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File Naming 

researchers to compare performance on specific images. 

Feature-Preserving Clustering of 2-D Data 
for Two-Class Problems Using Analytical 

Formulas: An Automatic and Fast Approach 
Each file is assigned a unique name that will allow for individual 

Storage Requirements 

database are now listed. 
The number of megabytes of storage for each portion of the 

Megabytes for Each Portion of the Database 

Database Component Training Testing 

Grayscale cities 152 16 
Grayscale states X3 9 
Grayscale ZIP Codes 193 9 
Mixed bi-tonal alphabetics and numerics 52 6 
Bi-tonal numerics only 38 10 

Overall, approximately 600 Mbytes of the CDROM are used. This 
includes the storage needed for formatting information. 

Availability 
The database described in this correspondence is available from 

the Center of Excellence for Document Analysis and Recognition 
(CEDAR) at the State LJniversity of New York at Buffalo. 
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Ja-Chen Lin and Wen-Hsiang Tsai 

Abstract-We propose in this correspondence a new method to perform 
two-class clustering of 2-D data in a quick and automatic way by 
preserving certain features of the input data. The method is analytical, 
deterministic, unsupervised, automatic, and noniterative. The computa- 
tion time is of order n if the data size is n,  and hence much faster than any 
other method which requires the computation of an n-by-n dissimilarity 
matrix. Furthermore, the proposed method does not have the trouble 
of guessing initial values. This new approach is thus more suitable for 
fast automatic hierarchical clustering or any other fields requiring fast 
automatic two-class clustering of 2-D data. The method can be extended 
to cluster data in higher dimensional space. A 3-D example is included. 

Index Terms- Two-class clustering, cluster representatives, feature- 
preserving, analytical formulas, decision boundary, automatic fast clus- 
tering, k-means, hierarchical methods. 

I. INTRODUCTION 

Two-class clustering problems are frequently encountered in real 
applications. For example, block truncation coding for image com- 
pression [ I ] ,  divisive clustering for hierarchical clustering [2], binary 
decision tree construction, etc. It is therefore desired to develop a fast 
automatic method that can be employed to partition an input set H 
of n pattems into two classes. Unfortunately, most of the clustering 
tools developed so far, such as the k-means method [3], the divisive 
method using a dissimilarity matrix [4], etc., are iterative and thus 
unsuitable for performing fast automatic two-class clustering. 

It is desirable to avoid iterative computation by using mathematical 
formulas to express the decision boundary, which separates the two 
classes, in terms of the input pattems directly. One way of achieving 
this goal based on the moment-preserving principle is explained 
below. When the 71 input pattems are one-dimensional, say, forming 
a set H = {s,):2=, , the partition of H into two disjoint clusters H 4  

and H B  is an easy job. We may assume that every pattem in cluster 
H A  resembles (in some sense) a single point ~ 4 .  and similarly, every 
pattem in cluster H B  resembles another single point T B .  The two 
points s 1 and .rB are called cluster representatives. Assume further 
that the fractions of the numbers of pattems in H 4  and H B  are p 4  

and p ~ .  respectively. It is clear that 

p 4  S P B  = 1. (1)  

By preserving the first three moments, i.e., by requiring that 

for k = 1.2. and 3, (2) 

and by the natural requirement ( l ) ,  we can solve Eqs. ( I )  and (2) 
to obtain the four unknowns I r . 4 ,  z e , p ~ . p ~ } .  The solution can be 
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found in [5] or [6]. Having obtained ZA.ZB,PA and pB, one may 
define, as Tsai did in [6], the decision boundary I to be the pa-tile. 

