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A new data hiding method via collaboratively-written articles with forged revision history records on collaborative writing 
platforms is proposed. The hidden message is camouflaged as a stego-document consisting of a stego-article and a revision 
history created through a simulated process of collaborative writing. The revisions are forged using a database constructed by 
mining word sequences used in real cases from an English Wikipedia XML dump. Four characteristics of article revisions are 
identified and utilized to embed secret messages, including the author of each revision, the number of corrected word sequences, 
the content of the corrected word sequences, and the word sequences replacing the corrected ones. Related problems arising in 
utilizing these characteristics for data hiding are identified and solved skillfully, resulting in an effective multi-way method for 
hiding secret messages into the revision history. To create more realistic revisions, Huffman coding based on the word sequence 
frequencies collected from Wikipedia is applied to encode the word sequences. Good experimental results show the feasibility of 
the proposed method. 

Categories and Subject Descriptors: H.4.3 [Information Systems Applications]: Communications Applications; H.3.1 [Information 
Storage and Retrieval]: Content Analysis and Indexing—Linguistic processing, dictionaries; H.2.8 [Database Management]: Database 
Applications—Data mining, statistical databases; I.7 [Document and Text Processing] 

General Terms: Security, Algorithms 

Additional Key Words and Phrases: Data hiding, Wikipedia mining, collaborative writing, revision history, Huffman coding 

ACM Reference Format: 

Lee, Y. L. and Tsai, W. H. 2013. A new data hiding method via revision history records on collaborative writing platforms. 

1. INTRODUCTION 

Data hiding is the art of hiding secret messages into cover media for the applications of covert 
communication, secret data keeping, access control, database protection, and so on. Types of cover 
media include image, video, audio, text, etc. Attacking the weaknesses of human auditory and visual 
systems, many researches on data hiding focused on non-text cover media, such as [Cheddad et al. 
2010; Doerr and Dugelay 2003; Lie and Chang 2006; Lin et al. 2011; Mohanty and Bhargava 2008; Tai 
et al. 2009]. Less data hiding techniques using text-type cover media have been proposed. Bennett 
[2004] made a good survey about hiding data in text and classified related techniques into three 
categories: format-based methods, random and statistical generation, and linguistic methods. 

Format-based methods use the physical formats of documents to hide messages. Some of them 
utilize spaces in documents to encode message data. For example, Alattar and Alattar [2004] proposed 
a method that adjusts the distances between words or text lines using spread-spectrum and BCH 
error-correction techniques, and Kim et al. [2003] proposed a word-shift algorithm that adjusts the 
spaces between words based on concepts of word classification and statistics of inter-word spaces. 
Some other methods utilize non-displayed characters to hide messages, such as Lee and Tsai [2010] 
who encode message bits using special ASCII codes and hide the result between the words or 
characters in PDF files. 

Random and statistical methods generate directly camouflage texts with hidden messages to 
prevent the attack of comparison with a known plaintext. For example, Wayner [Wayner 1992; 
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Wayner 2002] proposed a method for text generation based on the use of context-free grammars and 
tree structures. A method available on a website [Spammimic.com 2010] extends the idea to generate 
fake spam emails with hidden messages, which are usually ignored by people. 

Linguistic methods use written natural languages to conceal secret messages. For example, 
Chapman et al. [2001] proposed a synonym replacement method that generates a cover text according 
to a secret message using sentence models and a synonym dictionary. Bolshakov [2004] extended the 
synonym replacement method by using a specific synonymy dictionary and a very large database of 
collocations to create a cover text, which is more believable to a human reader. Shirali-Shahreza and 
Shirali-Shahreza [2008] proposed a third synonym replacement method that hides data in a text by 
substituting the words which have different terms in the UK and the US. Stutsman et al. [2006] 
proposed a method to hide messages in the noise that is inherent in natural language translation 
results without the necessity of transmitting the source text for decoding. 

