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 

Abstract—A new type of signal-rich-art image for applications 
of data transfer, called signal-rich-art code image, is proposed. 
The created code image is visually similar to a pre-selected target 
image and with a given message embedded, achieving the effect of 
the so-called signal rich art. With its function similar to that of a 
QR code, such a type of image is produced by encoding the 
message into a binary bit stream, representing the bits by binary 
code patterns of 2×2 blocks, and injecting the patterns into the 
target image by a novel image-block luminance modulation 
scheme. Each signal-rich-art code image may be printed or 
displayed, and then re-captured by a mobile-device camera. 
Skillful techniques for counting the number of pattern blocks and 
recognition of code patterns are also proposed for message 
extraction from the re-captured version of the signal-rich-art code 
image. Good experimental results and a comparison of them with 
those of an existing alternative method show the feasibility and 
superiority of the proposed new data transfer method. 

Index Terms—Signal rich art, data transfer, barcode, QR code, 
signal-rich-art code image, code pattern. 

I. INTRODUCTION 

ignal rich art, as defined by Davis [1], is the art that 
communicates its identity to context-aware devices, where 
“art” includes all forms of creative communication. Many 

types of identities existing in the human environment can be 
utilized as signal-rich-art carriers, such as digital media, 
pictorial material, artwork, etc. For the purpose of depicting or 
recording human visual perception results, the image/video 
identity has more artistic effects than other types of identities.  
In this paper, we define signal-rich-art image as the type of 
signal rich art with its identity being an image which can not 
only be any digital file but also be any real object, such as 
posters, labels, illustrations, etc. Signal-rich-art images can 
help people to conduct ubiquitous computing [2]; they can 
exchange information via such images existing in the 
environment everywhere and anytime. For example, one can 
use the camera on a smart phone to capture an image of an 
advisement on a magazine or a painting displayed in an  
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exhibition to obtain the detailed information related to the 
advertisement or the painting. 

Two common techniques for signal-rich-art communication 
are the use of barcodes and data hiding [1]. Barcodes, which are 
usually attached to objects for various identification purposes, 
represent machine-readable data by patterns of lines, rectangles, 
dots, etc. For example, Fig. 1 shows some commonly-used 
barcodes, including Code 39 [19], PDF417 [20], QR code [21], 
and data matrix code [22]. The data encoded into such barcodes 
can be extracted using barcode reading techniques [3]-[6]. For 
instance, Ouaviani et al. [3] proposed an image processing 
framework for 2D barcode reading, which includes four main 
phases: region-of-interest (ROI) detection, code localization, 
code segmentation, and decoding. Zhang et al. [4] proposed a 
real-time barcode localization method by a two-stage process, 
which segments first the barcode shape in a low-resolution 
image by region-based analysis, and then extracts the barcode 
meaning from the image of the original resolution. Yang et al. 
[5] proposed another accurate barcode localization method by 
using some prior knowledge of the barcode shape to detect 
corners initially, followed by more accurate corner localization. 
Yang et al. [6] proposed an adaptive thresholding technique for 
binarizing barcode images by constructing a dynamic search 
window centered at the edge pixel nearest to each pixel to be 
binarized. 
 

(a) (b)

(c) (d)
Fig. 1.  Examples of commonly-used barcodes. (a) Code 39. (b) PDF 417. (c) 
QR code. (d) Data matrix code. 

 
In addition to the use of barcodes, data hiding is an 

alternative signal-rich-art communication technique that 
embeds data into cover media for applications like covert 
communication, copyright protection, authentication, etc. With 
the advance of computer technology, many data hiding 
methods have been applied on digital cover media, such as 
images, videos, audios, text documents, etc. [7]-[11]. However, 
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these data hiding methods transfer data via digital files only. 
Furthermore, they are mostly insufficient to enable the 
signal-rich-art effect when one wants to interact with the 
surrounding environment. Such methods may be called 
“digital” data hiding. 

Another type of data hiding, which may be called 
“hardcopy” data hiding, can embed information into the 
so-called image barcodes using halftone techniques [12]-[14]. 
These barcodes have the visual appearances of other images 
and the encoded information can be decoded from their 
hardcopy versions acquired by scanners. That is, the encoded 
information can survive “print-and-scan attacks.” For 
example, Bulan et al. [12] proposed a framework for data 
hiding in images printed with clustered dot halftones via a 
pattern orientation modulation technique. Bulan and Sharma 
[13] proposed another pattern orientation modulation technique 
that utilizes three printing channels and modulates the 
orientations of elliptical-shaped dots for data encoding. 
Damera-Venkata et al. [14] proposed a block-error diffusion 
method that embeds information into hardcopy images by using 
dot-shape modulation. 

However, if one uses a mobile device to capture the image of 
a hardcopy of the above-mentioned image barcodes, the 
information might not be decoded successfully since the 
captured image will suffer from more types of distortions than 
those acquired by scanning, such as perspective deformation, 
noise addition, blurring, uneven lighting, etc. Recently, Lee and 
Tsai [15] proposed a new type of signal-rich-art image, which 
is called signal-rich-art character image here. To the best of 
our knowledge, this is the first work that can solve the 
above-mentioned issues. Specifically, a signal-rich-art 
character image is created from a target image used as a carrier 
of a given message by fragmenting the shapes of the composing 
characters of the message and “injecting” the resulting 
character fragments randomly into the target image by a block 
luminance modulation scheme. Each signal-rich-art character 
image so created has the visual appearance of the 
corresponding pre-selected target image while conventional 
barcodes do not. Also, the data embedded by Lee and Tsai’s 
method [15] can be extracted from a “camera-captured” version 
of the created signal-rich-art character image while those 
embedded by the use of the aforementioned hardcopy data 
hiding methods using image barcodes cannot. The function 
may be implemented on a mobile device.  

