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New Sensing Strategies for Monitoring Moving
Polyhedral Objects by Machine Vision

JIN JANG LEQU annp WEN HSIANG TSAI, MEMBER, IEEE

Abstract — A new set of sensing strategies for monitoring three-dimen-
sional (3-1)) moving objects by computer vision is proposed. Here 3-D
object surface points are selected as the features for monitoring 3-D
moving objects because the point features are easy to detect, extract, store,
and manipulate. It is proved that the minimum measurable feature point set
for monitoring a 3-D moving convex polyhedral object is just the set
containing all the junction points of the object. Based on the sampling
theorem and several properties of photogrammetry, it is proved that the
minimum data acquisition rate of a vision system monitoring 3-D moving
objects can be determined with discretely sampled two-dimensional image
sequence data only. Certain properties of orthographic projection useful
for determining the minimum number N, of sensors needed to monitor 3-D
moving convex polyhedral objects are investigated, and the bounds on N,
are also derived. Finally, an algorithm for determining N, and the corre-

ponding directi of the s is proposed. The feasibility of the
proposed algorithm is shown by three illustrative examples and an applica-
tion example.

I. INTRODUCTION

This correspondence is concerned with the application of com-
puter vision to mcving object monitoring in three-dimensional
(3-D) industrial environments. Computer vision provides a pow-
erful sensory tool for many robot control and industrial automa-
tion applications. In a controllable industrial automation envi-
ronment, there are many operating robots, conveyors, moving
parts, storage bins, pallets, fixed obstacles, human workers, etc.
The interaction among these “objects” in general is unpre-
dictable, though the local interaction between two adjacent ob-
jects may be known. Therefore, we need a high-level machine
vision system to monitor the environment.

The main functions of a monitoring vision system include:
1) checking if the robots are in proper operations; 2) checking if
the robots have reached their desired positions; 3) preventing
collisions among robots, human workers, moving parts, obstacles,
etc., and 4) performing fire monitoring. A major step of the
monitoring system is o sense interesting moving objects in the
environment. Development of effective sensing strategies for
monitoring 3-D moving objects by machine vision is the major
interest of this study.

Many machine vision systems have been developed in the past
two decades. Schmitt et al. [1] presented a robot vision system
based on two-dimensional (2-D) object-oriented models. The
system includes an object model representation, a robot-vision
interface, a robot controller, and an integrated user programming
environment. Clocksin er al. [2] described a model-based visual
feedback system for robot arc welding of thin sheet steel to
improve the robot positioning accuracy. Ambler e a/ [3] de-
scribed a versatile computer-controlled system for assembly.
Perkins [4] provided a model-based vision system for inspecting
flat industrial parts. Haass [5] developed an automatic visual
surveillance system for industrial workroom environments with
emphasis on the prevention of collisions between an industrial
robot and human workers. The system is based on detection,
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recognition, and tracking of moving objects from digital work-
room images. Dodd and Rossol [6] described several vision
systems for industrial automation applications, such as a vision-
controlled robot system for transferring parts on belt conveyors,
an industrial eye that recognizes hole positions in a water pump
testing process, etc. Aleksander {7} provided a vision system for
industrial applications to improve the accuracy of manufacturing
and the quality of industrial products. Miller [29] described a
sensor-based control system for robot manipulators. The system
uses video image feedback to intercept and track objects moving
on a flat conveyor. Yeh er al. [33] developed a robot vision
system capable of detecting intruders and abnormality in a
gantry robot work space to ensure the safe operation of the
robot. Most of the foregoing systems are special purposed, 2-D in
nature, and unsuitable for monitoring moving objects in 3-D
environments.

Chang and Tsai [8] provided a 3-D object inspection system by
the use of multiple camera views. Luh and Klaasen {9] developed
a 3-D vision system for collision-free robot operations. Hasegawa
[10] developed an interactive system for modeling and monitoring
a manipulation environment. The system provides a laser pointer
as a measuring tool and a display monitor for visualizing the
internal database and the real world. Shneier ef al. [11] proposed
a high-level robot vision system which includes four processes:
the predictive process, the sensory input analyzing process. the
matching process, and the descriptive process. The aforemen-
tioned systems are either manual or static in nature and are also
unsuitable for monitoring moving objects in 3-D environments.

On the other hand. several problems not treated in the previ-
ous approaches will be faced in monitoring moving objects in
3-D environments. The first is as follows: what is the minimum
measurable feature set for monitoring a moving polyhedral object
completely? Hall er al. [21] developed a method for selecting the
“best” subset of a scene. The solution is shown to be a function
of the entire scene, which is hard to deal with. In this study the
junction points of polyhedral objects are selected as features
because they are easy to detect, extract [12], [13), store, and
manipulate [14] in comparison with the other features, such as
lines, curves, etc. Furthermore, in practical applications a moni-
toring system usually cannot continuously “see” moving objects
because it can only obtain 2-D sampled image sequence data in
discrete times. Therefore, the second problem is, can a vision
system continuously monitor moving polyhedral objects using
only discrete 2-D image sequence data? If this is possible, what is
the minimum data acquisition rate? The third problem is, what
are the bounds on the minimum number of sensors necessary for
monitoring moving polyhedral objects in a 3-D environment
under different motion conditions? The final problem is how to
arrange the positions and the directions of the sensors so that the
monitoring work can be performed optimally in a certain sense.
Grimson [15] derived a technique for predicting optimal sensing
positions and developed strategies for determining which objects,
from a set of objects, are consistent with the sensory data. This
technique is applicable 1o static objects only. In this study, based
on the convexity properties {16]. the sampling theorem [17), and
several properties of photogrammetry and projection processes
(18], [19], a set of sensing strategies for monitoring moving
polyhedral objects in 3-D environments is developed which re-
moves the weakness of the aforementioned systems and answers
the above problems satisfactorily.

