
International Journal of Network Security, Vol.10, No.1, PP.1–10, Jan. 2010 1

Security Protection of Software Programs by

Information Sharing and Authentication

Techniques Using Invisible ASCII Control Codes

I-Shi Lee1,3 and Wen-Hsiang Tsai1,2

(Corresponding author: I-Shi Lee)

Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan 300101

Department of Information Communication, Asia University, Taichung, Taiwan 413542

Department of Management Information, Technology and Science Institute of Northern Taiwan, Taipei, Taiwan3

(Email: {gis87809, whtsai}@cis.nctu.edu.tw)

(Received June 19, 2008; revised and accepted July 4, 2008)

Abstract

A new method for software program protection by infor-
mation sharing and authentication techniques using in-
visible ASCII control codes is proposed. A scheme for
sharing a secret source program written in Visual C++
among a group of participants, each holding a camou-
flage program to hide a share, is first proposed for safe
keeping of the secret program. Only when all the shares
hidden in the camouflage programs are collected can the
secret program be recovered. The secret program, after
being exclusive-ORed with all the camouflage programs,
is divided into shares. Each share is encoded next into a
sequence of special ASCII control codes which are invis-
ible when the codes are inserted in the comment of the
Visual C++ program and viewed in the window of the
Microsoft VC++ editor. These invisible codes then are
hidden in the camouflage program, resulting in a stego-
program for a participant to keep. Each stego-program
can still be compiled and executed to perform the orig-
inal function of the camouflage program. A secret pro-
gram recovery scheme is also proposed. To enhance secu-
rity under the assumption that the sharing and recovery
algorithms are known to the public, three security mea-
sures via the use of a secret random key are also proposed,
which not only can prevent the secret program from be-
ing recovered illegally without providing the secret key,
but also can authenticate the stego-program provided by
each participant, during the recovery process, by checking
whether the share or the camouflage program content in
the stego-program have been tampered with incidentally
or intentionally. Experimental results show the feasibility
of the proposed method.

Keywords: Authentication, camouflage program, informa-
tion sharing, invisible ASCII control codes, program shar-
ing, secret program, security protection, software program,
source program, stego-program

1 Introduction

Software programs written in various computer languages
are important resources of intellectual properties. They
need protection from being tampered with. One tech-
nique of information protection is information sharing.
When applied to software programs, this technique means
that a secret program is, via a certain sharing scheme,
transformed into several copies, called shares. Each share
is individually different from the original secret program
in appearance, content, and/or function. The secret pro-
gram cannot be recovered unless the shares are collected
and manipulated with a reverse sharing scheme. Such a
technique of program sharing may be regarded as one way
of secret keeping, which is necessary in many software-
developing organizations.

The concept of secret sharing was proposed first by
Shamir [7]. By a so-called (k, n)-threshold scheme, the
idea is to encode a secret data item into n shares for n

participants to keep, and any k or more of the shares can
be collected to recover the original secret, but any (k−1)
or fewer of them will gain no information about it. A sim-
ilar scheme, called visual cryptography, was proposed by
Naor and Shamir [6] for sharing an image. The scheme
provides an easy and fast decryption process consisting
of xeroxing the shares onto transparencies and stacking
them to reveal the original image for visual inspection.
This technique has been investigated further in [1, 2, 5],
though it is suitable for binary images only. Verheul and
van Tilborg [8] extended the visual cryptography tech-
nique for processing images with small numbers of gray
levels or colors. Lin and Tsai [4] proposed a digital ver-
sion of the visual cryptography scheme for color images
with no limit on the number of colors. The n shares ob-
tained from a color image are hidden in n camouflage
images which may be selected to have well-known con-
tents, like famous characters or paintings, to create addi-

