
872 IEEE TUANSACTIONS ON SYSTEMS. MAN, AND CYHERNETICS, VOL. 19, NO. 4, JULY/AUOUST 1989 

New Sensing Strategies for Monitoring Moving 
Polyhedlral Objects by Machine Vision 

JIN JAN<; LECIU AND WEN HSIANG TSAI. MEMBER, IEEE 

AkWnc-1 -A  new sxt of sensing strategies for monitoring three-dimen- 
sional (3-11) m o v i q  objects by computer vision is proposed. Here 3-D 
object surface points are selected as the features for nmnitoring 3-0 
moving objects because the point features are easy to detect, extract. stow, 
and manipulate. It is proved that the minimum measurable feature point set 
for monitoring a 3-D moving convex polyhedral object is just the set 
containing all the junction points d the object. Based on the sampling 
theorem a d  sevenl properties of photogrammetry, it is proved that the 
minimum data .rquisil:ion rate of a vision system monitoring 3-D moving 
objects can be determined with discretely sampled hvo-dimensional image 
sequence data only. Certain properties of orthographic projection useful 
for determining the minimum number y, of sensors needed to monitor 3-D 
moving convex polyhedral objects are investigated, and the bounds on N, 
are rho M v e d .  Finailly, an algorithm for determining N, and the come- 
+ng directions a I  the sensors is proposed. “he feasibility of the 
pmposed algorithm is shown by three illustrative examples and an applica- 
tion example. 

I. INTRODUCTION 
This correspondence is concemed with the application of com- 

puter vision to mciving object monitoring in three-dimensional 
(3-D) industrial environments. Computer vision provides a pow- 
erful sensory tool for many robot control and industrial automa- 
tion applications. I:n a controllable industrial automation envi- 
ronment, there are many operating robots, conveyors, moving 
parts, storage bins, pallets. fixed obstacles, human workers. etc. 
The interaction among these “objects” in general is unpre- 
dictable, though the local interaction between two adjacent ob- 
jects may be known. Therefore, we need a high-level machine 
vision system to monitor the environment. 

The main functions of a monitoring vision system include: 
1) checking if the robots are in proper operations; 2) checking if 
ihe robots have reached their desired positions; 3) preventing 
collisions among ro’bots, human workers, moving parts, obstacles, 
etc., and 4) perfoiming fire monitoring. A major step of the 
monitoring system is to sense interesting moving objects in the 
environment. Devdopment of effective sensing strategies for 
monitoring 3-D moving objects by machine vision is the major 
interest of this study. 

Many machine vision systems have been developed in the past 
two decades. Schrriitt er al. [l] presented a robot vision system 
based on two-dimensional (2-D) object-oriented models. The 
system includes ari object model representation, a robot-vision 
interface, a robot controller, and an integrated user programming 
environment. Cloclksin et al. [2] described a model-based visual 
feedback system for robot arc welding of thin sheet steel to 
improve the robof positioning accuracy. Ambler et U /  [3] de- 
scribed a versatile computer-controlled system for assembly. 
Perkins [4) provided a model-based vision system for inspecting 
flat industrial paris. Haass [SI developed an automatic visual 
surveillance system for industrial workroom environments with 
emphasis on the prevention of collisions between an industrial 
robot and human workers. The system is based on detection, 
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recognition, and tracking of moving objects from digital work- 
room images. Dodd and Ross01 [6] described several vision 
systems for industrial automation applications, such as a vision- 
controlled robot system for transferring parts on belt conveyors, 
an industrial eye that recognizes hole positions in a water pump 
testing process. etc. Aleksander [7] provided a vision system for 
industrial applications to improve the accuracy of manufacturing 
and the quality of industrial products. Miller [29] described a 
sensor-based control system for robot manipulators. The system 
uses video image feedback to intercept and track objects moving 
on a flat conveyor. Yeh er U / .  [33] developed a robot vision 
system capable of detecting intruders and abnormality in a 
gantry robot work space to ensure the safe operation of the 
robot. Most of the foregoing systems are special purposed. 2-D in 
nature, and unsuitable for monitoring moving objects in 3-D 
environments. 

Chang and Tsai [8] provided a 3-D object inspection system by 
the use of multiple camera views. Luh and Klaasen 191 developed 
a 3-D vision system for collision-free robot operations. Hasegawa 
[lo] developed an interactive system for modeling and monitoring 
a manipulation environment. The system provides a laser pointer 
as a measuring tool and a display monitor for visualizing the 
internal database and the real world. Shneier et al. [ll] proposed 
a high-level robot vision system which includes four processes: 
the predictive process. the scnsory input analyzing process. the 
matching process, and the descriptive process. The aforemen- 
tioned systems are either manual or static in nature and are also 
unsuitable for monitoring moving objects in 3-D environments. 

On the other hand. several problems not treated in the previ- 
ous approaches will be faced in monitoring moving objects in 
3-D environments. The first is as follows: what is the minimum 
meusumhle feature set for monitoring a moving polyhedral object 
completely? Hall er 01. [21] developcd a method for selecting the 
“best” subset of a scene. The solution is shown to be a function 
of the entire scene. which is hard to deal with. In this study the 
junction points of polyhedral objects are selected as features 
because they are easy to detect, extract [12], [13], store, and 
manipulate (141 in comparison with the other features, such as 
lines, curves, etc. Furthermore, in practical applications a moni- 
toring system usually cannot continuously “see” moving objects 
because i t  can only obtain 2-D sampled image sequence data in 
discrete times. Therefore, the second problem is, can a vision 
system continuously monitor moving polyhedral objects using 
on13 discrete 2-D image sequence data? If this is possible, what is 
the minimum data acquisition rate? The third problem is, what 
are the bounds on the minimum number of sensors necessary for 
monitoring moving polyhedral objects in a 3-D environment 
under different motion conditions? The final problem is how to 
arrange the positions and the directions of the sensors so that the 
monitoring work can be performed optimally in a certain sense. 
Grimson [ 151 derived a technique for predicting optimal sensing 
positions and developed strategies for determining which objects, 
from a set of objects. are consistent with the sensory data. This 
technique is applicable to static objects only. In this study, based 
on the convexity properties [16]. the sampling theorem [17], and 
sevcral properties of photogrammetry and projection processes 
[18]. [19], a sct of sensing strategies for monitorjng moving 
polyhedral objects in 3-D environments is developed which re- 
moves the weakness of the aforementioned systems and answers 
the above problems satisfactorily. 