In this correspondence we make the following assumptions:
1) the moving polyhedral objects are convex and rigid: 2) the
sensors are fixed, i.e.. their positions and directions are fixed and
known with respect to a global or world coordinate system; 3) the
coordinate system is Cartesian; 4) the projection from a 3-D
object space onto any 2-D sensory image planc is orthographic
(19], and ) the correspondence processes [20] for tracking tokens
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in distinct images are completely solved. Because the monitoring
of 3-D moving objects involves 3-D data acquisition and multiple
sensor image data, we are basically faced with a multiple image
sequence analysis problem in a 3-D space.

In Section I the minimum measurable feature point set for
monitoring a moving convex polyhedral object is derived. In
Section 111, based on the sampling theorem and several properties
of photogrammetry, it is proved that the minimum data acquisi-
tion rate of a vision system monitoring 3-D moving objects can
be determined with discretely sampled 2-D image sequence data
only. Derived in Section IV are the upper and the lower bounds
of the minimum number of sensors required for monitoring
moving convex polyhedral objects in a 3-D environment under
different object motion conditions. An algorithm for the determi-
nation of the minimum number of sensors and their correspond-
ing directions is proposed. Three illustrative examples and an
application example are included in Section V to verify the
proposed algorithm. Conclusions are given finally in Section VL.

II. MiNniMUM MEASURABLE FEATURE POINT SET FOR
MONITORING A MOVING CONVEX POLYHEDRAL OBJECT

Ballard and Brown [14] described three general classes of
representations for rigid solids, namely, surface or boundary,
sweep (in genmeral, general cylinders), and volumetric. For the
surface representation it was claimed that the enclosing surface,
or boundary, of a well-behaved three-dimensional object should
unambiguously specify the object. For a polyhedral object its
boundary is just a set of planes which is well behaved. The set of
planes can be represented by a set of plane equations or a set of
points. Here, the latter is selected as the feature set because 3-D
points are easier to handle. In addition, Ballard and Brown [14]
also claimed that a sensory system can be used to completely
monitor a moving polyhedral object if the monitored moving
polyhedral object can be unambiguously reconstructed at any
time instant. For the monitoring purpose, every feature point
must be physically existent and directly measurable by the sen-
sory vision system. Thus our objective is to find a physically
existent and directly measurable 3-D feature point set with a
minimum number of points, called the minimum measurable
feature point set, by which the monitored moving object can be
unambiguously reconstructed at any time instant. Since the moni-
tored polyhedral object is assumed to be convex, the minimum
measurable feature point set can be determined by the use of the
convex property [16] of the object, as discussed in the following,

Lemma 1: The convex hull of a set of N points in a 3-D space
can be computed in optimal time O(N log N).

The derivation of the lemma can be found in Preparata and
Shamos [22] and is omitted here. A divide-and-conquer algorithm
to attain the optimal bound can be found in Preparata and
Shamos [22] and also in Preparata and Hong [23].

Lemma 2: The convex hull of all the junction points of a
convex polyhedron is just the convex polyhedron itself. Re-
versely, if the total number of the junction points of a convex
polyhedron is N, then the convex polyhedron cannot be uniquely
reconstructed with less than N measurable 3-D points or with
any other N measurable 3-D points.

Discussions about the foregoing lemma can be found in
Rockafellar [16]) and the proof is omitted here. The following
theorem is an answer to the first problem mentioned previously
in Section L.

Theorem I: The minimum measurable feature point set for
monitoring a convex. polyhedral object moving in a 3-D space is
the set containing all the junction points of the object (i.e., the
size of the minimum measurable feature point set is just equal to
the total number of the junction points of the object).

Proof: By Lemma 2, if any of the junction points of the
convex polyhedral object is dropped, or if they are replaced by

873

any other N measurable 3-D points, then the object cannot be
uniquely reconstructed (i.e., the sensory system cannot com-
pletely monitor the moving convex polyhedral object). On the
contrary, if any other measurable 3-D points are inserted into the
junction point set, then the inserted points will contribute no
additional information to the sensory system for monitoring the
moving object. Furthermore, by Lemma 1 the inserted points will
make the reconstruction of the moving object more complicated.
This completes the proof of the theorem.

Theorem 1 provides a theoretical basis to obtain the minimum
measurable feature point set of a moving convex polyhedral
object in a 3-D space when the object is monitored by a sensory
system. It says that if the coordinate information of all the
junction points of the convex polyhedral object are known at any
time instant, the sensory system can monitor the object com-
pletely.

‘By the way, Ikeuchi [34] proposcd an extended Gaussian image
for 3-D object representation and recognition. By the use of the
extended Gaussian image, every face of a convex polyhedron can
be represented by an equivalent point specified by three parame-
ters (two angles and a weight). For example, a cube can be
uniquely represented by six equivalent points instead of eight
junction points by the use of the extended Gaussian image. In
practice, however, the equivalent points are not physically exis-
tent and not directly measurable by the sensory vision system.
Therefore, for the monitoring purpose. the minimum measurable
feature point set consisting of the object junction points is used
in this study.