International Journal of Network Security, Vol.10, No.1, PP.1–10, Jan. 2010 2

Table 1: ASCII control codes and descriptions

Dec Hex Char Description Dec Hex Char Description

0 0 NUL null character 16 10 DLE data link escape
1 1 SOH start of header 17 11 DC1 device control 1
2 2 STX start of text 18 12 DC2 device control 2
3 3 ETX end of text 19 13 DC3 device control 3
4 4 EOT end of transmission 20 14 DC4 device control 4
5 5 ENQ enquiry 21 15 NAK negative acknowledge
6 6 ACK acknowledge 22 16 SYN synchronize
7 7 BEL bell (ring) 23 17 ETB end transmission block
8 8 BS backspace 24 18 CAN cancel
9 9 HT horizontal tab 25 19 EM end of medium
10 A LF line feed 26 1A SUB substitute
11 B VT vertical tab 27 1B ESC escape
12 C FF form feed 28 1C FS file separator
13 D CR carriage return 29 1D GS group separator
14 E SO shift out 30 1E RS record separator
15 F SI shift in 31 1F US unit separator

tional steganographic effects for security protection of the
shares.

Sharing of software programs in source form has not
been studied yet. In this paper, we propose a method for
this purpose, which is based on the use of some specific
ASCII control codes invisible in certain software editors.
Invisibility of such ASCII control codes is a finding of this
study through a systematic investigation of the visibility
of all the ASCII codes in the window of the Visual C++

editor of Microsoft Visual Studio .NET 2003, Service Pack
1 (abbreviated as the VC++ editor in the sequel). By the
use of the logic operation of “exclusive-OR,” each source
program to be shared is transformed into a number of
shares, say N ones, which are then hidden respectively
into N pre-selected camouflage source programs, result-
ing in N stego-programs. Each stego-program still can be
compiled and executed to perform the function of the orig-
inal camouflage program, and each camouflage program
may be selected arbitrarily, thus enhancing the stegano-
graphic effect.

To improve the security protection effect further, we
propose additionally an authentication scheme for verify-
ing the correctness of the contents of the stego-programs
brought by the participants to join the process of secret
program recovery. This is advantageous to prevent any
of the participants from accidental or intentional provi-
sion of a false or destructed stego-program. The verified
contents include the share data and the camouflage pro-
gram contained in each stego-program. Any “bad” share
or camouflage program will be identified and picked out
in the secret program recovery process. This double ca-
pability of authentication is based on the use of certain
authentication signals embedded in the stego-programs.
Each signal is generated from the contents of the share
data and the camouflage program content. A third mea-

sure proposed to enhance security protection in this study
is to prohibit recovery of the secret program with illegally
collected stego-programs. All of these protection capabil-
ities are carried out with the provision of a secret random
key through the use of certain mathematical operations.

In the remainder of this paper, we describe in Section
2 the finding of the invisible ASCII codes and a scheme of
binary data encoding into such codes for use in generat-
ing stego-programs. In Section 3, an algorithm describing
the proposed source program sharing and authentication
signal generation schemes is presented, and in Section 4,
an algorithm for stego-program authentication and secret
source program recovery is described. And finally in Sec-
tion 5, some experimental results are presented, followed
by a conclusion in Section 6.

2 Invisible ASCII Control Codes

for Binary Data Encoding

ASCII codes, usually expressed as hexadecimal numbers,
are used very commonly to represent texts for informa-
tion interchanges on computers. Some of the ASCII codes
of 00 through 1F were used as control codes to control
computer peripheral devices like printers, tape drivers,
teletypes, etc. (see Table 1). But now they are rarely
used for their original purposes because of the rapid devel-
opment of new peripheral hardware technologies, except
those codes for text display controls, such as 0A and 08
with the meanings of “line feed” and “backspace,” respec-
tively. It is found in this study that some of the ASCII
control codes, when displayed by certain text editors un-
der some OS environments, are invisible. Such ASCII
codes may be utilized for various secret data hiding pur-
poses [3].