Recently, more and more collaborative writing platforms are available, such as Google Drive, Office 
Web Apps, Wikipedia, etc. On these platforms, a huge number of revisions generated during the 
collaborative writing process are recorded. Furthermore, many people work collaboratively on these 
platforms. Thus, these platforms are very suitable for data hiding applications, such as covert 
communication, secret data keeping, etc. It is desired to propose a new method which is useful for 
covert communication or secure keeping of secret messages on collaborative writing platforms 
However, the above-mentioned methods can only be applied to documents with single authors and 
single revision versions, meaning that they are not suitable for hiding data on collaborative writing 
platforms. Therefore, the goal of this paper is to propose a new data hiding method which can hide 
data into documents created on collaborative writing platforms. In more detail, a new data hiding 
method is proposed, which simulates a collaborative writing process to generate a fake document, 
consisting of an article and its revision history, as a camouflage for message bit embedding. As shown 
in Figure 1, with the input of an article and a secret message, the proposed method utilizes multiple 
virtual authors to collaboratively revise the article, generating artificially a history of earlier revisions 
of the article according to the secret message. An ordinary reader will consider the resulting stego-
document as a normal collaborative writing output, and cannot realize the existence of the secret 
message hidden in the document. 

 

 
Fig. 1.  Basic idea of proposed method that generates a revision history of a stego-document as a camouflage for data hiding. 

 
Moreover, the previously-mentioned linguistic methods use written natural languages to generate 

stego-documents and can produce more innocuous stego-texts than other data hiding methods, but an 
issue common to them is how to find a nature way for simulating the writing process and how to 
obtain large-volume written data automatically. Hence, another goal of this paper is to find a nature 
way to generate the revision history and to obtain large-volume collaborative writing data 
automatically. In recent years, some researches have been conducted to analyze the revision history 
data of Wikipedia articles for various natural language processing applications [Bronner and Monz 
2012; Bronner et al. 2012; Dutrey et al. 2010; Erdmann et al. 2009; Max and Wisniewski 2010; Nelken 
and Yamangil 2008; Viégas et al. 2004], such as spelling corrections, reformulations, text 
summarization, user edits classification, multilingual content synchronization, etc. In addition to 
being useful for these applications, the collaboratively written data in Wikipedia are also very suitable, 
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as found in this study, for simulating the collaborative writing process for the purpose of data hiding 
since it is the largest collaborative writing platform nowadays.  

In [Liu and Tsai 2007], Liu and Tsai proposed a data hiding method via Microsoft Word documents 
by the use of the change tracking function, which embeds a secret message by mimicking a pre-draft 
document written by an author with an inferior writing skill and encoding the secret message by 
choices of degenerations in the writing. Although they used three databases for degenerations, the 
sizes of them are quite small when compared to that of the database constructed from Wikipedia 
which we make use for data embedding in this study. It is noted by the way that a data hiding method 
can, as well known, embed more bits by making use of a larger database. Furthermore, in [Liu and 
Tsai 2007] a stego-document is generated by only two virtual persons and the change tracking data 
are made by the one with a better writing skill. This scenario is insufficient for simulating a normal 
collaborative writing process. Therefore, in this paper we propose a new framework that uses the 
revision-history data from Wikipedia and simulates real collaborative writing processes to hide secret 
messages. Four characteristics of collaborative writing processes are analyzed and utilized for 
message hiding, including the author of each revision, the number of corrected word sequences, the 
content of the corrected word sequences, and the word sequences replacing the corrected ones. The 
proposed method is useful for covert communication or secure keeping of secret messages on 
collaborative writing platforms. 

In the remainder of this paper, the idea of the proposed method is described in Section 2. Detailed 
algorithms for collaborative writing database construction, secret message embedding, and secret 
message extraction are given in Section 3. In Section 4, some experimental results are presented to 
show the feasibility of the proposed method, and in Section 5, we discuss the security issue, followed 
by conclusions in Section 6. 

2. BASIC IDEA OF PROPOSED METHOD 

Collaborative writing means an activity involving more than one author to create an article 
cooperatively on a common platform. The purposes of establishing a collaborative writing platform 
includes knowledge sharing, project management, data keeping, etc. Many collaborative writing 
platforms are available, such as Google Drive, Office Web Apps, Wikipedia, etc., which record 
revisions generated during the collaborative writing process. In general, the recorded information of a 
revision includes: 1) the author of the revision, 2) the time the revision was made, and 3) the content 
of the revision. 

