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ABSTRACT: In man-made environments, rectangular shapes can be seen almost everywhere. It is thus convenient to 
use rectangular shapes for robot location, which is equivalent to the problem of close-range space resection encountered 
in photogrammetric engineering. A new method for robot location using mutually parallel or perpendicular line pairs 
in observed rectangular shape images is proposed. From a monocular image of any object with at least a rectangular 
shape, image processing and numerical analysis techniques are applied to extract the projection characteristics of each 
corner point in the rectangular shape. The position and orientation parameters of a camera mounted on the robot can 
then be computed for robot location. Multiple rectangular shapes can be utilized to promote the accuracy of the 
parameters. Partial rectangular shapes also can be utilized. A major merit of the method is that the solution can be 
uniquely and analytically determined without iterative computation. Experimental results show the feasibility of the 
proposed approach. Error analysis useful for determining location precision is also included. 

INTRODUCTION Chou and Tsai (1986) used Y-shaped house corners as the 

F OR A ROBOT TO NAVIGATE in a building environment such 
as in a house or along a corridor, an important task is to 

locate the position of the robot with respect to known objects. 
This type of so-called robot location problem is actually equiv- 
alent to the problem of close-range space resection encountered 
in photogrammetric engineering. 

One approach to this problem is to use the stereo disparity 
principle to get three-dimensional (3-D) information. The cor- 
respondence of two images involved in this approach in general 
is difficult and time-consuming. Numerical analysis with iter- 
ative steps is usually necessary, which is also computationally 
expensive. 

Locating robot positions using monocular images is another 
approach which is generally more efficient. Fukui (1981) de- 
scribed an algorithm for determining the position of a robot 
from a single Tv image of a specific diamond-shaped mark set 
on a wall. A constraint of the approach is that the lens center 
of the TV camera must be located at the same height as the 
diamond center. 

Courtney and Aggarwal(1984) proposed an extension of the 
2-D technique proposed by Fukui. The restriction on keeping 
the camera at the level of the mark center is relaxed. In order 
to solve an underdetermined system of two equations with three 
unknown, two methods are proposed. One is to add another 
mark, and the other is to assume that the height of the camera 
relative to the mark is known. 

Magee and Aggarwal (1984) proposed a method for deter- 
mining robot positions uniquely by viewing a single sphere 
with horizontal and vertical great circles and computing the 
distance, the elevation, and the azimuth angles of the camera 
with respect to the sphere. 

Haralick and Chu (1984) described the use of parametric planar 
or nonplanar curves to determine camera parameters. Camera 
angle parameters are solved first. The camera position param- 
eters under these angles are computed next. An optimization 
technique is employed to solve nonlinear equations for the for- 
mer problem. The number of curve points involved in the it- 
erative computation usually is large. 

standard mark to locate robot It is assumed that the 
distance from the camera to the room ceiling is known. A Y- 
shaped corner is composed of three perpendicular planes, or 
alternatively, of three perpendicular lines with each line being 
the intersection of a pair of planes. Analytic solutions can be 
derived. 

Ethrog (1984) proposed a method for determining the tilt an- 
gles and the nine interior orientation parameters (including the 
radial lens distortion) of a non-metric film-camera using the 
parallel and perpendicular lines of the photographed objects 
instead of the control points. 

Tseng et al. (1987) proposed an approach to determining the 
3-D position of a mobile robot using the information of the van- 
ishing points of the 2-D perspective projection of a cube. The 
locations of the vanishing points are iteratively modified to sat- 
isfy the facts that the length of the cube is known and that the 
edges of the cube are mutually perpendicular. 

El-Hakim (1984) proposed a vision system consisting of a sin- 
gle camera, a projector, and a digital image processig unit. The 
object coordinates of any point on the projected line can be 
determined from the image coordinates obtained from the dig- 
ital image processor and from the known location of the line in 
the projector system, provided that the relative positions and 
orientations of the camera and the projector are known. 