When the input pattems are two-dimensional data, we found that 
moment-preserving is no more so easy to apply to partition the given 
data into two clusters H A  and H E .  To see this, let H = {(xz, Y%)},"=~ 
be the given data to be partitioned, and let the fractions of the 
numbers of pattems in HA and H B  again be P A  andpe ,  respectively. 
Assume also that every pattem in cluster HA resembles a cluster 
representative ( Z A ,  y ~ ) ,  and every pattem in cluster H B  resembles 
another cluster representative ( 2 8 ,  Y E ) .  The goal is again to obtain 
some formulas which can be used to compute 

{ T A ,  Y A ,  X B ,  Y B ,  P A ,  P B  1 (3) 

easily. To get the solutions of these six unknowns, we need five 
additional equations other than (1). A natural try is to construct these 
five equations by applying the moment-preserving principle to the 
first five moments, resulting in 

for j + k = 1 and 2. (4) 

In other words, it may be tried to preserve each of the five mo- 
ments (5. y, Cy, iz, y-'} Unfortunately, the six equations in (1) and 
(4) are themselves a contradictive equation fet, and no set of 
{ z A , ~ A ,  ZB,YB.PA,PB} can be generated. The proof is straight- 
forward and thus omitted. 

It is therefore the purpose of this study to find some other features 
to replace the roles of the five moments { 5 ,  y, x-y, xZ, yz}. It is found 
that preserving 

(5 ) 

is a very good solution. The definition of T ,  e, and 4 will be given 
in the next section. 

The remainder of this papar is organized as follows. In Section 
I1 the formulas to compute {TA,  Y A , X B . ~ B . ~ A , ~ B }  by preserving 
the set of features of (5) are introduced, and the method to construct 
the decision boundary to separate the two classes is also discussed. 
In Section 111, we give some experimental results. In Section IV, 
the method is compared with the k-means and hierarchical methods. 
Then we discuss in Section V the safe way to apply our method. 
The possibility to extend the method to higher dimensional data, and 
the general rule to construct a feature-preserving method are both 
discussed in Section VI. Finally, concluding remarks are given in 
Section VII. 

- -  

(5.  I, F .  e, dJ} 

11. ANALYTICAL FORMULAS FOR TWCIcLASS 

CLUSTERING OF 2-D DATA 

Without the loss of generality, we assume that (5,y), which is 
the centroid of the given n-point system H = { ( ~ , , y ~ ) } : = ~ ,  to 
be the origin (0, 0). If this is not the case, a translation by the 
amount of Ax = F and Ay = I should first be done, and then, 
after { Z A ,  Y A ,  T B ,  Y B }  are generated, these four numbers should be 
transformed back to the old coordinates by an inverse translation 
with Ax = -5 and A y  = -y. Similarly, we also assume that a 
preprocessing step of rotation has been performed so that the [I] 
of H coincides with the y-axis. Note that the principal axis is a 
line going through the centroid (0,O) of H with directional angle 4 
characterized by the following two equations [7] :  

t an  20 = 2x-y/(x? - y?), 

Let { ( r l r 8 , ) } ~ = l  be the polar coordinates of the (standardized) 
points {(xz,yZ)}:,,. Similarly, k t  ( T A , @ A )  and ( T B , @ B )  be the 
polar coordinates of the cluster representative ( Z A ,  Y A )  and (FB, y e ) ,  
respectively. The preserving of {S, y, F ,  e}, with F and @ defined 
as f = :x:'Ll T *  and 8 = +E:=, 0*, means that 

~ A X A  + P B X B  = 5 = 0 (6) 

PAYA + P B Y B  = y = 0 (7) 
P A T A  +PBTB = F (8) 
P A B A  + PB@B = e (9) 

Equations (6) and (7) imply that 

As a result, 

which in turn means that 

because 

can be derived from (8). 
On the other hand, the straight line connecting the system centroid 

(5,y) = (0,O) and ( S A . Y A )  is identical to the the straight line 
connecting (F, y) and (TB, Y E ) ,  for both lines go through (0,O) and 
have the same slope 

Y A - Y  - YQ s=- - 
bA - 2  X A  

- -(pB/p4)YB - Y E  

- Y B  - y 

- _ -  
-(PB/PA)XB X B  

-- 
X B  - ? 