HI. DETERMINATION OF MINIMUM IDATA ACQUISITION
RATE FROM DISCRETE ORTHOGRAPHICALLY
PROJECTIVE IMAGES

For practical applications, the trajectory of any monitored
object is assumed to be smooth enough. Thus the trajectory P,(t)
of a specific 3-D object point P, at time instant ¢ can be
described by three position functions (X;(1),Y,(#), Z,(t)) in a
Cartesian coordinate system, where X;(¢), Y,(¢). and Z;(¢) are all
continuous bandlimited signals. In this study., X;(¢), ¥,(¢), and
Z,(t) are treated as three orthogonal continuous band-limited
signals. By Theorem 1, a sensory system can monitor a moving
convex polyhedral object completely if the sensory system can
obtain the coordinate information of all the junction points of
the monitored object at any time instant. In practice, the sensory
system cannot continuously “see™ the moving object because the
available information is just the discretely sampled 2-D image
sequence data. In the remainder of this section it will be proved
that discretely sampled 2-D image sequence data are sufficient
for monitoring 3-D moving objects if the data acquisition rate is
larger than a specific value. This answers the second problem
mentioned in Section I.

Theorem 2 (One-Dimensional Sampling Theorem): Consider a
continuous band-limited signal s(¢) with the maximum frequency
component f,,. If s(z) is sampled periodically with sampling
frequency f. > 2-f,,, then s(7) can be completely reconstructed
with discretely sampled data only.

The proof of Theorem 2 can be found in {17] and is omitted
here. The sampling theorem says that a continuous band-limited
signal can be exactly interpolated at any time instant with
discretely sampled data only. The value f, =2-f,, is called the
minimum data acquisition rate or the Nyquist rate of the signal.

Lemma 3: Given a continuous composite signal s(f) =a,+
a5, (D + ay s, (D - +a,, s, (), i 5,(0),51(2),7 -+, 5,,(1) are
m orthogonal continuous band-limited signals, 7 is a real vari-
able, and @, 4, ', qa, are (m+1) real constants, then s(¢) is
also a continuous band-limited signal. If f, fa.---.f, are the
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Nyquist rates of s(¢),s:(¢).*,5,(?). respectively, then the
Nyquist rate f, of s(?) is equal to the maximum of f|, f,,-*, f,..

Similar concepts of Lemma 3 can be found in [17], and the
proof is omitted here. From Lemma 3 it is concluded that the
Nyquist rate of a composite signal is equal to the maximum value
of the Nyquist rates of all the composing signals. Let the trajecto-
ries of any M object points of a moving convex polyhedral object
be represented as (X (), Y;(¢), Z;(1)), and [, fir, fi be the
Nyquist rates of the position functions X;(t), Y.(), and Z.(¢),
respectively, i=1,2,---, M. It follows from Theorem 2 and
Lemma 3 that the Nyquist rate f,; of the sensory system monitor-
ing the M object points of a convex polyhedral object is equal to
the maximum value of the Nyquist rates of the 3-M position
functions of the M object points, i.e., fy is the maximum of
fros iz fias oo Saane oazs Joase

In practice, the 3-D continuous position functions of any point
of a monitored convex polyhedral object are not directly avail-
able. Instead, the only available data are the 2-D projective image
sequence data obtained in discrete times. Can the Nyquist rate f,
of the sensory systzm monitoring the moving object be deter-
mined using only the discretely sampled 2-D image sequence?
The answer is positive as discussed in the following.

Lemma 4: If the image projection from a 3-D object space
onto any 2-D image plane is orthographic, then the 2-D position
functions (U(¢), ¥(t)) of an object point P on an image plane are
the affine transforms of the position functions ( X(¢), Y(¢), Z(¢))
of P in a 3-D space, i.e.,

Umag - X+ay,Y+a,Z+a, (1)

V=b -X+bY+bZ+bh, (2)
where 4y, a5, 4,3, a,. by, by, by, b, are real constants, and the coor-
dinate systems of 2-D and 3-D spaces are both Cartesian.

Proof: Let the camera coordinate system and the world
coordinate system be related with positional translations
(X.,Y..2.) and angular rotations (9, ¢, {), where 8, ¢,y specify
the pan, the tilt, and the swing angles, respectively. Additionally,
let the deviation of the imaging center in the image plane from
the origin of the camera coordinate system be (1, 1), and let the
image coordinate scaling factors with respect to the world coordi-
nate system be k, and k.. If the homogeneous coordinate
representation is usn’d then by the results in [18] [24] and simple
calculations, it can be derived that

D'
v Y
V]=[INT][EXT] z1 (3)
1 1
where
fa b ¢ p
2 - d e [ ¢
2 Bl DA (4)
[0 0 0 1
'k, 0 0 u
[INT]={0 0 k. u (%)
0 0 0 1

and g through J, and p, g, and r are functions of X, Y., Z,, 6,
¢, and y only, Thus « through i, and p, ¢, and r as well as

.,,k,, Uy, U, can be determined when the relationship between
the image coordinate system and the world coordinate system is

determined. By (3)-(5) we have

U=k, a-X+k, bY+k,cZ+(k, p+uy) (6)

(M

which indicate that the 2-D image position functions (U, V) of an
object point are the affine transforms of the position functions
(X,Y, Z) of the object point in the 3-D space. This completes the
proof of Lemma 4.

Lemma 5: Assume that point P(X(t), Y(1), Z(1)) in a 3-D
space is orthographically projected onto two distinct image planes
with (U, (1), V(1)) and (U, (). V5(¢)) as the resulting point coordi-
nates (position functions) on the two image coordinate systems,
respectively. If (by Lemma 4)

V=k, g X+k -hY+k i-Z+(k. r+uo)

U=a, X+a, Y+a,-Z+ay, (8)
Vi=b X+by Y+ by Z+ by (9)
Uy=a;, X+ ayY+a,Z+ag, (10)
Vym by X+ by Y+ byy-Z + byy (11)

where the coefficients ;. d,,. . hyy. by, are real constants,

then
”121 + blzl + a,z2 + 17,2Z >0 (12)
al + bl +ad + b3 >0 (13)
a? + b} + a3y + b4 > 0. (14)

Based on the results in [24], Lemma 4, and some computations,
Lemma 5 can be derived easily. The detailed derivation is
too long to be included and is omitted here. By Lemma §
it is observed that any of the three 3-D position functions
(X(O.Y(1), Z(1)) of an object point must be the contributor of
at least one of its 2-D position functions of the corresponding
projected points on two distinct image planes (i.e., any of the
three 3-D position functions ( X(¢), ¥(1), Z(¢)) must be the com-
posing function of at Icast one of the four position functions,
(U, (1), Vi(2)) and (U, (1), V4(1)), of the projected points on two
distinct image planes).