However, as shown in Fig. 2(b), each signal-rich-art 
character image generated by Lee and Tsai [15] contains many 
small character fragments with undesired visual effects. Also, it 
requires an optical character recognition scheme to extract the 
embedded message, which is usually time-consuming. Also, 
the size of each block cannot be too small in order to keep the 
resolution in the captured image sufficiently good for correct 
extraction of the character shapes in the image. To solve these 
problems, another new type of signal-rich-art image, called 
signal-rich-art code image, is proposed in this study. 
Specifically, instead of transforming the given message to be 
embedded into a character message image, the message is 

converted, in the sense of data coding, into a bit stream of 
codes first, which is then represented by binary pattern blocks, 
each being composed of 2×2 unit blocks. A block luminance 
modulation scheme is then applied to each pattern block to 
yield a signal-rich-art code image with the visual appearance of 
a pre-selected target image. An example of the resulting 
signal-rich-art code image is shown in Fig. 2(c), which is more 
pleasing than the signal-rich-art character image shown in Fig. 
2(b) generated by Lee and Tsai [15]. A more detailed 
comparison with Lee and Tsai [15] by experiments reveals the 
following additional merits of the proposed method: (1) the 
yielded signal-rich-art code image has a much better visual 
appearance of the target image; (2) the accuracy rate of 
message extraction from the generated code image is higher; (3) 
the message extraction speed is higher. 

In the remainder of this paper, the idea of the proposed 
method is described in Section 2. The details for signal-rich-art 
code image generation and message extraction are given in 
Sections 3 and 4, respectively. In Section 5, experimental 
results are presented to show the feasibility of the proposed 
method, followed by conclusions in Section 6. 

 

 
(a) (b) (c) 

Fig. 2.  Examples of signal-rich-art images yielded by Lee and Tsai [15] and 
proposed method. (a) Target image. (b) Signal-rich-art character image created 
by [15]. (c) Signal-rich-art code image created by proposed method. 

II. IDEA OF PROPOSED METHOD 

The proposed method includes two main phases of works as 
illustrated in Fig. 3: 1) signal-rich-art code image generation; 
and 2) message extraction. In the first phase, given a target 
image IT and a message M, a signal-rich-art code image IC is 
created by four major steps: 
Step 1.1 － transform message M into a bit stream B of codes; 
Step 1.2 － transform every three bits of B into four bits and 

represent them by a binary pattern block, resulting in a 
pattern image IP; 

Step 1.3 －  modulate each pattern block Ti of IP by two 
representative values calculated from the Y-channel 
values of the corresponding block Bi of target image IT, 
yielding a modulated pattern image IP'; 

Step 1.4 － replace the Y-channel of target image IT with IP' to 
get a signal-rich-art code image IC as the output. 

In the second phase, given a camera-captured version IC' of a 
paper or display copy of the signal-rich-art code image IC, a 
message M', which is supposed to be identical to M, is extracted 
from IC' by four major steps: 
Step 2.1 － localize the region IC'' of the original part of the 

signal-rich-art code image IC in IC'; 
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Fig. 3.  Illustration of major steps of two phases of proposed method. 

 
Step 2.2 －correct the geometric distortion in IC'' incurred in 

the image acquisition process, yielding a corrected image 
IC'''; 

Step 2.3 － identify the unit blocks in IC''' automatically and 

divide IC''' accordingly into pattern blocks, each with 22 
unit blocks; 

Step 2.4 － binarize each pattern block of IC''', recognize the 
result to extract the bits embedded in it, compose all the 
extracted bits to form a bit stream B, and transform B 
reversely to get a message M'. 

III. GENERATION OF SIGNAL-RICH-ART CODE IMAGE 

A. Pattern Image Creation 

Unlike Lee and Tsai [15] who transforms a message M into a 
character message image, the proposed method transforms M 
into a bit stream B of codes, uses binary code patterns to encode 
the bits of B, and composes the code patterns, each in the form a 
pattern block, to form a pattern image similar in appearance to 
a pre-selected target image. Specifically, each pattern block T 
consists of several unit blocks Fi, with each Fi representing a bit 
of the code pattern C which T represents. A main issue here is 
how to design the code patterns so that the corresponding 
pattern blocks are suitable for use not only in message 
embedding but in block luminance modulation (see Step 1.3 
above). To solve this issue, two characteristics must be 
provided in the designed code patterns: 1) the number of bits in 

each code pattern C must be small enough, so that the pattern 
block T representative of C can keep the local color 
characteristic of the corresponding target image area; and 2) the 
colors of the unit blocks Fi of the pattern block T representative 
of each code pattern C should not be all the same, since 
otherwise the original bits represented by the unit blocks of the 
code patterns will become undistinguishable during the 
message extraction process.  

The first characteristic mentioned above is necessary for the 
resulting signal-rich-art code image to become more similar to 
the pre-selected target image. And as an illustration of the 
necessity of the second characteristic, Fig. 4 shows an example 
of undistinguishable binary code patterns, where the unit 
blocks Fi of the pattern block T representative of a code pattern 
C with bits “0000” are all of an identical color originally and 
are modulated to be all of another color, but then in the message 
extraction stage, the bits represented by the modulated pattern 
block cannot be extracted since only one color exists in this 
modulated pattern block and the bits corresponding to this color 
cannot be uniquely determined (more details discussed later). 

 

Fig. 4.  An example of undistinguishable binary code patterns. 