International Journal of Network Security, Vol.10, No.1, PP.1–10, Jan. 2010 3

Table 2: Invisible character coding table

Bit pair Corresponding invisible ASCII code
00 1C
01 1D
10 1E
11 1F

The finding of such invisible codes resulted from a sys-
tematic test conducted in this study, in which all the
ASCII control codes in the environment of the VC++ edi-
tor of Microsoft Visual Studio .NET 2003, Service Pack 1
were inspected one by one. Four of such codes so found are
1C, 1D, 1E, and 1F, which are invisible in the comments or
character strings of VC++ programs (see Table 2). Such
codes will simply be said invisible in subsequent discus-
sions.

As an illustrative example, in Figure 1 we show a sim-
ple source program in Figure 1(a) with a short comment
“test a file.“ In the comment, we inserted consecutively
the four codes 1C, 1D, 1E, and 1F between the letters
“s” and “t” in the word “test.” Their existences can be
checked with the text editor UltraEdit 32, as can be seen
from Figure 1(b). But the four codes are invisible in the
VC++ editor, as can be seen from Figure 1(a). Such in-
visibility usually will arouse no suspicion from common
program developers and so achieve a steganographic ef-
fect, since, unless necessary, a programmer will always
use the VC++ editor for program inspection and devel-
opment. We utilize such an “invisibility phenomenon”
for hiding both share data and authentication signals in
source programs in this study, as described in the follow-
ing.

For the purpose of program sharing among several par-
ticipants, after a given secret source program is trans-
formed into shares, each share is transformed further into
a string of the above-mentioned invisible ASCII control
codes, which is then embedded into a corresponding cam-
ouflage source program held by a participant. And for the
purpose of security protection, authentication signals, af-
ter generated, are transformed as well into invisible ASCII
control codes before embedded. These two data trans-
formations are based on a binary-to-ASCII mapping pro-
posed in this study, which is described as a table as shown
in Table 2, called invisible character coding table by re-
garding each ASCII code as a character.

Specifically, after the share and the authentication sig-
nal data are transformed into binary strings, the bit pairs
00, 01, 10, and 11 in the strings are encoded into the
hexadecimal ASCII control codes 1C, 1D, 1E, and 1F, re-
spectively. To promote security, a secret random key is
also used in generating the authentication signal and in
protecting the generated shares. The details are described
in the next section.

3 Proposed Program Sharing

Scheme

In the sequel, by a program we always mean a source
program. A sketch of the proposed process for sharing a
secret program is described as follows, in which the used
symbols are in Table 3:

• Creating shares: Apply exclusive-OR operations to
the contents of the secret program, all the camou-
flage programs, and the secret key Y , and divide the
resulting string into N segments as shares, with the
one for the k-th participant to keep being Ek.

• Generating authentication signals: For each camou-
flage program Pk, use the random key value Y to
compute two modulo-Y values from the binary val-
ues of the contents of Pk and Ek, respectively; and
concatenate them as the authentication signal Ak for
Pk.

• Encoding and hiding shares and authentication sig-
nals: Encode Ek and Ak respectively into invisible
ASCII control codes by the invisible character cod-
ing table (Table 2) and hide them evenly at the right
sides of all the characters of the comments of cam-
ouflage program Pk, resulting in a stego-program for
the k-th participant to keep.

A detailed algorithm for the above scheme is given
in the following. Given two ASCII characters C and
D, each with 8 bits, denoted as C = c0c1 . . . c7 and
D = d0d1 . . . d7, we define the result of “exclusive-
ORing” the two characters as E = C ⊕ D = e0e1 . . . e7

with ei = ci ⊕ di for i = 0, 1, . . . , 7, where ⊕ denotes the
bitwise exclusive-OR operation. Note that E has eight
bits, too. And given two equal-lengthed character strings
S and T , we define the result of exclusive-ORing them,
U = S ⊕ T , as that resulting from exclusive-ORing the
corresponding characters in the two strings.

Algorithm 1: Program sharing and authentica-

tion.

Input. (1) a secret program Ps of length ls; (2) N

pre-selected camouflage programs P1, P2, . . . , PN of
lengths l1, l2, . . . , lN , respectively; and (3) a secret
key Y which is a random binary number with length
lY (in the unit of bit).