Lemma 6: Assuming that a moving object point P(X(r),
Y(r), Z(1)) in a 3-D space is orthographically projected onto two
(or more) distinct image planes, then the Nyquist rate of a
sensory system monitoring the 3-D moving object point P is
equal to the maximum value of the Nyquist rates of the position
functions of the corresponding projected points of P on these
distinct 2-D image plancs.

The lemma can be derived easily using Lemmas 3 and 5, so the
derivation is also omitted here.

Based on the foregoing results, it can be concluded that the
Nyquist rate of a sensory system monitoring a 3-D moving
convex polyhedral object represented by all its surface points is
equal to the maximum value of the Nyquist rates of the position
functions of all the projected object surface points on 2-D image
planes. However, this conclusion is useless because a real object
might consist of an infinite number of surface points. Actually, if
a 3-D moving object is represented by all object surface points
and if every object surface point P is described by three orthogo-
nal band-limited position functions ( X(r), Y(¢), Z(1)), then by
signal theory {30] the Nyquist rate of the sensory system monitor-
ing the moving object can be determined by the object point
producing the largest position change rate (velocity). In the
following it will be proved that the object surface point of a
moving convex polyhedral object producing the largest Position
change rate must be onc of the junction points of the object.
Thus the Nyquist rate of the sensory system monitoring the
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moving object can be determined only by the position functions
of all the junction points of the moving object.

Lemma 7: The orthographic projection of a 3-D convex set C
on a 2-D subspace L is another convex set.

The derivation of Lemma 7 can be found in [16] and is omitted
here.

Lemma 8: For a convex polyhedral object moving in a 3-D
space, if every surface point of the moving object is described by
three Cartesian position functions, then the object surface point
producing the largest position change rate should be one of the
junction points of the moving object.

Proof: From Rogers and Adams [31) it is known that any
3-D rigid body motion is equivalent to a rotation by an angle §
around an axis through the origin, followed by a translation
(A X,AY,AZ). For the translation part all the surface points of
the convex polyhedral object have an identical amount of posi-
tional deviation. Therefore, we only have to focus on the amount
of deviation of the rotational part. For those points rotating
about an axis through the origin, the larger the distance between
an object point and the axis, the larger the positiona! deviation of
the object point within a certain amount of time interval. By
Lemma 7 and certain properties of convex polyhedral objects
[16), an object point having the largest distance between the point
and the rotation axis in a 3-D space or in a 2-D orthographic
projection space must be one of the junction points of the
moving convex polyhedral object. This completes the proof of
this lemma.

The following is the main result of this section.

Theorem 3: If the projection from a 3-D space onto any 2-D
image plane is orthographic and if every junction point of a
moving convex polyhedral object in the 3-D space is projected
onto at least two distinct image planes, then the Nyquist rate of
the sensory system monitoring the moving object can be deter-
mined using only the projected 2-D position functions of all the
junction points of the moving object on distinct image planes.

Proof: By Lemina 8 and signal theory [30], it can be claimed
that the Nyquist rat: of the sensory system monitoring a moving
convex polyhedral cbject is the maximum value of the Nyquist
rates of all the junction points of the moving object in the 3-D
space, i.e., the Nyquist rate of the sensory system is determined if
the Nyquist rates of all the junction points of the moving object
in the 3-D space is determined. By Lemma 6, the Nyquist rate of
an object junction point P in the 3-D space is determined if the
Nyquist rates of the position functions of the corresponding 2-D
projected junction points of P on two (or more) distinct image
planes are determined. Since every junction point of the moving
object is assumed to be projected onto at least two distinct image
planes and since the: projection process is assumed to be ortho-
graphic; the Nyquist rate of the sensory system is equal to the
maximum value of the Nyquist rates of the position functions of
all the 2-D projected object junction points. This completes the
proof of the theorem.

By Theorem 3, the Nyquist rate of the sensory system is
determined if the projected 2-D position functions of all the
junction points of the monitored moving convex potyhedral ob-
ject on distinct image planes are known. However, the “continu-
ous” projected 2-D position functions of all the junction points
of the object usually are not directly available. The available data
are just “discretely sampled” 2-D image sequence data. This
scems to be a problem. Fortunately, in industrial automation
applications a moving object usually follows a specific periodic
trajectory or a repetitive sequence of primitive motions [25], [26].
Thus a solution can be proposed as follows. First, the sensory
system monitors the moving object with a very high data acquisi-
tion rate in the “learning” stage. The 2-D position functions of
all the projected junction points of the moving object are then
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reconstructed by the use of the discretely measured 2-D image
data based on the sampling theorem. Then the Nyquist rate of
the sensory system can be determined according to Theorem 3.
Finally, a suitable data acquisition rate (larger than or equal to
the Nyquist rate) can be chosen for use in the “operation” stage.