Tommaselli and Lugnani (1988) proposed a mathematical model 
in order to etablish a functional relationship between the straight 
features in an object and in the image space, without the ne- 
cessity of point-to-point correspondence. This model is based 
on the equivalence between the definition parameters from the 
plane determined by each straight feature and the camera lens 
center, so that it can be applied to the resection and the ana- 
lytical stereo model formation problems. 

The approach proposed in this paper makes use of rectan- 
eular shaves which are verv common in human environments. 
ixamples'of objects containihg rectangular shapes include doors, 
windows, walls, table surfaces, announcement boards, box sides, 
corridor scenes, etc. This makes the approach more convenient 
and practical for general applications because no extra objects 
or shapes need be created and placed for robot location. 
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The goal of robot location, as defined in this study, is to 
provide robot position information with respect to available rec- 
tangular shapes along the navigation path of a mobile robot so 
that the robot can follow the predetermined path in a collision- 
free manner. By assuming that the width of the path at any 
spot is large enough, it is reasonable to allow a small error 
percentage, say 5 percent, in computed robot positions with 
respect to the path widths. Because each of the robot location 
tasks along the navigation path is independent, the error es- 
sentially is not additive. And so, collision- free navigation can 
be achieved although small location errors might cause the ro- 
bot to navigate along curves instead of straight lines within the 
path. 

Some merits of the proposed approach are as follows: 
Single views of known rectangular shapes are sufficient for robot 
location; binocular image pairs are not necessary. 
The corner points and the lines through the corners can be de- 
tected automatically using digital image processing and numerical 
analysis techniques. 
Partial rectangular shapes can also be utilized as long as two points 
and three line segments are available. 
Location accuracy can be improved if multiple rectangular shapes 
are observed, provided that the relative positions and orientations 
of each rectangular shape are known in advance. 
Analytic algebraic formulae can be utilized in the solution. No 
complicated triaonometric function is involved. This saves a lot " 
of computation time. Z Z .  

FIG. 1. The relationship between the global coordinate system and the 
The location formulae are derived in the next section. Com- camera coordinate svstem. 

putation of camera parameters from partial or multiple rectan- 
gular shape image is then described. Experimental results and 
error analysis are included, followed by conclusions and sug- 
gestions for further research. 

ROBOT LOCATION BY COMPLETE RECTANGULAR 
SHAPES 

Collinearity specifies the condition tht the camera lens center 
c, any object point A, and the image a of A all lie along a straight 
line. The collinearity condition is illustrated in Figure 1, where 
xyz is a tilted camera coordinate system, x'y'z' is the trans- 
formed camera system which is parallel to the XYZ space co- 
ordinate system, (x', y',) are the transformed image coordinates 
of the measured image coordinates (x, y,) of a, and (Xu Y,, Z,) 
and (X,, Y,, Z,) are respectively the coordinates of c and A in 
the space coordinate system XYZ. In this section, we want to 
derive the camera location parameters, including the position 
parameters X,, Yo and Z,, and the orientation parameters +, 
8, and S (the pan, tilt, and swing angles of the camera), in terms 
of the image coordinates of the corner points of the rectangular 
shapes. The orientation parameters are solved first and the po- 
sition parameters are computed accordingly. 

The points P, Q, R, and s in Figure 2 lie on a rectangle in the 
object space. The line segment PS and the line segment ?& are 
~l_aralleJto the X-axis in the object space and all the points on 
PS or QR have the same Y and Z coordinates. The space coordinate 
system is oriented in such a way that all of its axes are parallel 
to the sides of the rectangle. Using the law of collinearity 
(Ackermann, 1976; Wolf, 1974) and the fact that Yl=Y4 and 
Z, =Z,, it is easy to derive 

where (x,, y,) and (x,, y,) are the image coordinates of space 
points P and s, respectively; the orthogonal orientation matrix 
elements r,. are functions of the rotation angles (pan, tilt, and 
swing); and f is the camera focal length. Here, the coordinates 

FIG. &A rectangle PQRS in the object spa* which has PQ 
and RS parallel to the Y axis and PS and QR parallel to the 
X axis. 

of the image center are assumed to be zeroes. Equation (1) can 
be rewritten as 

(~22.33 - r23r32) b1- y4)f 
+ (r23r31 - r21y'33) ( ~ 4  - ~ 1 ) f  

+ (r21r32- r22r31) blx4 - ~ 1 ~ 4 )  = O .  