In this correspondence we make the following assumptions: 
1) the moving polyhedral objects are convex and rigid: 2) the 
sensors are fixed, i.e.. their positions and directions are fixed and 
known with respect to a global or world coordinate system; 3) the 
coordinate system is Cartesian: 4) the projection from a 3-D 
object space onto any 2-D sensory image plane is orthographic 
(191. and 5) the correspondence processes [20] for tracking tokens 
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in distinct images arc: completely solved. Because the monitoring 
of 3-D moving objecits involves 3-D data acquisition and multiple 
sensor image data, we are basically faced with a multiple image 
sequence analysis problem in a 3-D space. 

In Section I1 the minimum measurable feature point set for 
monitoring a moving convex polyhedral object is derived. In 
Section 111, based on the sampling theorem and several properties 
of photogrammetry, it is proved that the minimum data acquisi- 
tion rate of a vision system monitoring 3-D moving objects can 
be determined with discretely sampled 2-D image sequence data 
only. Derived in Section IV are the upper and the lower bounds 
of the minimum niimber of sensors required for monitoring 
moving convex polyhedral objects in a 3-D environment under 
different object motion conditions. An algorithm for the determi- 
nation of the minimum number of sensors and their correspond- 
ing directions is proposed. Three illustrative examples and an 
application example are included in Section V to verify the 
proposed algorithm. Conclusions are given finally in Section VI. 

11. MINIMUM MEASURABLE FEATURE POINT SET FOR 
MONITORING A MOVING C o m  POLYHEDRAL OBJECT 

Ballard and Brown [14] described three general classes of 
representations for rigid solids, namely, surface or boundary, 
sweep (in general. general cylinders), and volumetric. For the 
surface representaticm it was claimed that the enclosing surface, 
or boundary, of a Hell-behaved three-dimensional object should 
unambiguously specify the object. For a polyhedral object its 
boundary is just a set of planes which is well behaved. The set of 
planes can be represented by a set of plane equations or a set of 
points. Here, the latter is selected as the feature set because 3-D 
points are easier to handle. In addition, Ballard and Brown [14] 
also claimed that a sensory system can be used to complere!v 
monitor a moving polyhedral object if the monitored moving 
polyhedral object ccm be unambiguously reconstructed at any 
time instant. For the monitoring purpose, every feature point 
must be physically cistent and directly measurable by the sen- 
sory vision system. Thus our objective is to find a physically 
existent and directly measurable 3-D feature point set with a 
minimum number of points, called rhe minimum meusuruble 
feature point set, by which the monitored moving object can be 
unambiguously reconstructed at any time instant. Since the moni- 
tored polyhedral object is assumed to be convex, the minimum 
measurable feature point set can be determined by the use of the 
convex property [161 of the object, as discussed in the following. 

Lumnur 1: The ccmvex hull of a set of N points in a 3-D space 
can be computed in optimal time O( N log N). 
The derivation of the lemma can be found in Preparata and 

Shamos [22] and is omitted here. A divide-and-conquer algorithm 
to attain the optinial bound can be found in Preparata and 
Shamos [22] and also in Preparata and Hong [23]. 

Lemma 2: The convex hull of all the junction points of a 
convex polyhedron is just the convex polyhedron itself. Re- 
versely, if the total number of the junction points of a convex 
polyhedron is N, then the convex polyhedron cannot be uniquely 
reconstructed with less than N measurable 3-D points or with 
any other N measurable 3-D points. 

Discussions about the foregoing lemma can be found in 
Rockafellar [16] and the proof is omitted here. The following 
theorem is an answcr to the first problem mentioned previously 
in Section I. 

Theorem I :  The minimum measurable feature point set for 
monitoring a convex polyhedral object moving in a 3-D space is 
the set containing all the junction points of the object (i.e., the 
size of the minimum measurable feature point set is just equal to 
the total number of the junction points of the object). 

Proof: By Lemma 2, if any of the junction points of the 
convex polyhedral cbject is dropped, or if they are replaced by 

any other N measurable 3-D points, thcn the object cannot be 
uniquely reconstructed (i.e.- ihe sensory system cannot com- 
pletely monitor the moving convex polyhedral object). On the 
contrary. if any other measurable 3-D points are inserted into the 
junction point set, then the inserted points will contribute no 
additional information to the sensory system for monitoring the 
moving object. Furthermore, by Lemma 1 the inserted points will 
make the reconstruction of the moving object more complicated. 
This completes the proof of the theorem. 

Theorem 1 provides a theoretical basis to obtain the minimum 
measurable feature point set of a moving convex polyhedral 
object in a 3-D space when the object is monitored by a sensory 
system. It says that if the coordinate information of all the 
junction points of the convex polyhedral object are known at any 
time instant, the sensory system can monitor the object com- 
ple tely. 

By the way. Ikeuchi [34] proposed an extended Gaussian image 
for 3-D object representation and recognition. By the use of the 
extended Gaussian image, every face of a convex polyhedron can 
be represented by an equivalent point specified by three parame- 
ters (two angles and a weight). For example, a cube can be 
uniquely represented by six equivalent points instead of eight 
junction points by the use of the extended Gaussian image. In 
practice, however, the equivalent points are not physically exis- 
tent and not directly measurable by the sensory vision system. 
Therefore. for the monitoring purpose. the minimum measurablc 
feature point set consisting of the object junction points is used 
in this study. 