 
Therefore, in this study each pattern block representative of a 
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code pattern is set to be of the smallest size of 2×2 unit blocks. 
Also, a bit expansion scheme of appending an odd parity bit to 
every three bits of the bit stream B is conducted, making the 
resulting four bits being not all the same and satisfying the 
above-mentioned second required characteristic of the code 
pattern. In detail, let the bit stream B be denoted as 

B = b11b12b13b21b22b23b31b32b33 …bn1bn2bn3; 

and for every three consecutive bits bi1bi2bi3 in B, we append an 
odd parity bit bi4′ to get four bits bi1′bi2′bi3′bi4′ according to the 
following rule: 

set bi4′ = 1 2 3i i ib b b   and bij′ = bij for j = 1, 2, 3, (1) 

where  and     denote bitwise “OR” and “complement” 
operations, respectively. The resulting four bits bi1′bi2′bi3′bi4′ 
are not all identical, as can be verified by ORing them to get the 
following result: 

bi1′′bi2′bi3bi4′ = (bi1bi2bi3) 1 2 3i i ib b b   = 1, (2) 

which means that at least one “1” must exist in bi1′bi2′bi3′bi4′, 
and if all the four bits are “1s,” then all the three bits bi1′, bi2′, 

and bi3′ must be 1’s, leading to the result bi4′ = 1 2 3i i ib b b   = 0, 

which is a contradiction. Moreover, the total possible number 
of distinct expanded four bits bi1′bi2′bi3′bi4′ for different 
combinations of bi1bi2bi3 is eight, as shown in Fig. 5. These 
eight combinations are taken as the code patterns which we 
mentioned previously. 

Next, we create a 2×2 pattern block Ti = Fi1Fi2Fi3Fi4 with 
four unit blocks Fi1 through Fi4 to represent the 
non-all-identical bits bi1′bi2′bi3′bi4′ of each code pattern Ci, 
where the color of unit block Fij is set to be black if the 
corresponding bit is 0; or to be white if the corresponding bit is 
1. Accordingly, as can be seen from Fig. 5, the colors of the 
pattern blocks representative of the eight code patterns are all 
non-identical as well. 

 

Fig. 5. Performing bit expansion scheme on every three message bits to yield 
eight binary code patterns represented by pattern blocks. 

 
Finally, we create a pattern image IP of the size of the target 

image IT by arranging all the pattern blocks Ti, say n ones, in a 

raster-scan order. If the n pattern blocks do not fill up IP, then 
we repeat to fill them into IP again and again until they do. For 
example, with the target image IT as shown in Fig. 6(a) and the 
bit stream B = “110110110100011111010111001...,” the 
pattern image IP resulting from such filling operations is shown 
in Fig. 6(b). 

B. Block Luminance Modulation 

After the pattern image IP is created, it is “injected” into the 
target image IT under the constraint that the resulting image 
retains the visual appearance of IT. For this, we utilize a 
characteristic of the YCbCr color model  the luminance 
component Y is independent of the others [16]  to embed IP 
into the Y-channel of IT. This will solve a problem of 
illumination variation encountered in the later stage of message 
extraction. A block luminance modulation technique is 
proposed for use here, which modulates the mean of each 
pattern block Ti to be the same as that of the corresponding 
target block Bi of IT. The resulting modulated pattern image IP′ 
so has roughly the visual appearance of the Y-component of the 
target image IT. For example, Fig. 6(d) shows a modulated 
pattern image IP′ so created, which looks like the Y-component 
of the target image IT shown in Fig. 6(c); and Fig. 6(e) shows a 
zoom-out version of part of Fig. 6(d) enclosed by the red 
rectangle. 
 

(a) (b) 

(c)  (d)  

(e) (f) 

Fig. 6.  Signal-rich-art code image generation. (a) Target image. (b) Pattern 
image IP. (c) Y-channel of (a). (d) Modulated pattern image. (e) Zoom-out of red 
square region in (d). (f) Resulting signal-rich-art code image.  

 
More specifically, firstly the Y-component of the target 

image IT is divided into blocks, denoted by Bi, all with the same 
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size as that of the pattern blocks in the pattern image IP. Then, 
let NB and NW denote the numbers of black and white pixels in 
Ti, respectively. The pixels of each Bi are sorted according to 
their Y values in an ascending order to obtain an ordered 
Y-value set {q1′, q2′, …, qm′}. Then, two representative Y 
values r1 and r2 are computed for Bi as follows: 

1 2
1 1

1 1
,   

B WB

B

N NN

t t
t t NB W

r q ' r q '
N N



  

   . (3) 

Note here that r2  r1. Finally, the value pt of each pixel Pt in Ti 
is modulated to obtain a new pixel value pt′ by the following 
rule: 

set pt' = r1 if Pt is black; or r2 if Pt is white. (4) 

 
The mean 

iT ' of the pattern block Ti' so modulated will be 

equal to the mean 
iB  of the target block Bi because we have: 
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This means that the overall gray appearance of the modulated 
pattern image IP' and that of the Y-component of IT is roughly 
the same, as already mentioned. Accordingly, we replace the 
Y-component of IT with IP′ to generate finally the desired 
signal-rich-art code image IC which has the visual color 
appearance of IT, as shown by the example seen in Fig. 6(f). 

Later, when conducting message extraction, the message bit 
stream can be extracted from the Y-component of a captured 
version of IC by classifying the pixels of each pattern block into 
two classes according to their Y values: black and white. 
However, if the two representative values r1 and r2 are too close, 
it will be difficult to “separate” them in the classification 
process. Therefore, an adjustment of the representative values 
r1 and r2 is conducted, resulting in r1' and r2', so that the 
absolute difference between r1' and r2' becomes not smaller 
than a pre-defined threshold   0. For example, Fig. 7 shows a 
pattern block resulting from modulations with different values 
of , from which one can see that the two colors in a modulated 
pattern block will be more easily distinguished when  is larger. 

 

  
(a) (b) (c) (d) (e) (f) 

Fig. 7.  Modulated pattern block resulting from uses of different threshold 
values of  for the absolute difference between the two adjusted 
representative values r1′ and r2′. (a)  = 0. (b)  = 5. (c)  = 10. (d) = 20. (e) 
= 30. (f) = 40.  