by (10) and (1 1). 
Since the three points (x 4, Y A ) ,  (0. 0), ( Z B ,  Y E )  are on the same 

straight line, and (0,O) is between ( Z A , Y A )  and ( X B , Y B )  by ( I O )  
and (1  l),  we see that the polar angles BA and B B  of the two points 
( . T A ,  Y A )  and ( T B ,  Y B )  must differ from each other by TT. Without 
the - loss of generality, let @B = R A  + TT. Equation (9) thus becomes 
0 = P A ~ A  + ~ ~ ( 0 . 4  + r) = (I14 + P B V A  + = @ A  + P B K .  
We then have 

(15) 

If we can obtain the value of B A ,  then the values of all six 
unknowns { Z A , Y A ,  Z B ,  ~ B , P A , ~ B }  canbecomputedeasilybecause 
we can first compute P B  and P A  by (15) and 

p A = l - p E ,  (16) 

respectively. Then we can evaluate T B  and T A  by the formulas 
r B  = 7 / ( 2 p B )  and T A  = T B ~ B / ~ A ,  as stated in (13) and (12). 
Finally, S A  = T A  C O S ~ A ,  y 4  = r s s i n O ~ ,  x n  = r B c o s @ B  = 
PB c o S ( 8 ~  + r) = -rn C o s  0 4 ,  and YB = T n  Sin O B  = T B  Sin(8a + 
T )  = - T B  sin 0.4. Therefore, all we have to do now is to assign a 
suitable value to @ A  which is defined earlier to be the polar angle of 
(14, Y A ) ,  or equivalently, the directional angle of the straight line 
going through the three points ( T A ,  Y A ) ,  ( O , O ) ,  and ( Z B ,  y ~ ) .  

p~ = (e - R A ) / T T .  
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(a) (b) 

Fig. 1. Computed pairs of cluster representatives (marked by two crosses) 
for some 2100-point sets in each of which the subpopulations of the two 
clusters are approximately 50% vs. 50%. Both the dotted line 1 and the solid 
line I‘ may be used as decision boundaries. 

(a) (b) 

Fig. 2. 
67% vs. 33% data. 

Same as Fig. 1, except that the data used has been replaced by some 

A reasonable and convenient way to assign a suitable value to 
@A is to require the preserving of the principal axis orientation, 
which results in BA = 4 with 4 denoting the directional angle of 
the principal axis of the given 2-D data set H = {(xi, y;)}y=,. The 
fact that preserving the principal axis orientation implies @A = 4 is 
proved in [8]. 

Having obtained the two cluster representatives (ZA, Y A )  and 
(zg, YE), the decision boundary to separate the two classes can be 
defined to be the straight line I which is perpendicular to the line 
segment AB connecting A = ( Z A , Y A )  and B = (ZB,YB) such 
that 1 splits the 2-D plane into two half planes and the half plane 
containing (ZA, YA) has TIPA pattems. Several examples illustrating 
this kind of decision boundary will be given in the next section. 

However, if we want to design a classifier in a much quicker way, 
an altemative method is to use the straight line I‘ perpendicular to 
and bisecting the line segment AB as the decision boundary. The 
time needed to generate I‘ is much shorter than that for generating 
I .  Of course, when we use this easy-to-obtain decision boundary l ‘ ,  
the fractions of the numbers of pattems in clusters H A  and HE 
do not necessarily agree with the values of P A  and p g  computed 
by (16) and (15). However, this trade-off between the reduction of 
the computation time and the sticking to the estimated population 
distribution is worthy, especially when a quick design of classifiers 
is the main goal. After all, the computed PA and p~ themselves are 
just estimated values, instead of the exact values of the population 
distribution. 