Output. N stego-programs, P ′

1, P
′

2, . . . , P
′

N
, in each of

which a share and an authentication signal are hid-
den.

Steps. Stage 1. Creating shares from the secret pro-
gram.

1) Create N + 2 character strings, all of the
length ls of Ps, from the secret program and
the camouflage programs in the following
way.

International Journal of Network Security, Vol.10, No.1, PP.1–10, Jan. 2010 4

(a) A source program with four invisible ASCII control codes inserted in the comment “test a file.”

(b) The program seen in the window of the text editor UltraEdit with the four ASCII control codes visible between
the letters “s” and “t” of the word “test” in the comment.

Figure 1: Illustration of invisible ASCII control codes in a comment of a source program.

International Journal of Network Security, Vol.10, No.1, PP.1–10, Jan. 2010 5

Table 3: Symbol notation

N the number of participants in the secret program sharing activity;
Y the input secret random key;

Pk a camouflage program for the k − th participant to keep where k = 1, 2, . . . , N ;
Ek a share which is embedded in Pk;
Ps a secret program;
Ak the generated authentication signal for Pk;
P ′

k
a stego-program which is the result of embedding Ek in Pk;

Ss the character string of Ps;
S1, S2, . . . , SN the character string of P1, P2, . . . , PN respectively;

ls the length of Ss (in the unit of ASCII character);
l1, l2, . . . , lN the length of S1, S2, . . . , SN respectively (in the unit of ASCII character);

lY the length of Y (in the unit of bit).

a. Scan the characters (including letters,
spaces, and ASCII codes) in the secret
program Ps line by line, and concate-
nate them into a character string Ss.

b. Do the same to each camouflage pro-
gram Pk, k = 1, 2, . . . , N , to create a
character string Sk of length ls (not lk)
either by discarding the extra charac-
ters in Pk if lk > ls or by repeating
the characters of Pk at the end of Sk if
lk < ls, when lk 6= ls.

c. Repeat the key Y and concatenate them
until the length of the expanded key Y ′

in the unit of character (8 bits for a
character) is equal to ls, the length of
Ss.

2) Compute the new string E = Ss⊕S1⊕S2⊕
. . . ⊕ SN ⊕ Y ′.

3) Divide E into N equal length segments
E1, E2, . . . , EN as shares.

Stage 2. Generating authentication signals from
the contents of the shares and the camouflage
programs.

1) Generate an authentication signal Ak

for each camouflage program Pk, k =
1, 2, . . . , N , using the data of Sk and Ek in
the following way.

a. Regarding Sk as a sequence of 8-bit in-
tegers with each character in Sk being
composed of 8 bits, compute the sum of
the integers, take the modulo-Y value
of the sum as ASk

, transform ASk
into

a binary number, and adjust its length
to be lY , the length of the key Y , by
padding leading 0’s if necessary.

b. Do the same to Ek to obtain a binary
number AEk

with length lY , too.

c. Concatenate ASk
and AEk

to form a
new binary number Ak with length 2lY

as the authentication signal of Pk.

Stage 3. Encoding and hiding the share data and
authentication signals.

1) For each camouflage program Pk, k =
1, 2, . . . , N , perform the following tasks.

a. Concatenate the share Ek and the au-
thentication signal Ak as a binary string
Fk.

b. Encode every bit pair of Fk into an in-
visible ASCII control code according to
the invisible coding table (Table 2), re-
sulting in a code string F ′

k
.

c. Count the number m of characters in
all the comments of Pk.

d. Divide F ′

k
evenly into m segments, and

hide them in order into Pk, with each
segment hidden to the right of a char-
acter in the comments of Pk.

2) Take the final camouflage programs P ′

1, P ′

2,
· · · , P ′

N
as the output stego-programs.