 
The detail of the proposed representative-value adjustment 

scheme is described in the following. Note that, after the 
adjustment, the absolute difference between r1′ and r2′ must be 
not smaller than the threshold , and that the mean of the 
modulated pattern block Ti'' based on r1′ and r2′ must be 
identical to that of the target block Bi. Thus, the values of r1′ and 
r2′ must satisfy the following two constraints:  

|r2′  r1′|  ; (7) 
Ti'' = Bi. (8) 

Two possible cases can be identified in the adjustment process: 
1) the original absolute difference o of r1 and r2 is already not 
smaller than , i.e., o  ; and 2) the reverse, i.e., o < . In the 
first case, the values of r1 and r2 satisfy (7) and (8) 
automatically, so that they may be used as r1' and r2', 
respectively, directly, i.e., we have the rule: 

if o  , then set r1′ = r1 and r2′ = r2. (9) 

For the second case with o < , the absolute difference between 
the two representative values must be increased, after the 
adjustment, at least for the amount of   o for the resulting 
values of r1′ and r2′ to satisfy constraint (7). Specifically, let the 
adjustment value of r1 be t so that r1′ = r1  t. Then, the 
adjustment value of r2 should be at least (  o)  t so that r2′  
r2 + [(  o)  t]. Such value adjustments indeed can satisfy 
constraint (7) because with the fact that r2  r1 = o, we have  

|r2′  r1′|  |r2  r1 + (  o)|  . 

Also, for r1′ and r2′ to satisfy constraint (8), suppose that r2' is 
adjusted for exactly the amount of (  o)  t. The reason to 
make this assumption is to reduce the color distortion in the 
created signal-rich-art code image, as will be discussed later in 
Section 5. Then, the yet-unknown value t may be computed by: 
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where the fact that the new value of pt′′ in Ti′′ is set to be r1′ if 
the color of Pt in Ti is black; or to be r2′ if the color of Pt in Ti is 
white has been used in the derivations, and the last step is based 
on the use of (8). Accordingly, we can get: 

o

1 1 1
( ) 0B W W

B W B W B W

N t N N t
N N N N N N

     
  

, (11) 

from which the desired value t can be derived to be  

t = o[ / ( )]( )W B WN N N    . 

Therefore, the values of r1′ and r2′ can be computed by the rule: 

if o < , then set r1′ = r1 t and r2′ = r2 + [(  o)  t]. (12) 

C. Algorithm for Signal-rich-art Code Image Creation 

Based on the above discussions, a detailed algorithm for 
signal-rich-art code image creation is described as follows. 

Algorithm 1. Signal-rich-art code image creation. 
Input: a target image IT, a message M, and a threshold value . 
Output: a signal-rich-art code image IC. 
Steps: 
Stage 1 － Transforming the message into a bit stream. 
Step 1. Transform message M into a bit stream B. 
Stage 2 － Generating the pattern image. 
Step 2. Split B into n three-bit segments as b11b12b13b21b22b23 … 

bn1bn2bn3. 
Step 3. Expand every three bits bi1bi2bi3 in B into four bits 

bi1′bi2′bi3′bi4′ according to (1) and generate the 
corresponding pattern block Ti according to the rules 
shown in Fig. 5. 

Step 4. Align all the generated pattern blocks Ti in a raster-scan 
order to form a pattern image IP of the size of target 
image IT, with each side having NT patterns; and if the 
result does not fill up IP, repeat the filling until it 
becomes so. 

Stage 3 － Modulating the pattern image. 
Step 5. Divide the Y-component of target image IT into target 

blocks {B1, B2, B3, …, BN} where N = NT×NT. 
Step 6. For each pattern block Ti in pattern image IP, generate a 

modulated pattern block Ti′′ as follows. 
(A) Compute two representative values r1 and r2 of the 

corresponding target block Bi according to (3). 
(B) Compute o = |r2  r1|, and use it and the input 

threshold  to obtain two adjusted representative 
values r1′ and r2′ from r1 and r2 according to (9) 
and (12). 

(C) For each pixel Pt in Ti, if Pt is black, set the value 
pt'' of the corresponding pixel Pt'' in Ti'' as pt′′ = r1′; 
else, set pt′′ = r2′. 

Step 7. Compose all the resulting Ti'' to get a modulated pattern 
image, denoted by IP′. 

Stage 4 － Injecting the pattern image into the target image. 
Step 8. Replace the Y-component of IT with IP′ to generate the 

desired signal-rich-art code image IC as the output. 

IV. MESSAGE EXTRACTION 

The various techniques proposed for extracting the message 
embedded in the signal-rich-art code image are described first, 
with a combination of them described as an algorithm at last. 

A. Localization of Signal-rich-art Code Image and Inverse 
Perspective Transform 

Assume that the signal-rich-art code image IC is printed and 
posted or displayed against a white background, and that the 
captured image Id contains only the original image of IC and the 
background. The first assumption here may be removed simply 
by adding a white surrounding zone to IC. To extract the 
message from Id, we must localize the region of IC in Id. For this, 
we apply the Hough transform and polygonal approximation to 
find the largest non-white quadrangle Q in Id as shown by the 
example seen in Fig. 8(a). Also, image Id will suffer from 
perspective distortion if the axis of the camera is not directed 
perpendicularly toward the plane of the signal-rich-art code 
image IC [5] during image acquisition, as seen in Fig. 8(a) as 
well. As a remedy, an inverse perspective transform is 
performed on Q to correct the distortion. The result of 
conducting this on Fig. 8(a) is shown in Fig. 8(b). Finally, the 
Y-component of the resulting Q is taken as an intermediate 
result, which we call the captured modulated pattern image and 
denote it by IP′′. 
 

 
(a) (b) 

Fig. 8.  Localization and correction of perspective distortion in captured 
signal-rich-art code image. (a) Localized signal-rich-art code image portion 
(enclosed by red rectangle). (b) Result of perspective distortion correction 
applied to red portion region in (a). 
 