III. ILLUSTRATIVE EXAMPLES 
In this section, we show the results of using our formulas to 

compute {ZA, YA,ZB,YB,  pa, PE} and construct both kinds of the 

decision boundaries I and I‘ for some randomly generated data set 
H = { (~ , ,y~ ) } :=~ .  The results are shown in Figs. 1 and 2. We 
first use an algorithm for generating random numbers to create a 2-D 
set SA, and use the same algorithm to create another 2-D set SE. 
These two sets are then merged together to form H. The proposed 
approach is finally applied to H. The computed cluster representatives 
are marked by two crosses, and the computed decision boundaries 1 
and I’ are shown as a dotted straight line and a solid straight line, 
respectively, in each figure. As stated at the end of the last section, 
both I and I’ are perpendicular to the line segment connecting the 
two generated crosses. The only difference is that I’ bisects the line 
segment connecting the two generated crosses while 1 guarantees 
that the fractions of the populations on the two sides of I match 
the values PA and PE computed by (16) and (15). In both Figs. 1 
and 2, H contains 2100 points. In Fig. 1, each H is designed to 
be the mergence of two disjoint subsets, and the number of points 
in each subset is approximately 1050 points. In Fig. 2, however, 
one of the subsets contains approximately 1400 points and the other 
subset contains about 700 points. It is observed that the values of 
PA and p~ computed by formulas [16] and [15] do get close to 
the expected ratio of 50% vs. 50% in Fig. 1, and 67% vs. 33% in 
Fig. 2. It is also observed that the computation time taken to generate 
{ZA, YA,  ZB, y ~ , p ~ , p ~ }  is only about two seconds for a 2100-point 
set H using an IBM PC with an 80386 processor. 

Iv. COMPARISON WITH K-MEANS AND HIERARCHICAL METHODS 

In this section, we compare our method with some clustering 
methods available in the IMSL [9] package, namely, the hierarchical 
agglomerative methods [lo] and the k-means method. The k-means 
method used in IMSL is based on an algorithm written by Hartigan 
and Wong [ I l l ,  and this program tries to reduce the total sum E of 
the within-cluster squares. When k = 2, i.e., when it is applied to 
the 2-class problem discussed here, E is expressed as 

for any two-class partition {HA,  HB} of the given input set H. 
As usual, ii and 6 denote the centroids of clusters H A  and HB, 
respectively. In Fig. 3, we compare the clustering results of ours with 
those of the k-means program provided by IMSL. It can be seen that 
our method yields clustering results similar to those of the k-means 
method. The two methods give identical results for (a), (c)-(f). Only 
two points in (b) and one point in (g) are clustered differently. The 
data shown in Fig. 3 were those proposed by Nagy [12]. We use 
these data sets because they illustrate cluster distributions of typical 
clustering problems such as “neck,” unequal cluster populations, etc. 
Similar typical clustering problems were also pointed out by Zahn 

The hierarchical agglomerative methods available in the IMSL 
package were also tested. It was observed that none of the proposed, 
the k-means, and the hierarchical agglomerative methods can cluster 
well the nonlinear data set (g) and the nonspherical data set (d) 
sketched in Fig. 3. When there are necks in the data, like in (b) 
and (c), our method cut necks, but not exactly (i.e., a little portion 
of the pattems is misclustered). Similar troubles also exist for the 
k-means method (see (c) of Fig. 3), the complete linkage method, 
and Ward’s method. As for the single linkage method, it is tembly 
inapplicable to data sets with “necks” because of the chaining effect. 

The computation time used is also an important index to evaluate 
distinct methods. In general, the time for the k-means method is 
about two times longer than ours, but the time needed for either of 

~ 3 1 .  
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0 

: ‘e 

Fig. 3. Comparing the results of applying the proposed method with those of applying the k-means method. The data sets are those used by Nagy 
[12]. The black-dot cluster and the white-dot cluster represent the two clusters detected by our method; while the points within the closed curve and 
the points not enclosed by the curve form two other clusters detected by a k-means algorithm proposed by Hartigan and Wong[ll], which intended to 
decrease the total sum of the within-cluster squares. 

