/6,,) 3 sin(2nl/n) (11)
j=1

=cos(/6,,,) l:cos (ﬁ—l nl) M:I
n sint//n

. . (n+1 sin 7t/
—sin(10,,,) [sm (T nl) m:l (12)

=C08 (/6,1 )+ [0] —sin ({6, )-[0]
=0 (13)

where the reduction of expression (11) to (12)is
based on the following pair of trigonometric formulas

n o sin(nt/2)
j;lcos(_]t)_cos[(n+1)t/2]—Sin(z/z)

and

b sin(nt/2)
j;lsm(;t)_sm[(n+1)t/2]—sin([/z)

which can be found in (Dwight, 1961).

37, sin /6,,;=0 can be proved similarly. From Eq.
(10) we have proved that x?+iy¥=0. O

References

Atallah, M.J. (1985). On symmetry detection. IEEE Trans.
Comput. 34 (7), 663-666.

Chou, S.L., J.C. Lin and W.H. Tsai (1991). Fold-principal axis
— a new tool for defining the orientations of rotationally
symmetric shapes. Pattern Recognition Lett. 12 (2), 109-115.

Dwight, H.B. (1961). Tables of Integrals and Other Mathematical
Data, 4th edition. MacMillan, New York.

Leou, J.J. and W.H. Tsai (1987). Automatic rotational symmetry
determination for shape analysis. Pattern Recognition 20 (6),
571-582.

Lin, J.C., S.L. Chou and W.H. Tsai (1992). Detection of
rotationally symmetric shape orientations by fold-invariant
shape-specific points. Pattern Recognition 25 (5), 473-482.

Mitiche, A. and J.K. Aggarwal (1983). Contour registration by
shape-specific points for shape matching. Computer Vision,
Graphics, and Image Processing 22, 396-408.

Parui, S.K. and D.D. Majumder (1983). Symmetry analysis by
computer. Pattern Recognition 16 (1), 63-67.

Rosenfeld, A. and A.C. Kak (1982). Digital Picture Processing,
Vol. II. Academic Press, New York.



	img-100120202255-0001
	img-100120202317-0001
	img-100120202336-0001
	img-100120202354-0001
	img-100120202414-0001
	img-100120202432-0001
	img-100120202450-0001
	img-100120202509-0001