IV. DETERMINATION OF THE NUMBER AND THE
CORRESPONDING DIRECTIONS OF SENSORS

When a convex polyhedral object moving in a 3-D space is to
be monitored by a sensory system containing several fixed sen-
sors, two important problems as mentioned in Section I should
be solved first. The first is, what are the bounds on the minimum
number of sensors necessary for monitoring various moving
convex polyhedral objects in a 3-D space under different motion
conditions? The second is what is the optimal way to arrange the
positions and the directions of the sensors? Here by optimality, it
is meant that the sensors as a group can completely “sce” the
minimum measurable feature point set at any time instant. In
this section, several properties of orthographic projection are first
investigated. Next, the bounds on the minimum number of
sensors necessary for monitoring moving objects completely in a
3-D space are derived. Finally, an algorithm for the determina-
tion of the minimum number of sensors and their corresponding
directions is proposed.

A. Properties of Orthographic Projection and Bounds on the
Number of Sensors

An image plane in a camera system can be described by six
camera parameters (X,Y,,Z ,0,¢,¢) [18], where XY, Z, are
the positional translations, and 6. ¢,y specify the pan, the tili,
and the swing angles, respectively, of the camera with respect to a
world coordinate system. The determination of optimal sensor
positions and orientations is equivalent to the search of a set of
image planes (or their parameters). The previous representation
of an image plane is simple, but it is useless in this study because
X,, Y., Z, are three real numbers, so the search space of various
image planes is an unbounded space containing an infinite num-
ber of search points. Therefore, the range of the search space of
various image planes for the determination of sensor numbers
and locations has to be treated from another point of view as
described in the following.

Definition 1: If an orthographically projective image of a mov-
ing convex polyhedral object is always a translational and/or
rotational version of another orthographically projective image of
the same moving object at any time instant, then these two
sensors (image planes) will be treated as an identical one in this
study because these two sensors always acquire an identical
amount of information about the moving object when the sensory
system monitors the object.

For example, as shown in Fig. 1, there are three orthographi-
cally projective images of a single object on three image planes at
a specific time instant. The projected object image in Fig. 1(b) is
a rotational version of that in Fig. 1(a) and the projected object
image in Fig. 1(¢) is a translational and rotational version of that
in Fig. 1(a). Thus these three image planes will be treated as an
identical one in this study.

It is assumed that the range of the trajectory of a monitored
convex polyhedral object moving in a 3-D space is finite, and
that the size of the moving object is also finite. Theoretically, an
infinite number of enclosing spheres with different sphere centers
and different sphere radii can be selected to enclose the entire
range of the object trajectory. Any plane tangent to a specific
enclosing sphere corresponds exactly to an orthographically pro-
jective image plane. Therefore, the search space of orthographi-
cally projective image planes can be transformed to be the
tangent planes of all the 3-D enclosing spheres.

Lemma 9: The set containing the tangent planes of all the
spheres with different sphere centers and different radi (except
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(a)
Vl2
(b)
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Fig. 1. Three orthographically projective images of a single object on three
image planes at specific time instant. (a) Object image on first image plane.
(b) Object image on second image plane. (c) Object image on third image

plane.
M1 ' A/ vy
vy N

ra R b |
\ -
a1 pbject in
2 3-D space

image plane 1 image plane 2 image plane 3 image plane 4

Fig. 2. Four orthographically projective images in a 3-D space, where image
plancs 2, 3, 4 arc mutually parallel with different image coordinate systems.

the degenerate case: a point) is equal to the set containing the
tangent planes of all the spheres with a single sphere center but
with different radii.

Similar concepts of Lemma 9 can be found in Riddle {32], and
the derivation is oritted here. By Lemma 9, the search space of
various image planes can be transformed to be the tangent planes
of all the enclosing spheres with a single sphere center but with
different radii. However, by Definition 1 corresponding tangent
planes of all the enclosing spheres with an identical sphere center,
but with different radii, will be treated as identical ones. Accord-
ingly, the three corresponding tangent planes (image planes 2, 3,
4) shown in Fig. 2 should be considered as identical. On the
contrary, image planes 1 and 2 in Fig. 2 are regarded as distinct
because from these two image planes different information about
the monitored moving object can be acquired. By the earlier
discussions, the search epace of orthographically projective image
plancs (corresponding to sensor positions and directions) can be
reduced 10 include only the tangent planes of a selected enclosing
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the enclosing sphere

S

image plane 1 image plane 2

Fig. 3. Spherical tangent image plane pair in 3-D space. where image planc 1
is parallcl to image plane 2.

sphere. Such planes can be described by the solid angles of the
selected enclosing sphere. A solid angle can be specified by two
directional angle parameters, the pan angle 8 and the tilt angle ¢.
The rangesof § and ¢ are —w <@ <7 and —w/2 g p <=/2 (or
~a/2< 0 <a/2and — o < ¢ <) with periods 27 and 7 (or 7
and 2#), respectively. Thus the sensors can be distinguished just
by two parameters, the pan and the tilt angles.

Definition 2: A spherical tangent image plane pair are (wo
distinct paralle] tangent planes P, and P, of an enclosing sphere
S of a moving object such that the centroid of $ and the two
tangent points of P, and P, to § are collinear as illustrated by
the example shown in Fig. 3.

Lemma 10: If the projection is orthographic, then all the
junction points of a monitored moving convex polyhedral object
over its entire trajectory are visible on each spherical tangent
image plane pair of any enclosing sphere, i.e.. any junction point
of the monitored object can be sensed by at least one plane of the
image plane pair at any sampling time instant.

Similar concepts of the foregoing lemma can be found in [16),
and the proof is omitted here.

Lemma 11: Either for perspective projection or for ortho-
graphic projection, the 3-D coordinate information of a point is
recoverable if the point is visible on (or appears on) two (or
more) distinct image planes.