111. DETERMINATION OF MINIMUM DATA ACQUISITION 
RATE FROM DISCRETE ORTHOGRAPHICALLY 

PROJECTIVE IMAGES 
For practical applications, the trajectory of any monitored 

object is assumed to be smooth enough. Thus the trajectory P , ( r )  
of a specific 3-D object point Pi at time instant t can be 
described by three position functions ( X i ( r ) ,  5(1),  Zi(r ) )  in a 
Cartesian coordinate system, where X , ( r ) ,  y (1) .  and Z j ( f )  are all 
continuous bandlimited signals. In this study, & ( r ) ,  x ( t ) ,  and 
Zi( f )  are treated as three orthogonal continuous band-limited 
signals. By Theorem 1, a sensory system can monitor a moving 
convex polyhedral object completely if the sensory system can 
obtain the coordinate information of all the junction points of 
the monitored object at any time instant. In practice, the sensory 
system cannot continuously "see" the moving object because the 
available information is just the discretely sampled 2-D image 
sequence data. In the remainder of this section it will be proved 
that discretely sampled 2-D image sequence data are sufficient 
for monitoring 3-D moving objects if the data acquisition rate is 
larger than a specific value. This answers the second problem 
mentioned in Section I. 

Theorem 2 (One- Dimensional Sumpling Theorem): Consider a 
continuous band-limited signal s( I )  with the maximum frequency 
component i,,. If s ( r )  is sampled periodically with sampling 
frequency f, 3 2 .Lw, then s( t ) can be completely reconstructed 
with discretely sampled data only. 

The proof of Theorem 2 can be found in [17] and is omitted 
here. The sampling theorem says that a continuous band-limited 
signal can be exactly interpolated at any time instant with 
discretely sampled data only. The value J x  - 2.1, is called the 
minimum data acquisition rate or the Nyquist rate of the signal. 

Lemma 3: Given a continuous composite signal s ( t )  = a. + 
a,.s,(r)+ a , . s , ( r )+  * * + u,,;s,,,(f), if s , (r) .s?(r) , .  - -, s,,,(r) Fe 
able. and U ( , ,  U , ;  * ., U,,, are ( m  + 1) real constants, then s ( r )  is 
also a continuous band-limited signal. If /,,12: . .A,,  are the 

m orthogonal continuous band-limited signals, t is a real van- 
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Nyquist rates of ~ ~ ( t ) .  s,(t) . .  a .  sn,(t), respectively, then the 
Nyquist rate fb of s ( I )  is equal to the maximum of I , ,  fZ, - * ,  A,, . 
Similar concepts of Lemma 3 can be found in [17], and the 

proof is omitted here. From Lemma 3 it is concluded that the 
Nyquist rate of a composite signal is equal to the maximum value 
of the Nyquist rates of all the composing signals. Let the trajecto- 
ries of any M object points of a moving convex polyhedral object 
be represented as r4(T(t) .UrXZ,(t)) ,  and h l , h , h 3  be the 
Nyquist rates of the position functions X , ( r ) ,  Y,(t). and Z , ( t ) ,  
respectively, I =1,2,. - e ,  M. It follows from Theorem 2 and 
Lemma 3 that the Nyquist rate of the sensory system monitor- 
ing the M object points of a convex polyhedral object is equal to 
the maximum value of the Nyquist rates of the 3 . M  position 
functions of the M object points, i.e., j v  is the maximum of 

In practice, the 3 - 0  continuous position functions of any point 
of a monitored convex polyhedral object are not directly avail- 
able. Instead, the only available data are the 2-D projective image 
sequence data obtained in discrete times. Can the Nyquist rate ib 
of the sensory systltm monitoring the moving object be deter- 
mined using only the discretely sampled 2-D image sequence? 
The answer is positive as discussed in the following. 

LRmmu 4: If the image projection from a 3-D object space 
onto any 2-D image plane is orthographic, then the 2-D position 
functions (U((), V ( t ) )  of an object point P on an image plane are 
the affine transforms of the position functions ( X ( t ) ,  Y( t ) ,  Z ( t ) )  
of P in a 3-D space: i.e., 

fl I 3 In. fi 5 .  * * *. fnr 1 fM2 I M P  

U = U , .  X +  u2 .  Y + u, .Z  + a4 

V = b, * X + b2-Y + 4.2 + b4 
(1) 

( 2) 

where aI ,  a 2 ,  u3 ,  u4,, bl, b2, b3, b4 are real constants, and the coor- 
dinate systems of 2.D and 3-D spaces are both Cartesian. 

Prm) Let the camera coordinate system and the world 
coordinate system be related with positional translations 
( X, , V,  , Z, ) and angular rotations ( 8 ,  +, 4). where e,+, J, specify 
the pan, the tilt, and the swing angles, respectively. Additionally. 
let the deviation of the imaging center in the image plane from 
the origin of the camera coordinate system be (U,,, U,,). and let the 
image coordinate scaling factors with respect to the world coordi- 
nate system be k,, and k,, .  If the homogeneous coordinate 
representation is used, then by the results in [18], (241 and simple 
calculations, it can be derived that 

where 

and a through i ,  and p ,  q, and r are functions of X , ,  x ,  Zc, 8 .  

k, , ,  k,,, uo. U(, can be determined when the relationship between 
the image coordinate system and the world coordinate system is 

+, and $ only. Thus U throu@ i ,  and p ,  7, and r as well a.. 

determined. By (3)-(5) we have 

U = k , ; ~ .  X + k, ;h*Y + k , ; c .Z  +( k ; p  + U " )  ( 6 )  

Y =  k , : g . X +  k , . .h .Y+  k , . - i . Z + (  k,..r+ ug) (7) 

which indicate that the 2-D image position functions (U. V )  of an 
object point are the affine transforms of the position functions 
( X ,  Y,  Z) of the object point in the 3-D space. This completes the 
proof of Lemma 4. 

Len" 5: Assume that point P( X ( t ) ,  Y(r ) ,  Z ( t ) )  in a 3-D 
space is orthographically projected onto two distinct image planes 
with (Ul( I ) ,  VI ( I ) )  and (U2( I ) .  Vz( 1)) as the resulting point coordi- 
nates (position functions) on the two image coordinate systems, 
respectively. If (by Lemma 4) 

U, = a , , . X +  u , , .Y+ u,,-Z+ 

VI = h,,  . X + bll Y + bXr . Z  + b4, 
U? =u12'  X +  u2? .Y+  u, , .Z+ 

Vz * h, , .  X + bz2.Y + h2.Z + h42 

( 8) 

( 9 )  

(10) 

(11) 

where the coefficients u l l .  uZ,: - .. b,?. b42 are real constants, 
then 

U ; ]  + h;, + U;? + bfz > 0 (12) 

U ; ,  + h!, + + h:2 =- 0 (13) 

U:, + bil + + b.& > 0. (14) 

Rased on the results in [24], Lcmma 4. and some computations. 
Lemma 5 can be derived easily. The detailed derivation is 
too long to be included and is omitted here. By Lemma 5 
it is observed that any of the three 3-D position functions 
(X(t), Y(r ) ,  Z( 1 ) )  of an object point must be the contributor of 
at least one of its 2-D position functions of the corresponding 
projected points on two distinct image planes (i.e., any of the 
three 3-D position functions ( X(  t ) ,  Y( t ), Z( I ) )  must be the com- 
posing function of at lcast one of the four position functions, 
(U , ( t ) ,  Vl(r)) and (U2( t ) ,  V,( t ) ) ,  of the projected points on two 
distinct image planes). 