In Step 3 of the above algorithm, we assume that the
number of characters in the secret program is a multiple
of N, the number of participants, for simplicity of algo-
rithm description; if not, it can be made so by appending
a sufficient number of blank spaces at the end of the orig-
inal secret program. In Steps 1.a and 1.b of Stage 2, the
purpose we compute the signals ASk

and AEk
from the

contents of the camouflage program Pk and the share Ek,
respectively, for use in generating the authentication sig-
nal Ak is to prevent any participant from intentionally or
accidentally changing the contents of the original camou-
flage program or the hidden share; illegal tampering with
them will be found out in the process of secret program
recovery described in the next section. It is also noted
that each stego-program yielded by the algorithm still can
be compiled and executed to perform the function of the
original camouflage program.

International Journal of Network Security, Vol.10, No.1, PP.1–10, Jan. 2010 6

4 Secret Program Recovery

Scheme

A sketch of the proposed process for recovering the se-
cret source program is described as follows, for which it
is assumed that the stego-program brought to the recov-
ery activity by participant k is denoted as P ′

k
. Also, the

original key with value Y used in Algorithm 1 is provided.

1) Extracting hidden shares and authentication signals:
Scan the comments of each stego-program P ′

k
to col-

lect the invisible ASCII control codes hidden in them
and concatenate the codes as a character string; de-
code the string into a binary one by the invisible char-
acter coding table (Table 2); and divide the string
into two parts, the share data Ek and the authen-
tication signal Ak. Also, remove the hidden codes
from P ′

k
to get the original camouflage program Pk.

2) Authenticating the shares and the camouflage pro-
grams: Use the authentication signal Ak as well as
the key Y to check the correctness of the contents
of the extracted share data Ek and the camouflage
program Pk by decomposing Ak into two signals and
matching them with the modulo-Y values of the bi-
nary values of Pk and Ek, respectively. Issue warning
messages if either or both authentications fail.

3) Recovering the secret program: Apply exclusive-OR
operations to the extracted share data E1 through
EN , the same secret key Y as that used in Algorithm
1, and the camouflage programs P1 through PN to
reconstruct the secret program Ps.

A more detailed secret program recovery process is
described as an algorithm in the following.

Algorithm 2. Authentication of the stego-

programs and recovery of the secret program.

Input. N stego-programs P ′

1, P ′

2, · · · , P ′

N
provided by

the N participants and the secret key Y with length
lY used in secret program sharing (Algorithm 1).

Output. the secret program Ps hidden in the N stego-
programs if the shares and the camouflage programs
in the stego-programs are authenticated to be cor-
rect.

Steps. Stage 1. Extracting hidden shares and authen-
tication signals.

1) For each stego-program P ′

k
, k = 1, 2, . . . ,

N , perform the following tasks to get the
contents of the camouflage programs and
the authentication signals.

a. Scan the comments in P ′

k
line by line,

and collect the invisible ASCII codes lo-
cated to the right of the comment char-
acters as a character string F ′

k
.

b. Remove all the collected characters of
F ′

k
from P ′

k
, resulting in a program Pk

with length lk, which presumably is the
original camouflage program.

c. Decode the characters in F ′

k
using the

invisible character coding table (Ta-
ble 2) into a sequence of bit pairs, de-
noted as Fk.

d. Regarding Fk as a binary string, divide
it into two segments Ek and Ak with
the length of the latter being fixed to
be 2lY , which presumably are the hid-
den share and the authentication signal,
respectively.

e. Divide Ak into two equal-lengthed bi-
nary numbers ASk

and AEk
.

Stage 2. Authenticating share data and camouflage
programs.

1) Concatenate all Ek, k =1, 2, . . . , N , in or-
der, resulting in a string E with length lE
which presumably equals ls, the length of
the secret program to be recovered.