B. Block Number Identification and Block Segmentation 

To identify the unit blocks in IP′′ in order to apply 
binarization and pattern recognition to them, an idea similar to 
the Hough transform [17] is adopted, which uses the statistics 
of the pixels’ gradient values to guess the number NS of unit 
blocks in the horizontal or vertical direction in IP'' because 
those pixels on the splitting lines between the unit blocks 
usually have larger gradient values. In more detail, at first the 
gradient value gxy of each pixel Rxy with value rxy at coordinates 
(x, y) in IP′′ is computed by a Sobel operator [23]: 

gxy = +1, 1 1, 1, 1 1, -1 1, 1, 1( 2 ) ( 2 )x y x y x y x y x y x yr r r r r r              

1, +1 , +1 1, +1 1, 1 , 1 1, 1( 2 ) ( 2 )x y x y x y x y x y x yr r r r r r           . (13) 

Next, for each possible value nj of NS, the distance dj between 
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the splitting lines of every two possible adjacent unit blocks is 
computed as dj = L/nj where L is the side length of the 
square-shaped IP′′. Then, the horizontal or vertical lines 
separated by the distance of dj are taken as candidate splitting 
lines, where the positions of these candidate splitting lines 
described by image coordinates are computed by: 

x = u×dj and y = v×dj,  (14) 

where u = 1 ~ L/dj and v = 1 ~ L/dj, respectively. Also, the 
average gradient value AGnj of the pixels on each candidate 
spitting line is computed as: 

/ /

( ) ( )
1 1 1 1

.
1 1

/ /

j j

j j j

L d L dL L

n u d y x v d
u y v xj j

AG g g
L d L L d L

      

 
   

 
       

     (15) 

Note that in addition to the actual value NS which will yield a 
large average gradient value, the values nj which are divisors of 
NS will yield large average gradient values as well. For this, the 
value nj yielding the largest average gradient value AGnj, 
denoted as AGo, is selected first and those nj yielding average 
gradient values AGnj close to AGo are selected as well. Then, the 
largest nj from these selected values of nj is taken as the desired 
number NS of blocks of IP′′ in the horizontal or vertical direction, 
and division of IP'' into unit blocks is conducted accordingly. 

For example, Fig. 9(a) shows a captured modulated pattern 
image IP′′, Fig. 9(b) is the image of the computed gradient 
values, and Fig. 9(c) illustrates the average gradient values for 
different values of NS, where the nj yielding the largest average 
gradient value is seen to be 16 (indicated by the black arrow). 
Also, the nj’s, which yield the average gradient values close to 
the largest average gradient value 16, are seen to be 32 and 64 
(indicated by the green and red arrows, respectively), and the nj 
yielding the largest gradient value among the three selected 
ones is 64. Therefore, the desired NS is taken to be 64, and the 
corresponding image division result is shown in Fig. 9(d). 

C. Binarization and Recognition of Pattern Blocks 

After the captured modulated pattern image IP′′ are 
segmented into unit blocks, we try to recover the pattern blocks 
in pattern image IP by grouping every four mutually-connected 
unit blocks as a pattern block since the size of a pattern block is 
2×2. The number of pattern blocks in the horizontal or vertical 
direction in IP'' is so just NT = NS/2. Subsequently, the 
moment-preserving thresholding technique [18] is applied to 
each pattern block Ti''' to binarize it automatically. And the four 
unit blocks in each resulting pattern block Ti''' are denoted as 
Fi1', Fi2', Fi3', and Fi4', respectively.  

Next, how to classify each Ti''' as one of the eight possible 
code patterns, which we denote as BPk with k = 1 ~ 8, as shown 
in Fig. 5 is the issue now. This is an eight-class pattern 
classification problem. To solve it, we use a minimum absolute 
distance classifier. Specifically, each possible code pattern BPk 
has four unit blocks, say denoted as Fk1'' through Fk4'', and the 
color of each Fkj'' is either black or white. Hence, we may 
utilize the feature of blackness to describe Fkj''; that is, if the 
color of the unit block Fkj'' is black, then we take the blackness 
feature bfkj of Fkj'' to be “1”; else, to be “0.” Next, we compute 
the real blackness feature bfij of each unit block Fij' in Ti''' by: 

bfij = NBij/(NBij + NWij), (16) 

where NBij and NWij are the numbers of black and white pixels 
in unit block Fij', respectively. Then, the absolute distance ADik 
of the blackness feature between Ti''' and BPk can be computed 
as: 

4

1

1
 
4ik ij kj

j

AD bf bf


  . (17) 

Subsequently, the code pattern BPm with the minimum absolute 
distance ADim is selected as the result of classifying the pattern 
block Ti'''. For example, let the blackness features of unit 
blocks Fi1' through Fi4' of a pattern block Ti''' be bfi1 = 0.9, bfi2 = 
0.13, bfi3 = 0.22, bfi4 = 0.12, respectively. The absolute 
distances ADik of Ti''' to all the eight possible code patterns BPk 
with k = 1 ~ 8 are shown in Table I. And the code pattern with 
the minimum absolute distance is BP4 with ADi4 = 0.1425. So, 
the corresponding four bits bi1'' through bi4'' of the pattern block 
Ti''' are “0111.” Finally, we take the three bits bi1'', bi2'', and bi3'', 
namely, “011,” as the recovered version of the original three 
message bits bi1, bi2, and bi3 according to the bit expansion 
scheme. 
 

(a) (b) 

(c) 

(d) 

Fig. 9.  Block number identification. (a) Captured modulated pattern image IP′′. 
(b) Gradient values of (a). (c) Average gradient values of pixels on candidate 
spitting lines for different NS. (d) Image division result according to determined 
number of unit blocks, NS = 64. 

 
An example of results yielded by the above message 

extraction process is shown in Fig. 10, where a captured 
modulated pattern image IP'' is shown in Fig. 10(a), which, after 
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being binarized, results in Fig. 10(b); the result of code-pattern 
classification is shown in Fig. 10(c); and the final extracted bit 
stream are shown in Fig. 10(d). These results show that the 
proposed code-pattern classification scheme corresponding to 
the minimum absolute distance criterion works correctly for the 
purpose of embedded message extraction. More experimental 
results will be presented later to prove this statement. 
 