Lemma 6: Assuming that a moving object point P ( X ( r ) .  
Y(r) .  Z(r) )  in a 3-D space is orthographically projected onto two 
(or more) distinct image planes, then the Nyquist rate of a 
sensory system monitoring the 3-D moving object point P is 
equal to the maximum value of the Nyquist rates of the position 
functions of the corrcsponding projcctcd points of P on these 
distinct 2-D image planes. 

The lemma can be derived easily using Lemmas 3 and 5, so the 
derivation is also omitted here. 

Based on the foregoing results, it can be concluded that the 
Nyquist rate of a sensory system monitoring a 3-D moving 
convex polyhedral object represented by all its surface points is 
equal to the maximum value of the Nyquist rates of the position 
functions of all the projected object surface points on 2-D image 
planes. However, this conclusion is useless because a real object 
might consist of an infinite number of surface points. Actually. if 
a 3-D moving object is represented by all object surface points 
and if every object surface point P is described by three orthogo- 
nal band-limited position functions ( X (  r ) .  Y(r) ,  Z(l)).  then by 
signal theory 1301 the Nyquist rate of the sensory system monitor- 
ing the moving object can be determined by the object point 
producing the largest position change rate (velocity). In the 
following it will be proved that the object surface point of a 

change rate must be onc of the junction points of the object. 
Thus the Nyquist rate of the sensory system monitoring the 

moving convex polyhedral object producing the largest position 
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moving object can be determined only by the position functions 
of all the junction points of the moving object. 

Lemma 7: The orthographic projection of a 3-D convex set C 
on a 2-D subspace I .  is another convex set. 

The derivation of ,Lemma 7 can be found in I161 and is omitted 
here. 

Lemma 8: For a convex polyhedral object moving in a 3-D 
space, if every surface point of the moving object is described by 
three Cartesian position functions, then the object surface point 
producing the largest position change rate should be one of the 
junction points of tbe moving object. 

f rwj :  From Rogers and Adams [31] it is known that any 
3-D rigid body motion is equivalent to a rotation by an angle 0 
around an axis through the origin, followed by a translation 
(AX,AY,AZ). For !he translation part all the surface points of 
the convex polyhedral object have an identical amount of posi- 
tional deviation. Thcrcforc, we only have to focus on the amount 
of deviation of the rotational part. For those points rotating 
about an axis throupb the origin, the larger the distance between 
an object point and ilhe axis. the larger the positional deviation of 
the object point within a certain amount of time interval. By 
Lemma 7 and certain properties of convex polyhedral objects 
[16], an object point having the largest distance between the point 
and the rotation axis in a 3-D space or in a 2-D orthographic 
projection space must be one of the junction points of the 
moving convex polyhedral object. This completes the proof of 
this lemma. 

The following is tlhe main result of this section. 

Theorem 3: If the projection from a 3-D space onto any 2-D 
image plane is orthographic and if every junction point of a 
moving convex poljhedral object in the 3-D space is projected 
onto at least two distinct image planes, then the Nyquist rate of 
the sensory system monitoring the moving object can be deter- 
mined using only the projected 2-D position functions of all the 
junction points of the moving object on distinct image planes. 

ProoJ: By Lemma 8 and signal theory [30], it can be claimed 
that the Nyquist rate of the sensory system monitoring a moving 
convex polyhedral object is the maximum value of the Nyquist 
rates of all the junction points of the moving object in the 3-D 
space, i.e.. the Nyquist rate of the sensory system is determined if 
the Nyquist rates of all the junction points of the moving object 
in the 3-D space is determined. By Lemma 6, the Nyquist rate of 
an object junction point P in the 3-D space is determined if the 
Nyquist rates of the position functions of the corresponding 2-D 
projected junction points of P on two (or more) distinct image 
planes are determined. Since every junction point of the moving 
object is assumed to be projected onto at least two distinct image 
planes and since thc projection process is assumed to be ortho- 
graphic, the Nyquist rate of the sensory system is equal to the 
maximum value of the Nyquist rates of the position functions of 
all the 2-D projected object junction points. This completes the 
proof of the theorem. 

By Theorem 3, ithe Nyquist rate of the sensory system is 
determined if the projected 2-D position functions of all the 
junction points of tlhe monitored moving convex polyhedral ob- 
ject on distinct imaE;e planes are known. However, the “continu- 
ous” projected 2-D position functions of all the junction points 
of the object usually are not directly available. The available data 
are just “discretely sampled” 2-D image sequence data. This 
seems to be a problem. Fortunately, in industrial automation 
applications a moving object usually follows a specific periodic 
trajectory or a repetitive sequence of primitive motions [25], [26]. 
Thus a solution can be proposed as follows. First, the sensory 
system monitors the moving object with a very high data acquisi- 
tion rate in the “letuning” stage. The 2-D position functions of 
all the projected junction points of the moving object are then 

reconstructed by the use of the discretely measured 2-D image 
data based on the sampling theorem. Then the Nyquist rate of 
the sensory system can be determined according to Theorem 3. 
Finally, a suitable data acquisition rate (larger than or equal to 
the Nyquist rate) can be chosen for use in the “operation” stage. 