2) For each k =1, 2, . . . , N , perform the fol-
lowing authentication operations.

a. Create a character string Sk of length
lE from the characters in Pk either by
discarding extra characters in Pk if lk >

lE or by repeating the characters of Pk

at the end of Sk if lk < lE , when lk 6=
lE .

b. Regarding Sk as a sequence of 8-bit in-
tegers with each character in Sk com-
posed of 8 bits, compute the sum of
the integers, take the modulo-Y value
of the sum as A′

Sk
, transform A′

Sk
into

a binary number, and adjust its length
to be lY , the length of the key Y , by
padding leading 0’s if necessary.

c. Do the same to Ek, resulting in a binary
number A′

Ek
.

d. Compare A′

Sk
with the previously ex-

tracted ASk
; if mismatching, issue the

message “the camouflage program is
not genuine,” and stop the algorithm.

e. Compare A′

Ek
with the previously ex-

tracted AEk
; if mismatching, issue the

message “the share data have been
changed,” and stop the algorithm.

Stage 3. Recovering the secret program.

1) Repeat the key Y and concatenate them un-
til the length of the expanded key Y ′ in the
unit of character is equal to ls, the length
of Ss,

2) Compute Ss = E⊕S1⊕S2⊕ . . .⊕SN ⊕Y ′,
and regard it as a character string.

International Journal of Network Security, Vol.10, No.1, PP.1–10, Jan. 2010 7

3) Use the ASCII codes 0D and 0A (“carriage
return” and “line feed”) in Ss as separators,
break Ss into program lines to reconstruct
the original secret program Ps as output.

Note that in Step 2 of Stage 3 above, we conduct the
exclusive-OR operations of E ⊕ S1 ⊕ S2 ⊕ . . .⊕ SN ⊕ Y ′.
This will indeed result in the desired Ss because E was
computed as E = Ss ⊕ S1 ⊕ S2 ⊕ . . .⊕ SN ⊕ Y ′ in Step 2
of Algorithm 1, and

E ⊕ S1 ⊕ S2 ⊕ . . . ⊕ SN ⊕ Y ′

= (Ss ⊕ S1 ⊕ S2 ⊕ . . . ⊕ SN ⊕ Y ′) ⊕ S1 ⊕ S2 ⊕

· · · ⊕ SN ⊕ Y ′

= Ss ⊕ (S1 ⊕ S1) · · · (SN ⊕ SN)(Y ′ ⊕ Y ′)

= Ss ⊕ 0⊕ 0⊕ . . . ⊕ 0

= Ss,

by the commutative and associative laws of the exclusive-
OR operation and the facts that X⊕X = 0 and X⊕0 = X

for any bit X , where the bold character 0 is used to rep-
resent 8 consecutive bits of zero, i.e., 0 = 00000000. In
the previous discussions, we assume that the proposed
algorithms of secret sharing and recovery (Algorithms 1
and 2) are known to the public, and that the key Y is
held by a supervisor other than any of the N partici-
pants. The key is provided by the supervisor as an in-
put to the secret program sharing and recovery processes
described by Algorithms 1 and 2; it is not available to
any participant. Under these assumptions and by Algo-
rithm 2 above, if any participant changes the content of
the camouflage program or that of the share contained in
the stego-program which he/she holds before the secret
program recovery process, such illegal tampering will be
found out and warnings issued during the recovery pro-
cess.

5 Experimental Results

In one of our experiments, we applied the proposed
schemes described previously to share a secret program
among three participants. The main part of the secret
program seen in the window of the Microsoft VC++ ed-
itor is shown in Figure 2(a), which has the function of
generating a secret key from an input seed. And part of
one of the three camouflage programs is shown in Fig-
ure 2(b). After hiding the shares and the authentication
signals in the comments of each camouflage program, the
stego-program resulting from Figure 2(b) appears to be
the upper part of Figure 2(c) which is not different from
that of Figure 2(b). The real content of the stego-program
seen in the window of the UltraEdit 32 editor is shown in
the lower part of Figure 2(c) which includes the ASCII
codes representing the program on the left and the ap-
pearance of the codes as characters on the right. The
recovered secret program is shown in Figure 2(d), which
is identical to that shown in Figure 2(a).

We also tested the case of recovery with one of the
stego-images (the second one) being damaged, as shown
in Figure 3(a). The proposed scheme issued a warning
message, as shown in Figure 3(b).