To achieve the goal of creating camouflage revisions in collaborative writing for message hiding in 
this study, we analyze the existing revision-history data of articles on Wikipedia, which is the largest 
collaborative writing platform on the Internet currently in the world. The aim is to get real and large 
collaborative writing data contributed by people all over the world and use them to create more 
realistic revision histories to enhance the resulting effect of data embedding. However, since the 
collaborative writing process is very complicated, it is hard to find a unified model to simulate it. 
Many different types of modifications may be made during the collaborative writing process [Bronner 
and Monz 2012; Dutrey et al. 2010], such as error corrections, paraphrasing, factual edits, etc. 
Moreover, different languages usually require different models to represent due to their distinctive 
grammatical structures. Therefore, in order to get useful collaborative writing data automatically 
from the revision history data on Wikipedia without building models manually and to generalize a 
method that can be applied to multiple languages, we assume that only word sequence corrections 
occur during a revision. Some characteristics in collaborative writing based on this assumption for 
data embedding are identified, which will be discussed in the following. It is noted that various text 
articles, not only in English but also in other languages, can be utilized as cover media in this study. 
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The revision history of each article in Wikipedia is stored in a database, and one can recover any 
previous revision version of the article by an interface provided on the site. For this study, we have 
collected a large set of revision-history data from Wikipedia, and in the proposed method we mine this 
set to get useful information about word usages in the revisions. Then, we use the acquired 
information to simulate a collaborative writing process, starting from a cover article; and generate a 
stego-article with a sequence of revisions according to the secret message and a secret key. The 
resulting stego-document, including the stego-article and the revision history, looks like a work 
created by a group of real authors, achieving an effect of camouflage. In contrast, we call the original 
article with an initially-empty history a cover document in the sequel. 

More specifically, the proposed method includes three main phases as shown in Figure 2: 1) 
construction of a collaborative-writing database; 2) secret message embedding; and 3) secret message 
extraction. In the first phase, a large number of articles acquired from Wikipedia are analyzed and 
useful collaboratively written data about word usages are mined using a natural language processing 
technique. The mined data then are used to construct a database, called the collaborative writing 
database, denoted as DBcw subsequently. In the second phase, with the input of a cover document, a 
secret message, and a secret key, a stego-document with a fake revision history is generated by 
simulating a real collaborative writing process using DBcw. The revisions in the history are supposed 
to be made by multiple virtual authors; and the following characteristics of each revision are decided 
by the secret message: 1) the author of the revision; 2) the number of changed word sequences of the 
revision; 3) the changed word sequences in the revision; and 4) the word sequences selected from the 
collaborative writing database DBcw, which replace those of 3), called the replacing word sequences in 
the sequel. And in the third phase, an authorized person who has the secret key can extract the secret 
message from the stego-document, while those who do not have the key cannot do so. They even could 
not realize the existence of the secret message because the secret message is disguised as the revision 
history in the stego-document. Note that the second and third phases can be applied on any 
collaborative writing platforms, not just on Wikipedia; Wikipedia is merely utilized in the first phase 
to construct the collaborative writing database DBcw in this study. 
 

 
Fig. 2.  Flow diagram of the proposed method. 

3. DATA HIDING VIA REVISION HISTORY 

In this section, the details of the proposed method for using the analyzed characteristics of 
collaborative writing to hide secret messages are described in the following, where the first part is 
collaborative writing database construction, the second part is secret message embedding, and the 
final part is secret message extraction. 

3.1 Collaborative Writing Database Construction 

To construct the aforementioned collaborative writing database DBcw, we try to mine the revision data 
collected from Wikipedia. There were about 4.2 million articles in the English Wikipedia in May 2013, 
which is a very large knowledge repository; therefore, it is suitable to use it as a source for 
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constructing the database DBcw desired in the study. Specifically, at first we downloaded part of the 
English Wikipedia XML dump with the complete revision histories of all the articles on August 3, 
2011. Then, we mine the useful collaborative writing data from the downloaded data set under the 
assumption that only word sequence corrections will occur during a revision. 