Iv. DETERMINATION OF THE NUMBER AND THE 
CORRESPONDING DIRECTIONS OF SENSORS 

When a convex polyhedral object moving in a 3-D space is to 
be monitored by a sensory system containing several fixed sen- 
sors, two important problems as mentioned in Section I should 
be solved first. The first is. what are the bounds on the minimum 
number of sensors necessary for monitoring various moving 
convex polyhedral objects in a 3-D space under different motion 
conditions? The second is what is the optimal way to arrange the 
positions and the directions of the sensors? Here by optimality. it 
is meant that the sensors as a group can completely “see” the 
minimum measurable feature point set at any time instant. In 
this section, several properties of orthographic projection are first 
investigated. Next, the bounds on the minimum number of 
sensors necessary for monitoring moving objects completely in a 
3-D space are derived. Finally, an algorithm for the determina- 
tion of the minimum number of sensors and their corresponding 
directions is proposed. 

A .  Properties of Orthogruphic Projection and Bounds on the 
Number of Sensors 

An image plane in a camera system can be described by six 
camera parameters ( X, , x, Z,., 6,4, +) [lS], where X,  , x., 2, are 
the positional translations, and e,$. JI specify the pan, the tilt, 
and the swing angles, respectively, of the camera with respect to a 
world coordinate system. The determination of optimal sensor 
positions and orientations is equivalent to the search of a set of 
image planes (or their parameters). The previous representation 
of an image plane is simple, but it is useless in this study because 
X,, x., Z,  are three real numbers, so the search space of various 
image planes is an unbounded space containing an infinite num- 
ber of search points. Therefore, the range of the search space of 
various image planes for the determination of sensor numbers 
and locations has to be treated from another point of view as 
described in the following. 

Definition 1: If an orthographically projective image of a mov- 
ing convex polyhedral object is always a translational and/or 
rotational version of another orthographically projective image of 
the same moving object at any time instant, then these two 
sensors (image planes) will be treated as an identical one in this 
study because these two sensors always acquire an identical 
amount of information about the moving object when the sensory 
system monitors the object. 

For example, as shown in Fig. 1, there are three orthographi- 
cally projective images of a single object on three image planes at 
a specific time instant. The projected object image in Fig. l(b) is 
a rotational version of that in Fig. l(a) and the projected object 
image in Fig. l(c) is a translational and rotational version of that 
in Fig. l(a). Thus these three image planes will be treated as an 
identical one in this study. 

It is assumed that the range of the trajectory of a monitored 
convex polyhedral object moving in a 3-D space is finite, and 
that the size of the moving object is also finite. Theoretically. an 
infinite number of enclosing spheres with different sphere centers 
and different sphere radii can be selected to enclose the entire 
range of the object trajectory. Any plane tangent to a specific 
enclosing sphere corresponds exactly to an orthographically pro- 
jective image plane. Therefore, the search space of orthographi- 
cally projective image planes can be transformed to be the 
tangent planes of all the 3-D enclosing spheres. 

Lemmu 9: The set containing the tangent planes of all the 
spheres with different sphere centers and different radii (except 
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Fig. 1.  Thrce orthogriiphically projective images of a single object on three 
image planes at specific time instant. (a) Object image on first image plane. 
(b) Object image on sccond imagc plane. (c) Object image on third image 
plane. 

iw plane 1 imqe PI& 2 imye plane 3 image pi.& 1 

Four orthographically projcctivc images in a 3-D space, where image 
planes 2. 3, 4 are mutually parallel with different imagc coordinate systems. 

Fig. 2. 

the degenerate cast:: a point) is equal to the set containing the 
tangent planes of aU the spheres with a single sphere center but 
with different radii 

Similar concepts of Lemma 9 can be found in Riddle 1321, and 
the derivation is omitted here. By Lemma 9, the search space of 
various image plancs can be transformed to be the tangent planes 
of all the enclosing, spheres with a single sphere center but with 
different radii. However, by Definition 1 corresponding tangent 
planes of all the enclosing spheres with an identical sphere center, 
but with different iadii, will be treated as identical ones. Accord- 
ingly, the three corresponding tangent planes (image planes 2, 3, 
4) shown in Fig. 2 should be considered as identical. On the 
contrary, image p1:mes 1 and 2 in Fig. 2 are regarded as distinct 
because from these two image planes different information about 
the monitored moving object can be acquired. By the earlier 
discussions, the search spa@ of orthographically projective image 
planes (corresponding to sensor positions and directions) can be 
reduced to include only the tangent planes of a selected enclosing 

image plaoe 1 

is parallel to image plane 2. 

image planc 2 

Fig. 3. Spherical tangent image plane pair in 3-D space. where imagc planc I 

sphere. Such planes can be described by the solid angles of the 
selected enclosing sphere. A solid angle can be specified by two 
directional angle parameters, the pan angle 0 and the tilt angle +. 
TherangesofBand+are - n < B < n a n d  - n / 2 ~ 9 < n / 2 ( 0 r  
- II/~< 0 < n/2 and - II <+< II) with periods 2n and w (or n 
and 21), respectively. Thus the senson can be distinguished just 
by two parameters, the pan and the tilt angles. 

Defnifion 2: A spherical tangent image plane pair are two 
distinct parallel tangent planes PI and P2 of an enclosing sphere 
S of a moving object such that the centroid of S and the two 
tangent points of Pi and Pz to S are collinear as illustrated by 
the example shown in Fig. 3. 

Lemma 10: If the projection is orthographic, then all the 
junction points of a monitored moving convex polyhedral object 
over its entire trajectory are visible on each spherical tangent 
image plane pair of any enclosing sphere. i.e.. any junction point 
of the monitored object can be sensed by at least one plane of the 
image plane pair at any sampling time instant. 

Similar concepts of the foregoing lemma can be found in 1161, 
and the proof is omitted here. 

Lemma 11: Either for perspective projection or for ortho- 
graphic projection, the 3-D coordinate information of a point is 
recoverable if the p i n t  is visible on (or appears on) two (or 
more) distinct image planes. 

The foregoing lemma is the fundamental theory in photogram- 
metry [18], so the derivation is also omitted here. Assuming that 
the purpose of object monitoring is to recover the 3-D coordinate 
information of all the object junction points from 2-D image 
planes, we have the following results. 

Theorem 4: If the projection process is orthographic, then the 
minimum number N, of sensors necessary for monitoring a 
moving convex polyhedral object under various motion condi- 
tions is bounded by 2 Q N, d 4. 