But the elements rij must fulfill the following conditions: 
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and so we obtain from Equations 2 and 3 the following linear 
equation: 

rIl(YI -~4)f + ' 12 (~4  - 'l)f + r13(~1x4 - ~ 1 ~ 4 )  = (4) 

In a similar way using the image coordinates (x,, y2) and (x3, 
y3) of space points Q and R, respectively, we obtain 

r11(Y2-~3)f + r12(x3-x2)f + r13(y2x3-x2?/3) = O- (5) 

From Equations 4 and 5 and the condition 

r;] + r;, + ~3 = 1, 

then be solved (Ackermann, 1976; Wolf, 1974) using the equations 

In Figure 2, we assume that the side lengths L and H of the 
rectangle are known. The length L, which is the distance between 
point Q and point R or between point P and point s, can be 
rewritten as 

we obtain 

r,, = E,r13, r,, = D1r13, r13 = f (1 + D; + E:)-In, (6) where X, is the X coordinate of the camera lens center C. Dividing 
the above equation by the term (Z, - Z,) with Z, = Z2= Z3 and 
using the law of collinearity, we obtain where 

The sign of the square root value r13 has to be determined. If 
we can constrain the camera angles to be less than 90" and the 
camera position to lie in a certain quadrant, the sign of r13 can 
be determined by the direction of the pan angle +; if the pan 
angle I) is rotated counterclockwise, then the sign is positive. 
The direction of the pan angle can be detected by the perspective 
distortion of the rectangular shape (Ackermann, 1976; Wolf, 
1974) and the known 3-D position of the shape. In a similar 
way, using the line segments and which are parallel to 
the Y-axis in the object space, we obtain 

where C, and C2 are known values representing the two terms 
on the right-hand side of Equation 15 which include the known 
values r,j, (x3, y3), (x, y,), and f. From Equation 15 we obtain 

Using the law of collinearity again, we obtain 

rgl + rz2 + rg3 = 1. (9) -- Y2 - Yc - ~21x2 + r22?/2 - r23f = cy 
Z2 - ZC r31x2 + x3Z!/2 - '34 

From Equations 7, 8, and 9, r,,, r,, and r2, can be solved as 
follows: -- y3 - yc - r21x3 + r d 3  - r23f = C, 

z3 - zc  r13x3 + r333 - r33f 
(19) 

r,, = E,r,, r, = D2rw, r, = + (1 + D: + E3-ln 1 (10) 
where C3 and C4 are known values. From Equations 18 and 19 

where we obtain 

Yc = Y2 - C3(ZO - ZC), 

Yc = Y, - C4(Z0 - Z,). 

Up to now we have derived the formulae for all the position 
parameters (X,, Y,, Z,)(Equations 16, 17, and 20). From the 
side length H, we can derive in a similar way another set of 
formulae for the position parameters. Because each side length 
of the rectangle can be used to decide one set of camera position 
parameters X,, Y,, and Z,, the four side lengths can be used 
to construct four sets of parameters. A simple way to utilize all 
the four sets of data is to take the average of the data as the 
final location result. In case all computations of a parameter are 
not of equal accuracy due to view angles, weighted averaging 
instead may be adopted with smaller weights being assigned 
to the data which are less accurate (e.g., with larger standard 
deviations in a sequence of experimental observations). This 
completes the derivation of the camera location parameters X,, 
Y,, Z,, $, 8, and 6. Note that all the six parameters can be 
computed by closed-form algebraic formulae. No iterative 
computation is required. This improves the computation speed 

The sign of r,, can be determined by the direction of the tilt 
angle 8. Because the term cosJIis always positive, if the tilt angle 
0 is rotated countercIockwise, then the sign is positive. The 
direction of the tilt angle can be detected by the perspective 
distortion of the rectangular shape and the known 3-D position 
of the shape. 