the two hierarchical agglomerative methods becomes several hundred 
times longer than ours if the data size is 1OOO. We have also med 
a hierarchical divisive method given in [4]. The clustering results 
are similar to ours (when applied to Nagy’s data sets), but the 
computation time also becomes several hundred times longer than 
ours when n = 1OOO although it is faster than the hierarchical 
agglomerative methods. A reason to explain this fact is that our 
method has the work load of order n because all we need is to 
compute the average values {Z, ji, F ,  8, s-~, 3, z-y} of n pattems, 
where {.”, y”, fy} are used to obtain the principal axis. On the 
other hand, it is also easy to see that each iteration of the k-means 
method has the computation load of order n. However, each of the 
hierarchical methods, no matter agglomerative or divisive, has the 
work load of at least n2 because of the construction of an n-by- 
n dissimilarity matrix [4]. Also notice that the computer storage 
problem for this n-by-n matrix. This makes the hierarchical methods 
unsuitable for personal computers when the sample size is n = 1OOO. 

As for the k-means method, although the computation time and 
storage are of no trouble, outliers far away from the rest of the data 
will cause unexpected clustering results when any of them is taken 
as one of the initial guess points. The clustering result might be that 
one point forms a cluster and the other n - 1 points form the other. 
On the other hand, outliers only affect our method a little because 
the average functions 5 ,  ji, F, etc., will “smooth” their impact. 

Therefore ,our method is quick and storage-saving, and has no 
worry about the choice of the initial guess, the number of iterations 
needed, the problem of being convergent or not, etc. As long as the 
quality of the clustering result is not too far away from those obtained 
by other methods, our method deserves a try, especially for data of 
large sizes. Therefore, we try to find in the next section the limitation 
of our method and discuss the situations in which it is safe to use 
our method. 

v. APPLYING PROF’OSED METHOD IN A SAFE WAY 

Since our method uses a straight line I’ to split data into two 
clusters, we concentrate our discussion on linearly separable problems 
only. When the two clusters are circular-like (hollow or not), our 

method works well even if the two clusters touch each other (see 
(a)-(c) of Fig. 4 for illustrations). However, when there are well- 
elongated shapes in the data, our method may fail if the two clusters 
are too close to each other. For example, the data in (1) and (m) of 
Fig. 4 can be clustered well by our method (even though the two 
clusters touch each other), but the data in (d), (0, (h) (and maybe 
(i)) are not suitable to our method. Note that in (f) and (i) our cluster 
representatives are close to the means of the given clusters, and in 
(d) and (h) although our cluster representatives are far away from 
the means of the given (left and right) clusters, splitting the data 
into upper and lower halves, as shown in (d) and (h), is not worse 
than splitting the data into left and right halves, as in the direction 
shown in (e), in the sense that they give a smaller E defined in (17). 
In short, all the clustering results shown in Fig. 4 have small E. 
Moreover, the k-means method also have trouble in handling (d), (f), 
(h), and (i) if the policy of minimizing E is used. In fact, with the 
goal of minimizing E. the clustering results of the k-means method 
are very similar to ours for all the data sets shown in Fig. 4, with the 
only exception (d), of which the decision boundary generated by the 
k-means method is neither vertical nor horizontal, but slanted. 

When the two given clusters in each of (d), (f), (h), and (i) of 
Fig. 4 are far away enough from each other, as sketched in (e), (g), 
(i) and (k), respectively, our method yields “visually” good results 
again. Our experience is that, if well-elongated clusters are among 
the data to be clustered, it is usually safe to apply our method if the 
two expected clusters A and B satisfy min{d(a, b)l a E A, b E B }  
2 max {Diam(A), Diam(B)}. Here, the diameter Diam(C) of 
a point set C is defined as Diam(C) = max {d (c ,c ’ ) l  c,c’ E C}. 
Note that the inequality should be interpreted as a sufficient condition 
instead of a necessary condition. For example, both (1) and (m) of 
Fig. 4 can be partitioned well by our method although the sets are 
close to each other in each case. 