Prooj By Lemma 11, it is easy to see that N, 2 2. On the 
other hand, if a sensory system consists of two distinct spherical 
tangent plane pairs (i.e., the system includes four distinct image 
planes), then according to Lemma 10 any junction point of the 
moving convex polyhedral object will be visible on at least two of 
these four distinct image planes over all its trajectory. By Lemma 
11, the 3-D coordinate information of every object junction point 
is recoverable. This means that the sensory system can monitor 
the moving object completely. Therefore, N, 6 4. This completes 
the proof of the theorem. 

B. Further Properties of Orthographic Projection 
Some properties of orthographic projection are derived here 

for use in the proposed algorithm for the determination of the 
minimum number of sensors and their corresponding directions. 

Defirrifion 3: A full sensing direction (!F.(p.F) is the direction 
of an image plane such that all the junction paints of the 
monitored moving polyhedral object are visible on the image 
plane over the entire trajectory of the object at any time instant. 
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Definitron 4: The (optimal sensing direction ( O M , t p M )  is one in 
which the image plane can sense the maximum number of object 
junction points over the entire object trajectory. 

For a moving convex polyhedral object there may exist multi- 
ple full sensing directions and/or multiple optimal sensing direc- 
tions. 

Lummu 12: For an orthographic projection process, a sensory 
system can monitor a moving convex polyhedral object com- 
pletely with only two sensors if the enclosing sphere of the 
moving object consists of two (or more) distinct full sensing 
directions. 

Lemma 12 can Ibe easily derived from Definition 3 and 
Lemma 11. 

Lemma 13: For a, sensory system monitoring a 3-D moving 
convex polyhedral object under an orthographic projection pro- 
cess. if the optimal sensing direction of the corresponding enclos- 
ing sphere is not a full sensing direction, then the minimum 
number N, of sensois required for complete monitoring is either 
3 or 4. 

Lemma 13 can be easily derived from Lemma 11 and Theorem 
4, and so the proof is omitted. 

Lemma 14: Under the conditions that the projection process 
is orthographic ancl that a sensory system uses F sampling 
periods to monitor completely the entire trajectory of a moving 
convex polyhedral object with N junction points according to the 
sampling theorem, il the total number of the junction points of 
the object visible from the optimal sensing direction of the 
sensory system over the total F sampling periods is smaller than 
2 .  F e  N/3,  then the ininimum number N, of sensors required for 
the sensory system i.r 4. 

Prm) Since the sensory system uses F sampling periods to 
monitor completely the entire trajectory of the moving convex 
polyhedral object with N junction points, the minimum total 
number of the object junction points sensed by all the sensors of 
the sensory system over the F sampling periods is 2 . N . F  be- 
cause by Lemma ll any of the N junction points has to appear 
on at least two distirict image planes in every sampling period for 
the monitoring to bc complete. If the total number of the object 
junction points visible on the image plane from the optimal 
sensing direction over the F sampling periods is smaller than 
2 . F . N / 3  and if the number of the sensors N, of the sensory 
system is either 3 or 2, then the total number of the object 
junction points seen on all the image planes of the sensory system 
over the F sampling periods is smaller than 2. F. N,  resulting in a 
contradiction. Therefore, N, > 3 and by Theorem 4, N, can only 
be 4. This complete!; the proof of the lemma. 

C. Proposed Algorithm for the Determination of the Minimum 
Number of Sensors riwd their Directions 

From previous dLrcussions it is seen that the determination of 
the minimum number of sensors depends only on two parame- 
ters, the pan angle 0 and the tilt angle +, of the image planes 
(sensors). The ranges of B and 9 are - I G 0 < n and - 1/2 G cp 
< n/2 with periods 2a and n, respectively. That is, the search 
space for the detemdnation of N, is the block area shown in Fig. 
qa) ,  which contains an infinite number of points. In practice, we 
can quantize this “continuous’’ search space into a discrete one 
including PaQ quantized search points, as illustrated in Fig. 4(b). 
Each quantized point corresponds to a specific image plane. 

As mentioned in :Section 111, the sensory system usually moni- 
tors a moving object repeating a certain trajectory or doing a 
sequence of primitive motions [25], [26] in most automation 
applicatioos. ”Che s:nsory system can use many sensors and a 
sufficiently high data acquisition rate in the ‘‘learning’’ stage, and 
some parameters of the sensory system, such as the Nyquist rate 
and the minimum number of sensors of the sensory system, then 
can be d e t e r m i n e d  f o r  use i n  the “operation” stage,  based on t h e  
discrete 2-D measured image sequence data. In the following 

9 
A 

Q dircr 

value8 

P discrete v p l w  

(b) 
Fig.. 4. Search spaces of pan and rill angks. (a) Continuous search spacvs of 

pan angle 8 and till angle 9. (b) Discrete rarch spaces or pan angle 0 and 
tilt angle 9. 

proposed algorithm the total number of the junction points of the 
moving object and the minimum number of sensors necessary for 
the sensory system are assumed to be as N and N,, respectively. 

Algorithm: Determinarion of the Minimum Number of Sensors 
Step 1 - Initialization: Use four sensors (according to Theo- 

rem 4) to monitor the moving convex polyhedral object over its 
entire trajectory with a sufficiently high data acquisition rate. 

Step 2- Nyquist: rate fN determination: Based on the mea- 
sured data in Step l, determine the Nyquist rate fN of the 
sensory system (according to Lemma 3)  to be the maximum value 
of the Nyquist rates of the 3.N position functions of the N 
junction points of the moving object. 

Step 3 - Resumphng: Resample all the trajectories (position 
functions) of the N junction points of the monitored object with 
the system Nyquist rate IN, resulting in totally 4.F sampled 
image sequence data in the F sampling periods. 

Step 4 - Object reconstruc;ion and enclosing sphere selection: 
Reconstruct the moving object over the F sampling periods and 
select an enclosing sphere which can enclose the object over its 
entire trajectory. 

Step 5 - Orthographic projection: Use orthographic projection 
to project all the junction points of the moving object onto the 
P . Q  distinct image planes (as illustrated in Fig. 4) of the enclos- 
ing sphere over the F sampling periods. 

Step 6-Counting and indexing: Count and index the total 
number of junction points visible on every one of the P . Q  
distinct image planes over the F sampling periods. 