As illustrated in Figure 3, each downloaded article P has a set of revisions {D0, D1, …, Dn} in its 
revision history, where a newer revision Di has a smaller index i with D0 being the latest version of 
the article. For every two consecutive revisions Di and Di–1, we find all the correction pairs between Di 
and Di–1, each denoted as <sj, sj′>, where sj is a word sequence in revision Di and was corrected to 
become another, namely, sj′, by the author of revision Di–1. Then, we collect all correction pairs so 
found to construct the database DBcw. For example, assume Di = “National Chia Tang University” and 
Di–1 = “National Chiao Tung University.” Then, the correction pair <s1, s1′> = <“Chia Tang”, “Chiao 
Tung”> is generated and included into DBcw. 
 

 
Fig. 3.  Illustration of used terms and notations. 

 
Moreover, about the properties of correction pairs, it was observed that if the context of a word 

sequence sj in revision Di is the same as that of a word sequence sj′ in revision Di–1 (that is, if the 
preceding word of sj is the same as that of sj′ and the succeeding word of sj is the same as that of sj′ as 
well), then <sj, sj′> is a correction pair. Accordingly, a novel algorithm is proposed in this study for 
finding automatically all of the correction pairs between every two consecutive revisions for inclusion 
in DBcw. The algorithm is an extension of the longest common subsequence (LCS) algorithm [Bergroth 
et al. 2000]. The details are described in Algorithm 1. 

Algorithm 1. Finding correction pairs 
Input: two consecutive revisions Di and Di–1 in the revision history of an article P. 
Output: the correction pairs between Di and Di–1. 
Stage 1  finding the longest common subsequence. 

1) (Splitting revisions into word sets) Split Di and Di–1 into two sets of words, W = {w1, w2, …, wn} and 
W′ = {w1′, w2′, …, wm′}, respectively. 

2) (Constructing a counting table by dynamic programming) Construct an nm counting table T to 
record the lengths of the common subsequences of W and W' as follows. 

a) Initialize all elements in table T to be zero. 
b) Compute the values of table T from the upper left and denote the currently-processed entry 

in T by T(x, y) with x = 1 and y = 1 initially. 
c) If the content of wx is identical to that of wy′, then let T(x, y) = T(x – 1, y – 1) + 1; else, let T(x, 

y) = max (T(x – 1, y), T(x, y – 1)). 
d) If x is not larger than n, then let x = x + 1 and go to Step 2c); else, if y is not larger than m, 

then let x = 1 and y = y + 1 and go to Step 2c); else, regard table T as being filled up and 
continue. 
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3) (Finding the longest common subsequence) Apply a backtracking procedure to table T, starting 
from T(m, n), to find the longest common subsequence L = {l1, l2, …, lt}, where each element li in 
L is a word common to W and W'. 

Stage 2  finding the correction pairs. 
4) (Finding the correction pairs) Starting from the first element l1 of L with the currently-processed 

element in L being denoted by lp, find the correction pairs as follows. 
a) If the word sequence sj in Di with its preceding and succeeding words being lp and lp+1, 

respectively, is not empty and if the word sequence sj′ in Di–1 with the same context 
condition is not empty, either, then take <sj, sj′> as a correction pair. 

b) Increment p by 1 and go to Step 4) until p > t.  

We run Algorithm 1 for every two consecutive revisions of all the articles downloaded from 
Wikipedia to obtain a large set of correction pairs and write them into the database DBcw. 
Furthermore, we count the total number Ncp of times that each correction pair CP is so obtained, and 
call the number Ncp the correction count of CP. The correction counts are also kept in the database 
DBcw for use in the proposed data hiding process. 

As a summary, we use a record in the database DBcw to keep the following information about a 
correction pair <sj, sj′>: 1) an original word sequence sj; 2) a new word sequence sj′; and 3) the 
correction count Ncp of the pair. Moreover, we define a chosen set of a word sequence s' in DBcw to be 
the one which include all the correction pairs <s, s'> with s' as their identical new word sequences. For 
example, Table III (shown in Section IV) shows a chosen set of the word sequence “such as.” 