 
 

  
(a) (b) 

 

110110110…… 

(c) (d) 

Fig. 10.  Binarization and code-pattern recognition. (a) Captured modulated 
pattern image. (b) Binarization result of (a). (c) Result of code-pattern 
recognition of (b). (d) Extracted message.  

D. Message Extraction Algorithm 

A detailed message extraction algorithm is as follows. 

Algorithm 2. Message extraction. 
Input: a captured version Id of a signal-rich-art code image. 
Output: a message M' extracted from Id, which is supposed to 

be identical to the original message M' embedded in Id. 
Steps: 
Stage 1 － Localizing the signal-rich-art code image. 
Step 1. Find the largest non-white quadrangle Q in Id by the 

Hough transform and polygonal approximation. 

Stage 2 － Correcting geometric distortion. 

Step 2. Perform an inverse perspective transform on Q to 
correct the perspective distortion and take the 
Y-component of Q as the captured modulated pattern 
image IP′′. 

Stage 3 － Identifying pattern blocks in the code image. 
Step 3. Compute the gradient value gxy of each pixel Rxy in IP′′ 

according to (13). 
Step 4. For each possible value nj of NS, compute the average 

gradient values AGnj of the pixels on each candidate 
spitting line according to (15). 

Step 5. Select the value nj yielding the largest AGnj, denoted as 
AGo, and those nj’s yielding AGnj close to AGo; pick the 
largest nj from all the selected nj’s for use as the desired 
number NS of blocks of IP′′ in the horizontal or vertical 
direction; and divide IP'' accordingly into unit blocks. 

Stage 4 － Binarizing the pattern blocks to extract the message. 
Step 6. Group every four mutually-connected unit blocks and 

denote them as Fi1' through Fi4' to form a pattern block 
Ti′′' in IP′′. 

Step 7. Extract three bits bi1'', bi2'', and bi3'' from each pattern 
block Ti''' by the following steps. 
(A) For each unit block Fij' in Ti''', compute its 

blackness feature bfij according to (16). 
(B) Computing the absolute distance ADik of Ti''' to 

each of the eight possible code patterns BPk shown 
in Fig. 5 according to (17). 

(C) Select the code pattern BPm with the minimum 
absolute distance and take the corresponding four 
bits of BPm as the recognized four bits bi1'' through 
bi4'' of Ti'''. 

(D) Take the three bits bi1'', bi2'', and bi3'' as the 
recovered version of the original three message bits 
bi1, bi2, bi3, respectively. 

Step 8. Concatenate the extracted bits into a bit stream B and 
transform reversely B to get the embedded message M'. 

V. EXPERIMENTAL RESULTS 
The proposed method was implemented on a 3.0GHz PC 

with a Core i7 CPU and 8G RAM using the language Microsoft 
C#.NET, and generated signal-rich-art code images were 
captured with an iPhone 4S and analyzed to extract the 
embedded messages in a series of experiments. The resolution 
of the captured image is 800M pixels and the modulated pattern 
image IP′′ is down-sampled to be 640×640 in size (e.g., one bit 
of information in Fig. 10(b) corresponds to 10×10 pixels) in 
order to reduce the processing time. Corresponding statistics 
were plotted as well to show the accuracy of the extracted 
messages (the number of correct bits/the total number of bits) 
using different parameters including: (1) the threshold  for the 
minimum difference between the representative values r1′ and 
r2′; and (2) the number of unit blocks NS used in the horizontal 
or vertical direction of the created pattern image. Figs. 11(a), 
11(c), and 11(e) show three test target images used in the 
experiments. The corresponding signal-rich-art code images 
generated with parameters NS = 128 and  = 40 are shown in 
Figs. 11(b), 11(d), and 11(f), respectively. These images were 
all printed to be of the same size of 127127 mm. 

TABLE I
AN EXAMPLE OF CODE PATTERN RECOGNITION 

binary 
code 

pattern 

Corresponding  

4 bits 
Absolute distance ADik 

 0001 ADi1 = (0.1+0.87+0.78+0.12)/4 = 0.4675

 0010 ADi2 = (0.1+0.87+0.22+0.88)/4 = 0.5175

 0100 ADi3 = (0.1+0.13+0.78+0.88)/4 =  0.4725

 0111 ADi4 = (0.1+0.13+0.22+0.12)/4 = 0.1425

 1000 ADi5 = (0.9+0.87+0.78+0.88)/4 = 0.8575

 1011 ADi6 = (0.9+0.87+0.22+0.12)/4 = 0.5275

 1101 ADi7 = (0.9+0.13+0.78+0.12)/4 = 0.4825

 1110 ADi8 = (0.9+0.13+0.22+0.88)/4 = 0.5325



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

9

One of the parameters that influence the accuracy of the 
extracted message is the threshold value  for the minimum 
difference between the two representative values r1′ and r2′. If  
is too small, r1′ and r2′ will be too close so that the extracted 
message might be wrong. Fig. 13(a) illustrates the accuracy 
rates of message extraction with  = 0, 20, 40, and 60, which 
shows that the larger the value of , the higher the accuracy rate 
of the extracted message; when  > 40, an accuracy of 99.8% is 
reached; and when  > 60, an accuracy of 100% is reached. Fig. 
13(b) shows that the larger the value of , the smaller the PSNR 
(the peak signal-to-noise ratio) of the resulting signal-rich-art 
code image with respect to the target image. So there is a 
tradeoff between achieving higher message extraction accuracy 
and obtaining better visual quality in the generated code image. 
Fig. 12 shows some code images created with different 
threshold values of , where the target image is Fig. 11(e) and 
NS = 64. As can be seen, Fig. 12(a) has the best visual 
appearance when compared with the others, but has the lowest 
message extraction accuracy for only 85.60%, because the two 
representative values are too close (so that the colors of most 
regions in Fig. 12(a) look like the same).  