Step 7 -  Full sensing direction detection: If the enclosing sphere 
contains two or more distinct full sensing directions, then deter- 
mine the minimum number Ns of sensors (according to Lemma 
12) to be two, select arbitrarily two distinct full sensing directions 
as the sensor directions, and exit; otherwise, go to Step 8. 

Step 8 -Optimal sensing direction determination: If the total 
number of the junction points of the monitored object over the F 

smaller than 2 .  Fa N/3,  then determine N, (according to Lemma 
s a m p l i n g  periods vis ible  f rom the o p t i m a l  sensing direct ion is 

Authorized licensed use limited to: National Tsing Hua University. Downloaded on December 25, 2008 at 18:06 from IEEE Xplore.  Restrictions apply.



878 IEEE TRANSACTIONS ON SYSTEMS, MAN. AND CYMEHNETICS. VOL. 19. NO. 4. JULY/AUGIJST 1989 

wxY~cko.o=o)  

Fig. S. Determination of minimum number N, of sensors for rimplc moving 
convec polyhedral object in 3-D space. 

Fig. 6. Dctcrmination cd minimum number N, of sensors for  moving cube in 
3-D space. 

14) to be 4, select any two distinct spherical tangent image plane 
pairs as the sensor directions, and exit; otherwise, go to Step 9. 

Step 9- Reexuminution: Find the optimal sensing direction 
and check if the eniclosing sphere contains two other sensing 
directions such that every junction point of the monitored mov- 
ing object appears on at least two of these three corresponding 
image planes in each of the F sampling periods. If so, then 
determine N, (according to Lemma 11) to be 3, select these three 
directions as the s e n m  directions, and exit; otherwise, determine 
N, finally (according, to Theorem 4) to be 4, and select any two 
distinct spherical tangent plane pairs as the sensor directions. 
Exit. 

In Step 5, for every sampling period, the sensory system has to 
project the N junction points of the monitored object onto the 
Pa Q quantized image planes. For the orthographic projection 
process including thc hidden problem, the sensory system can use 
the hidden removing techniques provided in [27], [28] to deter- 
mine the projective iresults on these P - Q  quantized image planes 
over the F sampling periods. 

v. ILLUSTRATIVE AND APPUCATION EXAMPLES 
A. Three Illustrutive Examples 

Three convex polyhedral objects imagined to move periodically 
in a 3-D environment are processed to verify the feasibility of the 
proposed algorithm. Here emphasis is put on the determination 
of the minimum number N, of sensors. 

Included in Fig. $1 is a simple convex polyhedral object repeat- 
ing a sequence of line motions periodically, where the reference 
plane WXYZ (0  - 0, + - 0) is parallel to the object faces ABC 
and DEF, and perpendicular to all other faces of the object. The 
directions of the line motions are parallel to the object edge CF. 
The repetitive motion procedure includes: 1) going to the left L 
meters; 2) going back to the original position; 3) going to the 
right L meters, and 4) finally going back to the original position 
again. By the prolmed algorithm, it can be found that the 
enclosing sphere of the moving object contains many full sensing 
directions. The minimum number N, of sensors is so determined 

such (@- -q /4 ,  @ = O )  and ( 0 = - 3 ~ / 4 ,  Cp-O), can be 
selected as the comesponding directions of the sensors. 

SV W two. Any two distinct ones of these full sensing dircctbns, 

I 

I 

I 
(b) 

Fig. 7. Delermination of minimum numbcr N. of Yn.sors lor moving dodcca- 
hedral object in 3-D space. (a) Moving dodecahedral objcct in 3-D rpnce. 
(b) Time-varying axis in 3 - 0  space. 

Fig 8. Monitored robot with two sampling periods and eight feature points 
characterizing joint nrm. 

Illustrated in Fig. 6 is a cube repeating a sequence of line 
motions periodically, where the reference plane WXYZ ( 0  = 0. 
+ L O )  is parallel to the object faces ABCD and EFCH, and 
perpendicular to all other faces of the cube. Thldirections of the 
line motions are parallel to the object edge DH and its motion 
procedure is the same as that of the object shown in Fig. 5.  By 
the proposed algorithm the enclosing sphere of the moving object 
contains no full sensing direction. However, there exist multiple 
optimal sensing directions. The total number of the junction 
points of the moving cube over all the F sampling periods visible 
from any optimal sensing direction (image plane) is equal to 
7.F.N/8 which is larger than 2.F.N/3 (here, N - 8). By Step 8 
of the proposed algorithm, N, is determined to be either 3 or 4. 
By Step 9 of the proposed algorithm, an optimal sensing direc- 
tion, say (0 = - g/4, 4 = ~ / 4 ) ,  seeing the junction points 
A ,  S. D,  E ,  F.C, IJ in every sampxng p e & d  is first selected. 
Next, two other optimal sensing directions (4 = 3 ~ 1 4 ,  - 1114) 
seeing the junction points A ,  E, C ,  D, E, F, G in every sampling 
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period and ( 0  = - v/4, @ = - v /4 )  secing the junction points 
A,C, D, E, F,G, H in every sampling period are selected. Since 
every junction point of the moving cube appears on at least two 
of these three selected image planes in cvcry sampling period. the 
minimum number N, of sensors is finally determined to be 3. 