The foregoing lemma is the fundamental theory in photogram-
metry [18), so the derivation is also omitted here. Assuming that
the purpose of object monitoring is to recover the 3-D coordinate
information of all the object junction points from 2-D image
planes, we have the following results.

Theorem 4: 1f the projection process is orthographic, then the
minimum number N, of sensors necessary for monitoring a
moving convex polyhedral object under various motion condi-
tions is bounded by 2 < N, < 4.

Proof: By Lemma 11, it is easy to see that N, >2. On the
other hand, if a sensory system consists of two distinct spherical
tangent plane pairs {i.e., the system includes four distinct image
planes), then according to Lemma 10 any junction point of the
moving convex polyhedral object will be visible on at least two of
these four distinct image planes over all its trajectory. By Lemma
11, the 3-D coordinate information of every object junction point
is recoverable. This means that the sensory system can monitor
the moving object completely. Therefore, N, < 4. This completes
the proof of the theorem.

B. Further Properties of Orthographic Projection

Some properties of orthographic projection are derived here
for use in the proposed algorithm for the determination of the
minimum number of sensors and their corresponding directions.

Definition 3: A full sensing direction (87.¢,) is the direction
of an image plane such that ail the junction points of the
monitored moving polyhedral object are visible on the image
plane over the entire trajectory of the object at any time instant.
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Definition 4: The optimal sensing direction (4,,,¢,,) is one in
which the image plane can sense the maximum number of object
junction points over the entire object trajectory.

For a moving convex polyhedral object there may exist multi-
ple full sensing directions and /or multiple optimal sensing direc-
tions.

Lemma 12: For an orthographic projection process, a sensory
system can monitor a moving convex polyhedral object com-
pletely with only two sensors if the enclosing sphere of the
moving object consists of two (or more) distinct full sensing
directions.

Lemma 12 can be easily derived from Definition 3 and
Lemma 11.

Lemma 13: For a sensory system monitoring a 3-D moving
convex polyhedral object under an orthographic projection pro-
cess, if the optimal sensing direction of the corresponding enclos-
ing sphere is not a full sensing direction, then the minimum
number N, of sensors required for complete monitoring is either
Jor4

Lemma 13 can be easily derived from Lemma 11 and Theorem
4, and so the proof is omitted.

Lemma 14: Under the conditions that the projection process
is orthographic and that a sensory system uses F sampling
periods to monitor completely the entire trajectory of a moving
convex polyhedral object with N junction points according to the
sampling theorem, if the total number of the junction points of
the object visible from the optimal sensing direction of the
sensory system over the total F sampling periods is smaller than
2-F-N/3, then the minimum number N, of sensors required for
the sensory system is 4.

Proof: Since the sensory system uses F sampling periods to
monitor completely the entire trajectory of the moving convex
polyhedral object with N junction points, the minimum total
number of the object junction points sensed by all the sensors of
the sensory system over the F sampling periods is 2:N-F be-
cause by Lemma 11 any of the N junction points has to appear
on at least two distinct image planes in every sampling period for
the monitoring to be complete. If the total number of the object
junction points visible on the image plane from the optimal
sensing direction over the F sampling periods is smaller than
2-F-N/3 and if the number of the sensors N, of the sensory
system is either 3 or 2, then the total number of the object
Junction points seen on all the image planes of the sensory system
over the F samipling periods is smaller than 2. F- N, resulting in a
contradiction. Therefore, N, > 3 and by Theorem 4, N, can only
be 4. This completes the proof of the lemma.

C. Proposed Algorithm for the Determination of the Minimum
Number of Sensors and their Directions

From previous discussions it is seen that the determination of
the minimum number of sensors depends only on two parame-
ters, the pan angle @ and the tilt angle ¢, of the image planes
(sensors). The ranges of § and ¢ are —n <0 <7 and —7/2< ¢
-< m/2 with periods 2# and =, respectively. That is, the search
space for the determination of N, is the block area shown in Fig.
4(a), which contains an infinite number of points. In practice, we
can quantize this “continuous” search space into a discrete one
including P-Q quantized search points, as illustrated in Fig. 4(b).
Each quantized point corresponds to a specific image plane.

As mentioned in Section III, the sensory system usually moni-
tors a moving object repeating a certain trajectory or doing a
sequence of primitive motions [25], [26] in most automation
applications. The scnsory system can use many sensors and a
sufficiently high data acquisition rate in the “learning” stage, and
some parameters of the sensory system, such as the Nyquist rate

and the minimum number of sensors of the sensory system, then
can be determined for usc in the “operation™ stage, based on the

discrete 2-D measured image sequence data. In the following
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Fig. 4. Search spaces of pan and tilt anglcs. (a) Continuous scarch spaces of
pan angle 8 and \ilt angle ¢. (b) Discrete scarch spaces of pan angle  and
tilt angle ¢.

proposed algorithfn the total number of the junction points of the
moving object and the minimum number of sensors necessary for
the sensory system are assumed to be as N and N,, respectively.

Algorithm: Determination of the Minimum Number of Sensors

Step 1— Initialization: Use four sensors (according to Theo-
rem 4) to monitor the moving convex polyhedral object over its
entire trajectory with a sufficiently high data acquisition rate.

Step 2— Nyguist: rate f, determination: Based on the mea-
sured data in Step 1, determine the Nyquist rate f, of the
sensory system (according to Lemma 3) to be the maximum value
of the Nyquist rates of the 3-N position functions of the N
junction points of the moving object.

Step 3— Resampling: Resample all the trajectories (position
functions) of the N junction points of the monitored object with
the system Nyquist rate f,, resulting in totally 4-F sampled
image sequence data in the F sampling periods.