From the relation of the orthogonal orientation matrix elements, 
we obtain the remaining three matrix elements as follows: 

At this point, the nine orientation elements rV have all been 
solved (Equations 6, 10, and 11). The orientation angles can 
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and makes the proposed approach more practical for real Equation 24 above can be transformed into the form of Equation 
applications. This is one of the merits of the proposed approach. 21: i-e., 

ROBOT LOCATION USING PARTIAL AND MULTIPLE x, + b3yp + c, = 0, 
RECTANGULAR SHAPES 

In certain cases, a rectangular shape may be seen only par- so that 

tially. It was found in this study that partial rectangular shapes 
are also useful for robot location. To solve the problem of using 
partial rectangular images, we propose another method for 
finding the camera parameters. 

. -. .. . -. .. 

In the image of a partial rectangular shape as shown in Figure 
3, the corner point s cannot be seen. Let the equation of the where b3 and c3 are the parameters of the image of line L, which 
image of line through corner point R(X,, Y , ,  Z3) be described Can be measured image processing (ChOu and Tsait 1986)- 

by 
From Equations 25 and 26 we obtain 

X ,  + b3y, + C ,  = 0 (21)  X3 -- - X c  b3rll - r12 C3rll + r ~ d  - - - 
where x,, y, are the iamge coordinates of the projection of any ' 3  - Zc b3r31 - r32 C3r31 + fi33- 
point on L, on the image plane. Because L, goes through object We can eliminate the Xc and the Zc terms and get point R(X,, Y , ,  Z,)  and is parallel to the Y axis, (X,, Y ,  Z,) are 
the space coordinates of any point on I-, where Y is a free variable. f(r32r13 - rlZr33) + b$(rl,r33 - rI3r3,) - ~ ~ ( r ~ ~ r ~ ~  - r12r32) = 0, Therefore. we can obtain the followine: eauations from the law " 1 

of the co~linearit~: which can be reduced to 

rl l (X3-Xc)+r2,(Y-Y~)+r3~(Z3-Z3 r2 J + rZ2bf - r,c3 = 0, 
rI3(X3-  XC)  + rZ3(Y - Y C )  + r33(Z3 - ZC) 

(28) 

according to the following relations of the orthogonal rotation 
r1,(X3- X3 + r2 , ( y -  Yc)  + r32(Z3 -23 matrix elements: 
r l 3 ( x , - x c )  + r , , ( ~  - ~3 + ~ , , ( z , - zA  

By eliminating the ( Y  - Y,) terms, the above equations can be 
reduced to 

Now, Equation 28 can be used to replace Equation 8. From 
(24) Equations 7,28, and 9, r,,, rzLand r,, can be solved. Using the 

condition that line segment QR or L~ is parallel to the X axis, 

FIG. 3. A partial shape with one corner point (the image point s) invisible. 
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where we can get an equation similar to Equation 28 as follows: 

with 

where b, and c, are the parameters of the image of line L, which 
can be measured by image processing. Equation 29 can be used 
to replace Equation 4. From Equations 29,5, and 6, the elements 
r,,, r,,, and r13 can also be solved. From the relations of the 
elements of the orthogonal orientation matrix, we can obtain 
the remaining three elements r,,, r,, and r3, by Equations 11. 
Using the nine orientation elements and the lengths of line 
segments and z, we can obtain, in a way similar to that 
complete rectangular shapes, the angle parameters 4, 9, and S 
and the position parameters X,, Y,, and Z,. 