Fig. 7(a) includes a dodecahcdral object repeating a sequence 
of rotational moti0n.s periodically. The object rotatcs periodically 
about a time-varying axis in a 3-D space as illustrated in Fig. 
7(b), where the time-varying axis r$<c! about thc fixed line 
with a slant angle y ' 4  and the line U V  IS parallel to the reference 
plane WXYZ ( 0  =Cl, #I = 0). By the proposed algorithm i t  is 
found that the enclosing sphere of the moving objcct contains no 
full sensing direction. Thc total number of junction points over 
the F sampling periods visible from thc optimal sensing direction 
is also larger than 2-F .  N/3 (here. N = 20). Thus N, is dctcr- 
mined to be either 21 or 4. By Step 9 of the proposcd algorithm, 
an optimal sensing direction. such as ( 0  = - n/2,  (p = 0). is first 
chosen. However, i t  is impossible to find two other sensing 
directions such that every object junction point appcars on at 
least two of the three selected image planes over all thc F 
sampling periods. 0 ther combinations of three image planes lead 
to similar results. Thus the minimum nunihcr N, of sensorb is 
finally determined 113 be 4. By Step 9 o f  thc algorithm. a n y  two 
distinct spherical tarigent image plane pairs can bc sclcctcd as the 
directions of the four sensors. 
B. An Applicution Exun~plr 

Here the images cif a periodically working robot arc proccsacd 
to demonstrate the applicability of the set of proposcd sensing 
strategies to monitoring an operating robot. The monitored robot 
is sampled with twcl sampling periods during a complete opera- 
tion session. The monitored part is a joint arm of the monitored 
robot. as illustrated in Fig. 8. The joint arm is 3 convex polyhe- 
dral object. which can be characterized by eight featurc points 
(i.e., F - 2 and N = 8). For experimental and demonstration 
convenience. light emitting diodes (LED's) attached to the junc- 
tion points of the joint arm are used as the fcaturc points for 
monitoring. Fig. 9 illustrntes the six images of thc thrcc monitor- 
ing cameras over the two sampling pcriods. where Fig. 9(a)-(c) 

are the three images of the monitoring camcras of the first 
sampling time instant and Fig. 9(d)-(f)  are the three images of 
the monitoring cameras of the second sampling time instant. 

I3y Steps 7 and 8 of thc proposed algorithm, i t  is found that 
there exists no full sensing direction and the total number (1214) 
of the junction points of thc monitored polyhcdral object over 
the two sampling periods visiblc from the optimal sensing dircc- 
tion is larger than 2 . F . N / 3  (=32/3). Then, by Step 8 of the 
algorithm. the minimum nurnbcr 3: of sensors necessary for 
monitoring the robot is determined to be either 3 or 4. Thus by 
Step 9 of the algorithm. A'* is determined finally to be 3. 

VI. CONCLIJSION 

111 this correspondence a set o l  ntw sensing strategies for 
monitoring 3-D moiing ronvcx polyhcdral objects by computcr 
vision is dcvclopcd. The 3-D points arc selectcd as the featurcs 
for monitoring. It is provcd that the minimum nieasurable feature 
point set for monitoring a 3-D moving convex polyhcdral object 
is just the set containing all the junction points of the polvhcdral 
objcct. and that the minimu~n data acquisition rate o r  thc Nyquist 
rate for monitoring the object can be determined with discretely 
sampled 2-II image sequence data only. Scvcral properties of 
orthographic projection for deciding the search space for thc 
minimum number h', of sensors necessary for monitoring thc 
object arc invcstigatcd. The bounds on N, arc also derived, and 
an algoritlini for the dctcrmination of ;Y, and the corresponding 
directions of the senwrs is proposed. The fcasibility of the 
proposcd algorithm is finally dcmonstratcd by three illustrative 
cxaniples and an application example. 

In many applications it  is nccessary to monitor a niorc general 
object, such as an.articulated robot arm which can be modeled as 
a joint-type curved object (i.e., an object containing many curvcd 
rigid bodies linked by joints). In this case. the convexity property 
on the object surface is lost, resulting in invisibility of certain 
object w f a c e  points from all directions at ccrtain sampling time 
instants. Furthormore, i t  is also hard IO find a sparse nicasurablc 
lcilturc point x t  for monitoring complctclg il gcncral object in 
general inntion conditions. Thcrcforc. io monitor a general mov- 
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ing object is a differmt problem which should be treated from 1331 P. S. Yeh. S .  Rarush. and E. Wyswki. "A vision system fnr safe mhot 
opcration." in Prix.. I E E E  In,. Cuitf. Robtics uitd Autnnwticnt. Philildel- 
phia. PA. 19x8. pp, 1461-1465. 

other viewpoints and is worth further research. 
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Segmentation Between Overlapping Parts: 
The Moving Shadows Approach 

DANIEL RAVIV. YEHBEK. IEEE. YOH H A N  PAO. FELLOW. IEEE. 
AND KENNETH A. LOPARO. MEMBER. IEEE 

Abwrrrr -A new method lor segmenting three-dimensional ovedapping 
surfaces is presented. It is based on moving a light source in a horizontal 
plane relative to the surfaces to  be segmented. Using a camera which is 
placed above the surfaces, the shadows cast by the surfaces at each liiht 
source angle are recorded and analped. 'Iho segmentation algorithm is 
simple and based on Bodean processing of the data. A set of experimental 
results demonstrates the robustness and usefulness of H\e wthod. 

I. INTRODUCTION 
One of the remining problems in the robotics vision area is 

obtaining segmentation between overlapping surfaces. Many sys- 
tems that have been successful in recognizing discrete parts have 
limitations making the recognition or segmentation of overlap- 
ping parts difficult. Many of the methods deal with two-dimen- 
sional (2-D) overlapping objects, attempting to find the overlap- 
ping surfaces: only few deal with three-dimensional (3-D) ob- 
jects. 

Ballard [l] developed a restricted form of the generalized 
Hough transform that can be used for recognizing partially 
hidden objects. Bolles and Cain [2] developed an approach for 
hidden object recognition referred to as "local feature focus." A 
technique for recognizing an object from a padally occluded 
boundary is given in [3]. A method for recognition of two 
overlapping parts using a single camera is introduced in [4]. A 
recent approach for recognition and positioning of a two-dimen- 
sional object is presented in [ 5 ] .  A hand-eye system has been 
developed to perform bin picking [6]: photometric stereo vision is 
used to determine surface orientation. An experimental robot to 
acquire a class of workpieces from a bin using vision was demon- 
strated by Birk and Kelley [7]: a system was developed to pick up 
cylindrical parts. Other methods for segmenting images are dc- 
scribed in [ll]. However, most of them use gray-level images, 
emphasizing gray level and gray-level differences as indicators of 
segments. None of the known methods uses multiple binary 
images to obtain the segmentation. 

In this correspondence, we describe a method for the segmen- 
tation of 3-D surfaces using one camera (see (RI ,  [9]). The light 
source is rotated in a horizontal plane, and the camera is placed 
above the surfaces to be segmented. Points on the 3 - 0  surfaces 
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