Step 4— Object reconstruction and enclosing sphere selection:
Reconstruct the moving object over the F sampling periods and
select an enclosing sphere which can enclose the object over its
entire trajectory.

Step 5— Orthographic projection: Use orthographic projection
to project all the junction points of the moving object onto the
P-Q distinct image planes (as illustrated in Fig. 4) of the enclos-
ing sphere over the F sampling periods.

Step 6 —Counting and indexing: Count and index the total
number of junction points visible on every one of the P-Q
distinct image planes over the F sampling periods.

Step 7— Full sensing direction detection: 1f the enclosing sphere
contains two or more distinct full sensing directions, then deter-
mine the minimum number N, of sensors (according to Lemma
12) to be two, select arbitrarily two distinct full sensing directions
as the sensor directions, and exit; otherwise, go to Step 8.

Step 8 — Optimal sensing direction determination: If the total

number of the junction points of the monitored object over the F
sampling periods visible from the optimal sensing direction is

smaller than 2+ F: N/3, then determine N, (according to Lemma
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Fig. 6. Dectermination of minimum number N, of sensors for moving cube in
3-D space.

reference plane

WXYZ(8=0, ¢=0)

14) to be 4, sclect any two distinct spherical tangent image plane
pairs as the sensor directions, and exit; otherwise, go to Step 9.

Step 9— Reexamination: Find the optimal sensing direction
and check if the enclosing sphere contains two other sensing
directions such that every junction point of the monitored mov-
ing object appears on at least two of these three corresponding
image planes in each of the F sampling periods. If so, then
determine N, (according to Lemma 11) to be 3, select these three
directions as the sensor directions, and exit; otherwise, determine
N, finally (according to Theorem 4) to be 4, and select any two
distinct spherical tangent plane pairs as the sensor directions.
Exit.

In Step 5, for every sampling period, the sensory system has to
project the N junction points of the monitored object onto the
P-Q quantized image planes. For the orthographic projection
process including the hidden problem, the sensory system can use
the hidden removing techniques provided in [27], [28] to deter-
mine the projective results on these P-Q quantized image planes
over the F sampling periods.

V; ILLUSTRATIVE AND APPLICATION EXAMPLES
A. Three Illustrative Examples

Three convex polyhedral objects imagined to move periodically
in a 3-D environment are processed to verify the feasibility of the
proposed algorithm. Here emphasis is put on the determination
of the minimum number N, of sensors,

Included in Fig. § is a simple convex polyhedral object repeat-
ing a sequence of line motions periodically, where the reference
planc WXYZ (8 =), ¢ =0) is parallel to the object faces ABC
and DEF, and perpendicular to all other faces of the object. The
directions of the line motions are parallel to the object edge CF.
The repetitive motion procedure includes: 1) going to the left L
meters; 2) going back to the original position; 3) going to the
right L meters, and 4) finally going back to the original position
again. By the proposed algorithm, it can be found that the
enclosing sphere of the moving object contains many full sensing
directions. The minimum number N, of sensors is so determined
1@ S WO, Any two distinct oncs of these full sensing directions,
such as (§=~u/4, ¢=0) and (0 =~3n/4, ¢=0), can be
selected as the corresponding directions of the sensors.
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reference plane
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Fig. 7. Dectermination of minimum number N, of sensors for moving dodeca-
hedral object in 3-D space. (a) Moving dodecahedral object in 3-D space.
(b) Time-varying axis in 3-I) space,

th lwd sampiing periods and cight feature points
characierizing joint arm.

Fig. 8. Monitor

IMustrated in Fig. 6 is a cube repeating a sequence of line
motions periodically, where the reference plane WXYZ (8 =0,
¢ =0) is parallel to the object faces ABCD and EFGH, and
perpendicular to all other faces of the cube. The directions of the
line motions are parallel to the object edge DH and its motion
procedure is the same as that of the object shown in Fig. 5. By
the proposed algorithm the enclosing sphere of the moving object
contains no full sensing direction. However, there exist multiple
optimal sensing directions. The total number of the junction
points of the moving cube over all the F sampling periods visible
from any optimal sensing direction (image plane) is equal to
7-F-N/8 which is larger than 2-F-N/3 (here, N =8). By Step 8
of the proposed algorithm, N, is determined to be either 3 or 4.
By Step 9 of the proposed algorithm, an optimal sensing direc-
tion, say (8 =-m/4, ¢=a/4), seeing the junction points
A, B,D.E,F.C,H in every sampling period 1¢ firet celeoted.
Next, two other optimal sensing directions (8 =37/4, ¢ = =/4)
seeing the junction points 4, B,C, D, E, F,G in every sampling
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. (d)

Fig. 9. Monitoring svstem with three cameras, F= 2 and N =

R, (@) Image of camera 1 at sampling lime instant [, (b Image of

camera 2 at sampling time instant 1. (¢) [Image of camera 3 at sampling time instant 1. (d) hinage of camera 1 at sampling time
instant 2. (¢) Image of camera 2 at sampling time instant 2. (1) Image of camera 3 at sampling time instant 2.

period and (§ = - n/4, ¢ = - n/4) secing the junction points
A,C,D, E, F,G, H in every sampling period are selected. Since
every junction point of the moving cube appears on at least two
of these three sclected image planes in every sampling period, the
minimum number N, of sensors is finally determined to be 3.
Fig. 7(a) includes a dodecahedral object repeating a sequence
of rotational motions periodically. The object rotates periodically
about a time-varying axis in a 3-D space as illustrated in Fig,

7(b), where the time-varying axis rotates about the fixed line UV
with a slant angle /4 and the line Tvis parallel to the reference
plane WXYZ (8 =10, ¢ =0). By the proposed algorithm it is
found that the enclosing sphere of the moving object contains no
full sensing direction. The total number of junction points over
the F sampling periods visible from the optimal sensing direction
is also larger than 2-F-N/3 (here, N=20). Thus N, is deter-
mined to be either 3 or 4. By Step 9 of the proposed algorithm,
an optimal sensing direction, such as (0 = — #/2, ¢ =), is first
chosen. However, it is impossible to find two other sensing
directions such that every object junction point appears on at
least two of the three selected image planes over all the F
sampling periods. Other combinations of three image planes lead
to similar results. Thus the minimum number N, of sensors is
finally determined to be 4. By Step 9 of the algorithm. any two
distinct spherical tangent image plane pairs can be sclected as the
directions of the four sensors.