At the end of this section, we give in Fig. 5 some examples of 
partitioning input data into two classes when the data are in fact 
formed of more than two clusters. In some cases, our method might 
improperly cut one of the clusters into two halves (see (b) and (d)). 
Since improper cutting is possible (a trouble also occurs to the k- 
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L 

ti) 

Fig. 4. Applying our procedure to some linear-separable data sets of which the two clusters are hollow circular-like vs. circular-like, circular-like vs. 
well-elongated, wellelongated vs. well-elongated, etc. As usual, the two crosses are the two detected cluster representatives, and the solid line is the detected 
decision boundary Z'. Note that (d), (0, (h), and (i) are examples where applying our method is not suitable although these partitions have small total sums 
E of within-cluster squares. Also note that the crosses in (f) and ti) have been very close to the means of the expected clusters. 

(C) (d) 
Fig. 5 .  Applying the proposed two-class clustering method when the input 
set is in fact formed of three clusters ((a) and (b)) or four clusters ((c) and (d)). 

means method and some hierarchical methods), it is necessary to 
merge back the clusters, which are improperly cut, after applying our 
method repeatedly. 

With the k-means (which minimizes E) and our methods both 
applied to the data shown in Figs. 3-5, we observed that these two 
methods have similar clustering results and requires approximately 
the same amounts of computation time. We therefore classify our 
method as an automatic fast clustering method with performance 
similar to that of the k-means method which minimizes the E. Note 
that the k-means method has the trouble of choosing an initial guess, 
however. 

VI. HIGHER DIMENSIONAL PROBLEMS 
AND FEATURES TO BE PRESERVED 

In this section, we discuss the possibility of extending our method 
to higher dimensional problems, and the general principle to choose 
the features to be preserved. 

Without the loss of generality, we discuss the 3-D case only. 
However, the method discussed below can be generalized to any 
higher dimension. Assume that a given set H = { ( z ~ ,  yl, z,)}:=~ is 
to be split into two clusters HA and HB with cluster representatives 
being (ZA, y ~ ,  .A) and (ZB, y ~ ,  ZB), respectively. The goal is again 
to obtain some formulas to compute 

easily. Notice that there are two more unknowns { Z A ,  ZB} other than 
the six unknowns {ZA,YA,ZB,~B,PA,PB} appearing in (3) for the 
2-D case. In general, if the dimensionality increases from d to d + 1, 
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Fig. 6. An expample illustrating the 3-D clustering result using the 3-D version of the proposed method. Originally, there are two clusters, each contains 
ten 3-D points. Our mehtod clustered these twenty 3-D points into a white-dot cluster and a blackdot cluster, as shown in (a). To use 2-D coordinate 
systems to illustrate the 3-D relationship between these two clusters, we had projected the 3-D coordinates of the 20 input pattems and the detected 
representatives ( Z A . Y A ,  Z A )  and (ZB,YB,ZB), marked by crosses, onto the z-y and z-z planes, respectively. When these two clusters move toward 
each other. as in (b), our clustering result is still perfect. When the two clusters are tied together, as in (c), our method reassign one of the white 
points into the black class (see the rightmost black point in (c)). 

two more unknowns are created, and hence two more equations are 
needed. The first additional equation needed can of course be set up 
by preserving the mean value of the (d + 1)th space variable, for 
example, by requiring P A Z A  + ~ B Z E  = Z in the 3-D case. On the 
other hand, the second additional equation can be set up by preserving 
the directional angle component of the principal axis. For example, 
in the 3-D case, if the spherical coordinate system is used, and if the 
origin is set to be the centroid of H, then the eight equations we used 
to solve the eight unknowns in (18) is the equation P A  + p~ = 1 
and the equations obtained by preserving {Z, 5 ,  ? , T , ~ , @ P . A . , I $ P . A . }  
with "P.A." denoting "principal axis" of H and f the average of 
the 3-D radii. Note that the principal axis of a set in d-dim space 
is the eigenvector corresponding to the largest eigenvalue of the 
d-by4 correlation matrix. After certain derivations, the solution is 

8.4 = @P.A.;  4~ = 4p..4.; .PA = ( r a s i n ~ p . a . ) c o s @ P . A . ;  Y A  = 
( T A  s in4p.~ . ) s in@P. .4 . :  Z A  = ~ A c ~ s ~ P . A . ;  XB = - - ( P A / ~ B ) ~ A ;  

Y R  = - ( ~ A / ~ E ) Y A ;  and ZB = - ( P A / ~ B ) z A .  The decision 
boundary is then a plane bisecting and perpendicular to the line 
segment connecting the two 3-D cluster representatives. 