6 Conclusion

For the purpose of protecting software programs, new
techniques for sharing secret source programs and au-
thentication of resulting stego-programs using four special
ASCII control codes invisible in the window of the Mi-
crosoft VC++ editor have been proposed. The proposed
sharing scheme divides the result of exclusive-ORing the
contents of the secret program and a group of camou-
flage programs into shares, each of which is then encoded
into a sequence of invisible ASCII control codes before
being embedded into the comments of the corresponding
camouflage program. The resulting stego-programs are
kept by the participants of the sharing process. The orig-
inal function of each camouflage program is not destroyed
in the corresponding stego-program. The sharing of the
secret program and the invisibility of the special ASCII
codes as share data provides two-fold security protection
of the secret program.

In the secret program recovery process, the reversibil-
ity property of the exclusive-OR operation is adopted to
recover the secret program using the share data extracted
from the stego-programs. To enhance security of keeping
the camouflage programs, a secret random key is adopted
to verify, during the recovery process, possible inciden-
tal or intentional tampering with the hidden share and
the camouflage program content in each stego-program.
The key is also utilized to prevent unauthorized recov-
ery of the secret program by illegal collection of all the
stego-programs and unauthorized execution of the pro-
posed algorithms.

Experimental results have shown the feasibility of the
proposed method. Future research may be directed to
applying the invisible ASCII control codes to other appli-
cations, such as watermarking of software programs for
copyright protection, secret hiding in software programs
for covert communication, authentication of software pro-
gram correctness, and so on.

Acknowledgements

This work was supported partially by the NSC project
Advanced Technologies and Applications for Next Gener-
ation Information Networks (II) - Subproject 5: Network
Security, No. 96-2752-E-009-006-PAE and partially by
the NSC project No. 96-2422-H-009-001.

References

[1] G. Ateniese, C. Blundo, A. De Santis, and D. R. Stin-
son, “Visual cryptography for general access struc-

International Journal of Network Security, Vol.10, No.1, PP.1–10, Jan. 2010 8

(a) Main part of the secret source program seen in the window of
the Microsoft VC++ editor.

(b) Part of one camouflage program seen in the window of Microsoft
Visual C++ editor.

(c) The stego-program resulting from (b) seen in the window of Microsoft Visual C++ editor (left part) and UltraEditor 32 editor
(right part).

(d) Recovered secret program seen in the window of Microsoft Vi-
sual C++ editor.

Figure 2: Experimental results of sharing a secret program

International Journal of Network Security, Vol.10, No.1, PP.1–10, Jan. 2010 9

(a) Destructed stego-program of Figure 2(b) seen in the window of Microsoft Visual C++ editor
(the changed characters are highlighted).

(b) A message showing the content of the original camouflage program has been changed.

Figure 3: An experimental result of authenticating a destructed stego-program.

International Journal of Network Security, Vol.10, No.1, PP.1–10, Jan. 2010 10

tures,” Information and Computation, vol. 129, pp.
86-106, 1996.

[2] C. Blundo, and A. De Santis, “Visual cryptography
schemes with perfect reconstruction of black pixels,”
Computers & Graphics, vol. 22, no. 4, pp. 449-455,
1998.

[3] I. S. Lee, and W. H. Tsai, “Data hiding in emails
and applications by unused ASCII control codes,”
Proceedings of 2007 National Computer Symposium,
vol. 4, pp. 414-422, Taichung, Taiwan, Dec. 2007.

[4] C. C. Lin, and W. H. Tsai, “Secret image sharing
with steganography and authentication,” Journal of
Systems & Software, vol. 73, no. 3, pp. 405-414, 2004.

[5] M. Naor, and B. Pinkas, “Visual authentication and
identification,” Advances in Cryptology, Crypto’ 97,
LNCS 1294, pp. 322-336, 1997.

[6] M. Naor, and A. Shamir, “Visual cryptography,” Ad-
vances in Cryptology, Eurocrypt’ 94, LNCS 950, pp.
1-12, 1995.