B. An Application Example

Here the images of a periodically working robot are processed
to demonstrate the applicability of the set of proposed sensing
strategies to monitoring an operating robot. The monitored robot
is sampled with twe sampling periods during a complete opera-
tion session. The monitored part is a joint arm of the monitored
robot, as illustrated in Fig. 8. The joint arm is a convex polyhe-
dral object, which can be characterized by eight feature points
(e, F=2 and N=28). For experimental and demonstration

- convenience, light emitting diodes (LED’s) attached to the junc-
tion points of the joint arm are used as the feature points for
monitoring. Fig. 9 illustrates the six images of the three monitor-
ing cameras over the two sampling periods. where Fig., 9(a)-(c)

are the three images of the monitoring cameras of the first
sampling time instant and Fig. 9(d)~(f) are the three images of
the monitoring cameras of the second sampling time instant.

By Steps 7 and & of the proposed algorithm, it is found that
there exists no full sensing direction and the total number (=14)
of the junction points of the monitored polyhedral object over
the two sampling periods visible from the optimal sensing dircc-
tion 1s larger than 2. F-N/3 (=32/3). Then, by Step 8 of the
algorithm, the minimum number N, of sensors necessary for
monitoring the robot is determined 1o be either 3 or 4. Thus by
Step 9 of the algorithm, N, is determined finally to be 3

VI. ConNcrusioN

In this correspondence a set of new sensing strategies for
monitoring 3-I moving convex polyhedral objects by computer
vision is developed. The 3-D points are selected as the features
for monitoring. It is proved that the minimum mceasurable feature
point sct for monitoring a 3-D moving convex polyhcdral object
is just the set containing all the junction points of the polvhedral
objcct, and that the minimum data acquisition rate or the Nyquist
rate for monitoring the object can be determined with discretely
sampled 2-D image sequence data only. Scveral properties of
orthographic projection for deciding the search space for the
minimum number N, of sensors necessary for monitoring the
object are investigated. The bounds on N, are also derived, and
an algorithm for the determination of N, and the corresponding
directions of the sensors is proposed. The feasibility of the
proposed algorithm is finallv demonstrated by three illustrative
examples and an application cxample.

In many applications it is necessary to monitor a more general
object, such as an-articulated robot arm which can be modeled as
a joint-type curved object (i.e., an object containing many curved
rigid bodies linked by joints). In this case. the convexity property
on the object surface is lost, resulting in invisibility of certain
object surface points from all directions at certain sampling time
instants. Furthermore, it is also hard to find a sparse measurable
feature point set for monitoring completely a general object in
general mation conditions. Therefore. 10 monitor a general mov-
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ing object is a different problem which should be treated from
other viewpoints and is worth further research.
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Segmentation Between Overlapping Parts:
The Moving Shadows Approach

DANIEL RAVIV, MEMBER, tEEE. YOH HAN PAO, FELLOW, 1EEE.
AND KENNETH A. LOPARO. MEMBER, IEEE

Abstract — A new method for segmenting three-dimensional overlapping
surfaces is presented. 1t is based on moving a light source in a horizontal
plane relative to the surfaces to be segmented. Using a camera which is
placed above the surfaces, the shadows cast by the surfaces at each light
source angle are recorded and analyzed. The segmentation algorithm is
simple and based on Boolean processing of the data. A set of experimental

1 A ‘he ¥ 3 4 < .nd £12] o‘ “‘e thaad

I. INTRODUCTION

One of the remaining problems in the robotics vision area is
obtaining segmentation between overlapping surfaces. Many sys-
tems that have been successful in recognizing discrete parts have
limitations making the recognition or segmentation of overlap-
ping parts difficult. Many of the methods deal with two-dimen-
sional (2-D) overlapping objects, attempting to find the overlap-
ping surfaces; only few deal with three-dimensional (3-D) ob-
jects.

Ballard [1} developed a restricted form of the generalized
Hough transform that can be used for recognizing partially
hidden objects. Bolles and Cain [2] developed an approach for
hidden object recognition referred to as *local feature focus.” A
technique for recognizing an object from a partially occluded
boundary is given in [3]. A method for recognition of two
overlapping parts using a single camera is introduced in {4). A
recent approach for recognition and positioning of a two-dimen-
sional object is presented in [5]. A hand-eye system has been
developed to perform bin picking [6]: photometric stereo vision is
used to determine surface orientation. An experimental robot to
acquire a class of workpieces from a bin using vision was demon-
strated by Birk and Kelley [7): a system was developed to pick up
cylindrical parts. Other methods for segmenting images are de-
scribed in {11). However, most of them use gray-level images,
emphasizing gray level and gray-level differences as indicators of
segments. None of the known methods uses multiple binary
images to obtain the segmentation.

In this correspondence, we describe a method for the segmen-
tation of 3-D surfaces using one camera (see {8], [9]). The light
source is rotated in a horizontal plane, and the camera is placed
above the surfaces to be segmented. Points on the 3-D surfaces
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