Fig. 6 gives an illustrative example showing the clustering results 
of the 3-D version of our method, in which three subcases are 
considered to see what happens when the two clusters are away, 
near, or mixed. Notice that in the first two subcases (a) and (b) 
the clustering results are perfect, while in (c) there is only one 
misjudgment. 

We now give a short discussion about the general principle to 
choose the variables to be preserved. In general, when it is d- 
dimensional, there are 2d + 2 unknowns { p a , p ~ ;  Z A ,  ZB; Y A ,  YE; 

Z A :  I'B: . . .}. Besides P A  + p ~  = 1 and the preserving of the centroid 
{?i. y, 5 , .  . e}. we still need d + 1 features to be preserved. It seems 
that a lot of features might be used, such as the squared moments 
{.c~,~*,z~:..}, the correlated moments {ZjJ,ET,v ,...}, the ab- 

PE = (8 - @ A ) / K  = (8 - @ P . A . ) / T ;  P A  = 1 - PE; TA = T / ( 2 P A ) ;  

- - _  

-- 
solute moments { 1x1, 191, . . .}, the angles {8,&. . .}, the lengths 
{ d w ,  d m ,  d x z  + y2 + 9, . . .}, the special-property- 
axes such as the principal axis or any other axis that can be 
used to define shape orientations, and so on. The question is that 
certain combinations might form contradictive equation sets. To see 
whether a set of equations is contradictive or not, one can utilize 
well-known inequalities such as Schwartz's inequality, Holder's 
inequality, Minkowski's inequality, etc. When one has proved that the 
equation set has a solution and derived the formula to generate that 
solution, experiments using distinct types of data to test the clustering 
performance of this formula are important. Many combinations have 
been observed in this study to have poor clustering results. In general, 
maximizing the information contained in the d + 1 selected quantities 
will usually be a way leading to success, if they do not form a 
contradictive equation set. 

~~ 

VII. CONCLUDING REMARKS 

In this correspondence, we have proposed a new fast method to 
perform two-class clustering for 2-D data. The method is analytical, 
automatic, deterministic, unsupervised and noniterative. We have 
derived some simple analytical formulas to compute the two cluster 
representatives and the decision boundary by preserving the centroid, 
principal axis orientation, average polar radius and average polar 
angle of the input data set. The clustering result is satisfactory, and 
for an input set of several thousand points, the clustering procedure 
to generate the two desired cluster representatives and the fractions of 
the numbers of pattems in the two classes takes only a few seconds 
using a microcomputer. The computation speed is several hundred 
times faster than many hierarchical methods like the single linkage, 
complete linkage, Ward's methods, and so on when the number of 
pattems is about 1OOO. The clustering result is, roughly speaking, not 
worse than those of the hierarchical methods. Unlike hierarchical 
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clustering methods or any graph-theoretical method using nearest 
neighbors, our method does not compute pairwise distances between 
input pattems; therefore, a lot of time is saved. But, since we do 
not use “local information” such as nearest neighbors, the global 
information that we use, such as { i ! , j i , F , g , q } ,  can only give us a 
“rough” partition; it should be of no surprise if our method misassigns 
one or two points while some hierarchical methods do not. In a word, 
a clustering method using global information is fast, but the clustering 
result is usually not the best (see, for example, part (b) or (e) of Fig. 
3). We have also compared the proposed method with the k-means 
method. Although the k-means method which minimizes the total 
sum of the within-clustersquares has similar clustering results and 
computation time as ours, the former has the trouble of choosing a 
safe initial guess (more specifically, it has the problem of avoiding 
taking an outlier as the initial guess of a cluster representative). 
Because of the weakness of the other methods mentioned above, 
the proposed method becomes very attractive for fast automatic 
hierarchical clustering or any other fields requiring fast automatic 
two-class clustering. 
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