 

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

Fig. 11.  Created signal-rich-art code images. (a), (c), and (e) Test target images. 
(b), (d) and (f) Resulting signal-rich-art code images with NS = 128 and  = 40.

 
Another parameter that influences the message extraction 

accuracy is the number NS of unit blocks in the horizontal or 
vertical direction in the created pattern or code image. The 
larger the value of NS, the larger the message embedding 
capacity of the created code image, yet the smaller the size of 
the unit block and so the lower the message extraction accuracy. 

This can be seen from Fig. 13(c), where when NS = 16, the 
accuracy of 100% is reached; when NS = 64, the accuracy of 
99.76% is reached; and when NS = 128, the lower accuracy of 
96.31% is yielded. Fig. 14 shows some signal-rich-art code 
images generated with different values of NS with Fig. 11(a) as 
the target image and the threshold  = 40. As can be seen, when 
NS is larger, the visual appearance of the created image is better 
with a larger PSNR, but the message extraction accuracy is 
lower. Specifically, the accuracy of Fig. 14(d) is 99.11%, 
instead of 100% which is reached by the other three cases. 
 

(a) (b) 

(c) (d) 

Fig. 12.  Created signal-rich-art code images with different threshold values of 
, where NS = 64. (a) Resulting signal-rich-art code image with PSNR = 17.38 
and accuracy rate = 85.60%, where  = 0. (b) Resulting code image with PSNR 
= 17.12 and accuracy rate = 98.97%, where  = 20. (c) Resulting code images 
with PSNR = 16.19 and accuracy rate = 100%, where  = 40. (b) Resulting 
images with PSNR = 14.83 and accuracy rate = 100%, where  = 60. 

 
Moreover, to measure the blockiness effect seen in the 

generated signal-rich-art code images, we adopt the metric of 
mean structural similarity (MSSIM) to compare the similarity 
between the created code image and the target image [25]. Fig. 
13(e) shows such MSSIM values versus different numbers NS 
of unit blocks, where the window size for computing the 
MSSIM is set to be the same as the size of a pattern block. We 
can see from Fig. 13(e) that the MSSIM value is larger when NS 
is larger, implying that the visual appearance of the created 
image is better (i.e., blockiness effect is smaller) when NS is 
larger. 

Table II shows a comparison of the results of the proposed 
method and those of Lee and Tsai [15] with the target images as 
shown in Fig. 11 against different numbers of unit blocks in the 
horizontal or vertical direction in the created pattern or message 
images. As can be seen from the table, the proposed method 
yields higher message extraction accuracy than Lee and Tsai 
[15], e.g., when NS = 32, the message extraction accuracy 
yielded by the proposed method reaches 99.80% while that 
yielded by Lee and Tsai [15] is only 88.28%. Moreover, when 
NS = 64, the message extraction accuracy of 99.76% yielded by 
the proposed method is much higher than that yielded by Lee 
and Tsai [15], which is only 34.70%. However, comparing the 
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two methods, the amount of information contained in a code 
image created by the proposed method is less, as shown in 
Table II as well. Specifically, the amount of information 
contained in an image created by the proposed method is equal 
to just a half of that contained in the corresponding image 
created by Lee and Tsai [15] when the values of NS used in the 
two methods are identical (because a unit block represents one 
bit in the proposed method and 1/4 character, or two bits, in Lee 
and Tsai [15], respectively). Also, Fig. 15 shows a comparison 
of accuracy rates versus different amounts of information 
contained in an image created by the proposed method and Lee 
and Tsai [15], where, as can be seen, the accuracy rate of the 
proposed method is still good when the amount of information 
is 4096 while the accuracy rate of Lee and Tsai [15] becomes 
very bad when the amount of information is 8192. 
 

(a) 

(b) 

(c) 

(d) 

 
(e) 

Fig. 13.  Plots of trends of results using various parameters. (a) Accuracy rates 
of extracted messages with different threshold values , with #unit blocks NS = 
32. (b) RMSE values of created signal-rich-art code images with respect to 
target images for different threshold values of , with #unit blocks NS = 32. (c) 
Accuracy rates of extracted messages with different #unit blocks NS with 
threshold  = 40. (d) RMSE values of created signal-rich-art code images with 
respect to target images with different #unit blocks NS and threshold  = 40. (e) 
MSSIM values of created signal-rich-art code images with respect to target 
images with different NS of unit blocks and threshold  = 40. 

(a) (b) 

(c) (d) 

Fig. 14.  Created signal-rich-art code images with different #unit blocks NS, 
where threshold value  = 40. (a) Resulting signal-rich-art code image with 
RMSE = 47.66 and accuracy rate = 100%, where NS = 16. (b) Resulting 
signal-rich-art code image with RMSE = 44.63 and accuracy rate = 100%, 
where NS = 32. (c) Resulting signal-rich-art code image with RMSE = 42.05 and 
accuracy rate = 100.00%, where NS = 64. (d) Resulting signal-rich-art code 
image with RMSE = 39.43 and accuracy rate = 99.11%, where NS = 128. 

 
Also, Fig. 16 shows the resulting binarized captured 

signal-rich-art images of the proposed method and Lee and Tsai 
[15], where the value of NS is 32 in Figs. 16(a) and 16(b) and 64 
in Figs. 16(c) and 16(d). As can be seen from Fig. 16(a), with 
NS = 32 the characters in the binarized captured signal-rich-art 
character image created by Lee and Tsai [15] are still clear 
enough so that the message extraction accuracy yielded with 
Fig. 16(a) as the input is still high, reaching 98.61%. However, 
with NS = 64, as seen from Fig. 16(c), the characters in the 
binarized captured signal-rich-art character image created by 
Lee and Tsai [15] become undistinguishable so that the 
message extraction accuracy yielded with Fig. 16(c) as the 
input becomes worse, only 41.25%. Furthermore, as seen from 
Figs. 16(b) and 16(d), the pattern blocks in the binarized 
captured signal-rich-art code images created by the proposed 
method are both clear enough so that the message extraction 
accuracy rates yielded by them are both still high, reaching 
99.80% and 99.76%, respectively. 