[7] A. Shamir, “How to share a secret,” Communications
of the Association for Computing Machinery, vol. 22,
no. 11, pp. 612-613, 1979.

[8] E. R. Verheul, and H. C. A. van Tilborg, “Construc-
tion and properties of k out of n visual secret sharing
schemes,” Designs, Codes, and Cryptography, vol. 11,
pp. 179-196, 1997.

I-Shi Lee was born in Taipei, Taiwan, R.O.C., in 1961.
He received the B. S. degree in electronic engineering from
National Taiwan University of Science and Technology,
Taipei, Taiwan, Republic of China in 1987, the M. S. de-
gree in the Department of Computer Science and Informa-
tion Science at National Chiao Tung University in 1989,
and the Ph.D. degree in the Institute of Computer Sci-
ence and Engineering, College of Computer Science from
National Chiao Tung University in 2008.

In 1992, he joined the Department of Management
Information at Northern Taiwan Institute of Science and
Technology and acted as a lecturer from 1992 to now.
His recent research interests include pattern recognition,
watermarking, and image hiding.

Wen-Hsiang Tsai was born in Tainan, Taiwan on May
10, 1951. He received the B. S. degree in electrical engi-
neering from National Taiwan University, Taipei, Taiwan
in 1973, the M. S. degree in electrical engineering (with
major in computer science) from Brown University, Prov-
idence, Rhode Island, U. S. A. in 1977, and the Ph. D.
degree in electrical engineering (with major in computer
engineering) from Purdue university, West Lafayette, In-
diana, U. S. A. in 1979.

Dr. Tsai joined the faculty of National Chiao Tung
University (NCTU), Hsinchu, Taiwan in November 1979.
He is currently an NCTU Chair Professor in the Depart-
ment of Computer Science and Information Engineering.
From August 2004, he is also the President of Asia Uni-
versity, Taichung, Taiwan. Professor Tsai has been an

Associate Professor of the Department of Computer En-
gineering (now Department of Computer Science) and the
Acting Director of the Institute of Computer Engineer-
ing. In 1984, he joined the Department of Computer and
Information Science (now also Department of Computer
Science), and acted as the Department Head from 1984
through 1988. He has also been the Associate Director
of the Microelectronics and Information System Research
Center from 1984 through 1987, the Dean of General Af-
fairs from 1995 to 1996, the Dean of Academic Affairs
from 1999 to 2001, the Acting Dean of the College of Hu-
manities and Social Science in 1999, and the Vice Presi-
dent of the University from 2001 to 2004.

Outside the campus, Professor Tsai has served as a
Consultant to many major research institutions in Tai-
wan, including the Chun-Shan Institute of Science and
Technology, the Industrial Technology Research Institute,
and the Information Industry Institute. He has acted as
the Coordinator of Computer Science in the Engineering
Division of the National Science Council, and a member of
the Counselor Committee of the Institute of Information
Science of Academia Sinica in Taipei. He has been the
Editor of several academic journals, including Computer
Quarterly (now Journal of Computers), the Proceedings
of National Science Council, the Journal of the Chinese
Engineers, the International Journal of Pattern Recogni-
tion and Artificial Intelligence, the Journal of Informa-
tion Science and Engineering, and Pattern Recognition.
He was the Editor-in-Chief of the Journal of Information
Science and Engineering from 1998 through 2000.

Professor Tsai’s major research interests include image
processing, computer vision, virtual reality, and informa-
tion copyright and security protection. So far he has pub-
lished 320 academic papers, including 121 journal papers
and 199 conference papers. He is also granted six R. O. C.
and U. S. A. patents. Dr. Tsai has supervised the thesis
studies of 30 Ph. D. students and 138 master students.
Dr. Tsai is a senior member of the IEEE, a member of the
Chinese Image Processing and Pattern Recognition Soci-
ety, and the International Chinese Computer Society. He
served as the Chairman of the Chinese Image Processing
and Pattern Recognition Society at Taiwan from 1999 to
2000. He is now the Chair of the Computer Society of
IEEE Taipei Section.