In the image of a partial rectangular shape as shown in Figure 
4, corner points P and s cannot be seen. Lines L, and L~ go 
respectively through object points Q(X,, Y,, 2,) and R(X,, Y3, 
Z,) and are parallel to the Y axis. The image of the two lines 
can be described by the equations 

x, + biyp + ci = 0, i=2, and 3. 

In a similar way to that for a partial shape with three corner 
points, we can obtain two equations as follows: 

FIG. 4. A partial shape with two corner points (the image points p and 
S) invisible. 

The values of r,,, r,,, and rZ3 can be solved from Equations 
31, 32, and 9. From the relations of the orthogonal rotation 
matrix elements, we know that 

Because line segment is parallel to the X axis, in a way 
similar to the derivation of Equation 4 we can obtain 

The elements r,,, r,,, and r,, can be determined using Equations 
33 through 35. According to Equation 11, r3,, r,,, and r3, can 
also be determined. In this way, we have solved all the nine 
elements of the rotation matrix. In a way similar to that for 
complete rectangular shapes, we can obtain camera position 
parameters using-the nine orientation elements and the length 
of line segment QR. Only one set of location parameters can be 
obtained in this case. 

To increase the accuracy of robot location, we would like to 
compute more sets of camera parameters if more rectangular 
shapes can be obtained, provided that the relative positions and 
orientations of available rectangular shapes are known in advance. 
This is possible, using a cube like the one shown in Figure 5. 
Each view of a cube provides three rectangular planes: the left, 
the right, and the top ones. Each plane is perpendicular to the 

Y 

t +TOP PLANE (TPI  

,RIGHT PLANE - 
IRPJ 

, X 

z J 
FIG. 5. A cube with multiple rectangular planes. 
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other two. For instance, the right plane is perpendicular to the 
X-Z and Y-Z planes, and is parallel to the X-Z plane. More sets 
of location parameters can be obtained by the use of multiple 
planes. The weighted average of the solution sets offers higher 
location accuracy. 

EXPERIMENTAL RESULTS AND ERROR ANALYSIS 

Experiments have been performed on a system including a 
PC-EYE (640 by 400) imaging board and a P U L N ~ X  TM-540 CCD 
camera equipped with 16-mm lenses for taking pictures (with 
a solution of 640 by 400 by 4 bits), and a Sun workstation for 
image processing and location computation. The C language 
was used for programming. The object used in the experi- 
ments was a wood cube which includes multiple rectangular 
shapes. 

Image and numerical analysis techniques were used for find- 
ing accurate corner coordinates and line parameters. Rectan- 
gular shapes in object images were detected by edge detection, 
smoothing, and thinning. Sobel edge magnitudes larger than a 
threshold value were detected as edge points. Eight-neighbor- 
averaging is applied to the edge value map in order to smooth 
out noise and to avoid hole creation during thinning. A fast 
thinning algorithm (Chen and Hsu, 1985) is adopted. It can 
reduce possible distortions on crossing points and branch points. 

To detect the rectangular shapes, the Hough transform (Duda 
and Hart, 1972) is applied. The advantage of using the Hough 
transform in line detection is that it can endure noise and gaps 
to a certain limit. Examples of cube images and corresponding 
preprocessing results are shown in Figure 6. To get an accurate 
camera location, calibration for computing uniform scales of x 
and y image coordinates, the image center, and the camera focal 
length must be done first. The calibration procedures were 
adopted from those in Chen and Tsai (1987). Imaging distortion 
correction was not necessary because such distortions were found 
negligible for this type of application (Chen and Tsai, 1987) in 
a CCD camera picture. 