In addition, we compare the times consumed by the 
code-pattern recognition steps in the proposed method and Lee 
and Tsai [15]. As can be seen from Table II, the recognition 
time used by the proposed method is much less than that used 
by Lee and Tsai [15]. This is owing to the time-consuming 
OCR operation conducted by Lee and Tsai [15] on every 
character image, which computes the similarity of the character 
image with each possible character image in the database and 
selects the most similar one as the recognition result. In contrast, 
the proposed method only needs to recognize each pattern 
block as coming from one of eight possible code-pattern classes 
by computing the absolute distances of the pattern block to the 
eight classes and selecting the one with the minimum absolute 
difference. 

As a summary, the proposed method has the following merits 
with respect to Lee and Tsai [15]: (1) the yielded signal-rich-art 
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code image has a better visual appearance since a larger number 
NS of unit blocks can be utilized in the proposed method; (2) the 
message extraction accuracy is higher since much less details 
are contained in a unit block of the proposed method; (3) the 
message extraction speed is higher since classification of only 
eight classes need be conducted to extract the corresponding 
four bits of each binarized pattern block. 
 

 
 

 
(a) (b) 

Fig. 15.  Comparison of accuracy rates versus different amounts of information 
contained in an image created the proposed method and Lee and Tsai [15]. (a)  
Accuracy rate versus different amount of information contained in an image of 
proposed method. (b) Accuracy rate versus different amount of information 
contained in an image of Lee and Tsai [15]. 

 

Furthermore, it is noted that distortions may be incurred 
during message extraction due to perspective deformation, 
noise addition, blurring, uneven lighting, etc. We have solved 
the problems of perspective deformation and uneven lighting in 
the proposed method. Also, the issues of noise addition (such as 
uniform-distribution or burst errors) and blurring have also 
been dealt with by the proposed method by code pattern 
recognition. However, how to overcome the interference 
during message extraction is still an open research area since 
many types of noise exist in our environment. One possible 
way may be directed to applying error-correction techniques to 
the result of code-pattern classification in order to increase the 
resulting message extraction rate, such as using Reed-Solomon 
codes [26]. 

VI. CONCLUSIONS 

A new type of signal-rich-art image for applications of data 
transfer, called signal-rich-art code image, has been proposed, 

which is created from a target image for use as a carrier of a 
given message. The artistic favor of the target image is kept in 
the created image, achieving the signal-rich-art effect. Skillful 
techniques of code pattern design, unit block segmentation, 
pattern block classification, etc. have been proposed for 
message data embedding and extraction. Comparing with other 
signal-rich-art techniques like the use of barcodes and data 
hiding, data transfer using the proposed signal-rich-art code 
image has several merits: (1) the image has the visual 
appearance of any pre-selected target image (this is not the case 
for the case of using barcodes [19]-[22]); (2) the proposed 
method can endure more distortions in acquired versions of the 
code image like perspective transformation, noise, screen 
blurring, etc. (this is not the case for data hiding [7]-[14]); (3) 
the message can be extracted from an image captured by a 
mobile device (this is not the case for data hiding [7]-[14]). 
Also, the proposed method has following additional merits 
when compared with Lee and Tsai [15], in which another type 
of signal-rich-art image, called signal-rich-art character image 
was proposed: (1) the yielded signal-rich-art code image has a 
better visual appearance; (2) the message data extraction 
accuracy is higher; (3) the data extraction speed is higher. 
Experimental results show the feasibility of the proposed 
method. Further studies may be directed to designing more 
types of signal-rich-art images or extending the idea to deal 
with videos for different applications. 
 

(a) (b) 

(c) (d) 

Fig. 16.  Binarized captured signal-rich-art images created by Lee and Tsai [15] 
and proposed method and respective message extraction accuracy rates, where 
the target image of these resulting images is Fig. 11(c). (a) Binarized image by 
Lee and Tsai [15] with NS = 32 and accuracy rate = 98.61%. (b) Binarized image 
by proposed method with NS = 32 and accuracy rate = 99.80%. (c) Binarized 
image by Lee and Tsai [15] with NS = 64 and accuracy rate = 41.25%. (d) 
Binarized image by proposed method with NS = 64 and accuracy rate = 99.76%.
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TABLE II 
COMPARISON OF RESULTS OF PROPOSED METHOD AND LEE AND TSAI [15] 

WITH  = 40. 

Target 

image 
NS Method 

Accuracy 

rate (%) 

Recognition 

time (ms) 

Amount of 

information 

(bits/image)

Fig. 
11(a) 

16 
Proposed method 100 60 256 
Lee and Tsai [15] 100 1186 512

32 
Proposed method 100 62 1024 
Lee and Tsai [15] 96.53 1812 2048 

64 
Proposed method 100 93 4096 
Lee and Tsai [15] 40.86 3045 8192 

Fig. 
11(c) 

16 
Proposed method 100 68 256 
Lee and Tsai [15] 100 1590 512

32 
Proposed method 99.80 63 1024 
Lee and Tsai [15] 98.61 1696 2048

64 
Proposed method 99.76 83 4096 
Lee and Tsai [15] 41.25 2263 8192

Fig. 
11(e) 

16 
Proposed method 100 54 256 
Lee and Tsai [15] 100 1230 512

32 
Proposed method 99.80 55 1024 
Lee and Tsai [15] 88.28 1697 2048

64 
Proposed method 100 82 4096 
Lee and Tsai [15] 34.70 2315 8192
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and by Lee and Tsai [15]. 
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