The cube with size 70 mm by 70 mm by 100 mm was imaged 
eight times for testing. The space coordinates of the cube cor- 
ners were determined with a standard deviation of 0.4 mm in 
the X and Y directions and 0.55 mm in the Z direction. The 
camera was used to take the images of the cube from a distance 
of 587 mm. Each pixel size in the image array was measured to 
be of the size of 13.3 pm by 13.4 pm. All the final location 
parameters are included in Table 1, in which the column "TP", 
"RP", "LP", and "PRP" specify the single top, right, left, and 
partial right plane of the cube, respectively; the row "M" spec- 
ifies the reference values of the location parameters which are 
derived from the weighted average location parameters of the 
multiple planes (the top, right, and left planes) of the cube; the 
row "m" specifies the computed mean location parameters; the 
row "v" specifies the difference between the mean and the ref- 
erence; the row "e" specifies the error percentage which is de- 
fined as the ratio of the deviation value of the computed position 
value from the reference value to the reference value; and the 
row "a" specifies the standard deviation of the eight locations 
parameters. The symbols "*" and " $  specify the largest and 
the smallest error percentage, respectively. The average error 
percentage can be computed to be less than 5 percent. This 
shows the feasibility of the proposed approach for mobile robot 
navigation, as discussed in the introduction. 

Computer simulation has additionally been performed to 
analyze the magnitude of the relative errors introduced by the 
uncertainties in the collinearity and the equation coefficients of 
the corner lines which are computed by image and numerical 
analysis techniques. Error analysis was performed 100 times 
with 100 different sets of artificial rectangular images created by 
introducing distinct Gaussian random errors. The standard de- 

FIG. 6. A cube used in the experiments. (a) An image of the 
cube. (b) The image processing result of (a). 

viation values (in the unit of pixel) of the x and the y image 
coordinates of the parameters b and c of the simulated lines are 
0.278, 0.353 and 0.037, 0.267, respectively. These standard de- 
viation values were obtained through 16 observations. The 
analysis results include too many tables to be illustrated here. 
Only the conclusions are stated as follows. 

By changing the distance between the camera and the origin of 
the space coordinate system, it was found that the farther the 
camera is, the larger the standard deviations of the location pa- 
rameters are. 
When the distance of the camera is fixed, the accuracy of the 
orientation or position parameters is found to be in proportional 
to the magnitude of the camera focal length. 
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TABLE 1. THE LOCATION RESUTLS OF THE CUBE IMAGES. THE SYMBOLS "*" AND "$" SPECIFY THE LARGEST AND THE SMALLEST ERROR 
PERCENTAGES, RESPECTIVELY. 

X'. (mm) Yc (mm) z, (mm) e 0 JI ("1 8 (") 
Plane M (256.394) (336.976) (404.058) ( - 35.684) (26.680) (15.752) 

PRP 

CENTIUL PLANE (GI>) 

FIG. 7. Robot location in a corridor. (a) The corridor. (b) A simulated corridor image. 

The accuracy of the orientation or position parameters is found to 
be higher when the side lengths of the rectangular shape are larger. 
To simulate a robot navigating in a comdor like the one shown 
in Figure 7(a), which consists of four partial planes (namely, the 
partial left plane (PLP), the partial right plane (PRP), the partial 
bottom plane (PBP), and the partial top plane (PTP)) and a com- 
plete plane (the central plane(CP)), an artificial image of the cor- 
ridor is created as shown in Figure 7@). The robot location results 
using the artificial images are shown in Table 2. The row "T" 
specifies the weighted average of the location parameters of the 
above five planes. The central plane yields lower location accuracy 
than other planes as can be seen from Table 2 because the central 
plane is the farthest one from the camera. 

The computation time for a single rectangular shape using 
the algebraic formulae of the proposed approach has also been 
estimated. The estimation is based on the use of a Sun work- 
station with a fast floating-point arithmetic accelerator requiring 
4, 7, 13, 36, 30, and 46 ps for addition, multiplication, division, 

square root, sine, and tangent function computation, respec- 
tively. For a total of 63 additions, 72 multiplications, 9 divisions, 
2 square roots, 1 sine function, and 2 tangent functions required 
for computing the formulae for a single rectangular shape, the 
computation time is about 1.07 ms, which is approximately 3 
percent of the picture grabbing time (1130 second). But the 
amounts of image processing time estimated for processing a 
single rectangular shape are 4, 3,8, 14, and 3 seconds for edge 
detection, smoothing, thinning, Hough transformation, and 
corner point computation, respectively. A total of about 32 sec- 
onds is required. This seems too slow. The speed can be im- 
proved using parallel processing techniques in the future. 

CONCLUSIONS AND SUGGESTIONS 
A practical approach to robot location has been proposed in 

this paper. Commonly seen rectangular shapes are taken as the 
control mark for the location purpose. Algebraic formulae for 
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TABLE 2. THE LOCATION OF THE SIMULATED IMAGES OF THE CORRIDOR SCENE SHOWN IN FIGURE 7. THE SYMBOLS "*" AND " $  SPECIFY THE 
~ R G E S T  AND THE SMALLEST ERROR PERCENTAGES, RESPECTIVELY. 

PBP 

PTP 

Xc (mm) Yc (mm) Zc (mm) 
Plane S (283.109) (120.000) (416.721) 

0 ("1 
(-  5.019) 

JI (") 
(4.980) 

8 ("1 
(0.437) 

m 283.325 120.114 416.568 -5.012 5.008 0.434 

PLP v 0.216 0.114 - 0.153 0.007 0.028 - 0.003 
e 0.76% 0.95%* 0.36%* 0.14%* 0.56%' 0.68% 
u 0.1346 0.0480 0.0535 0.029 0.115 0.011 

m 283.276 120.015 416.775 - 5.023 5.001 0.442 
v 0.167 0.015 0.015 -0.004 0.021 0.005 
e 0.58% 0.12%$ 0.12% 0.08% 0.42% 1.14% 
u 0.0997 0.0295 0.0326 0.014 0.087 0.021 

m 283.530 120.049 416.707 -5.022 4.985 0.438 
v 0.421 0.049 - 0.014 - 0.003 0.005 0.001 
e 1.48%' 0.41% 0.03% 0.06% 0.10% 0.22%$ 
u 0.1346 0.2005 0.1024 0.011 0.021 0.004 

m 283.114 119.973 416.731 - 5.013 4.981 0.431 
v 0.005 - 0.027 0.010 0.006 0.001 - 0.006 
e 0.02%$ 0.22% 0.02%$ 0.12% 0.02%$ 1.37%' 
u 0.0062 0.0038 0.0002 0.021 0.005 0.025 
m 283.246 120.024 416.734 -5.019 4.993 0.442 
v 0.137 0.024 0.013 0.000 0.013 0.005 
e 0.48% 0.20% 0.03% 0.01%$ 0.26% 1.14% 
u 0.0017 0.0017 0.0014 0.001 0.053 0.021 
m 283.150 120.012 416.710 - 5.022 4.983 0.437 

T v 0.041 0.012 -0.011 - 0.003 0.004 0.000 
e 0.014% 0.011% 0.003% 0.003% 0.08% 0.10% 
u 0.1070 0.1040 0.0600 0.0197 0.078 0.0204 

location determination can b e  derived easily without lineariza- 
tion. Another advantage of the approach is the ability to  use 
multiple o r  partial rectangular shapes to  compute robot param- 
eters. The location error percentage is  less than 5 percent, which 
shows that the approach is feasible for mobile robot location. 

Using better imaging devices, performing more accurate focal 
length calibrations, and employing subpixel preprocessing tech- 
niques (Mikhail et al., 1984) are possible methods to upgrade robot 
location accuracy. Further research may be directed to  extending 
the location approach to outdoor applications, to  applying the 
proposed approach to mobile robot guidance, to determining ro- 
bot location using planar curves o n  a model object surface, and 
to constructing special purpose hardware for fast location, etc. 
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