3.2 Secret Message Embedding 

In the phase of message embedding with a cover document D0 as the input, the proposed system is 
designed to generate a stego-document D′ with consecutive revisions {D0, D1, D2, …, Dn} by producing a 
previous revision Di from the current revision Di–1 repeatedly until the entire message is embedded, as 
shown in Figure 3 where the direction of revision generation is indicated by the green arrows. The 
stego-document D′ including the revision history {D0, D1, D2, …, Dn} then is kept on a collaborative 
writing platform, which may be Wikipedia or others. To simulate a collaborative writing process more 
realistically, we utilize the four aforementioned characteristics of revisions to “hide” the message bits 
into the revisions sequentially: 1) the author of the previous revision Di, 2) the number of changed 
word sequences in the current revision Di–1, 3) the changed word sequences in the current revision Di–1, 
and 4) the replacing word sequences in the previous revision Di, as described in the following. 

3.2.1 Encoding the Authors of Revisions for Data Hiding. We encode the authors of revisions to hide 
message bits in the proposed method. For this, at first we select a group of simulated authors, with 
each author being assigned a unique code a, called author a. Then, if the message bits to be embedded 
form a code aj, then we assign author aj to the previous revision Di as its author to achieve embedding 
of message bits aj into Di. For example, assume that four authors are selected and each is assigned a 
unique code a as shown in Figure 4, respectively. If the message bits aj to be embedded is “01,” then 
Jessy with author code “01” is selected to be the author of the revision Di. Moreover, every revision of 
D0 through Dn will be assigned an author according to the corresponding message bits, and so an 
author can be assigned to conduct more than one revision or reversely no revision in the generated 
revisions. 
 

 
Fig. 4.  Illustration of encoding authors of revisions for data hiding. 
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3.2.2 Using the Number of Changed Word Sequences for Data Hiding. In the process of generating 
the previous revision Di from the current one Di–1, we select some word sequences in Di–1 and changed 
them into other ones in Di. It is desired to use as well the number Ng of word sequences changed in 
this process as a message-bit carrier. 

To implement this aim, at first we set on the magnitude of Ng a limit Nc taken to be the maximum 
allowed number of word sequences in Di–1 that can be changed to yield Di. This limitation makes the 
simulated step of revising Di–1 to become Di look more realistic because usually not very many words 
are corrected in a single revision. Next, we scan the word sequences in the text of the current revision 
Di–1 sequentially and search DBcw to find all the correction pairs <sj, sj'> with sj' in Di–1. Then, we 
collect all sj' in these pairs as a set Qr, which we call the candidate set of word sequences for changes in 
Di–1. Finally, we select Ng word sequences in Qr to form a set Qc such that the binary version of the 
number Ng is just the current message bits to be embedded. 

But for this process of using Ng as a message-bit carrier to be feasible, several problems must be 
solved beforehand, including: 1) the dependency problem, 2) the selection problem, 3) the 
consecutiveness problem, and 4) the encoding problem, as described in the following. 

3.2.2.1. The dependency problem. We say that two word sequences in Di–1 are dependent if some 
identical words appear in both of them, and changing word sequences with this property in Di–1 will 
cause conflicts, leading to a dependency problem which we explain by an example as follows. 

As shown in Figure 5(a), Di–1 = “you are not wrong, who deem that my days have been a dream” 
and Qr includes 11 word sequences denoted as q1 through q11, respectively. From Figure 5(a) we can 
see that the word sequences q2, q3, and q5 in Qr are dependent on the word sequence q4 because the 
intersection of each of the former three with the latter one is non-empty. If we correct q4 = “are not 
wrong” in Di–1 to be another, say “is right,” then the dependent word sequences q2, q3, and q5 in Di–1 
cannot be selected and changed anymore because they include word sequences in q4 which have 
already been changed and disappeared. That is, any part of a changed word sequence cannot be 
changed again; otherwise, a dependency problem will occur. 

 

  
(a) (b) 

Fig. 5.  Illustration of the dependency problem. (a) Revision Di1 and candidate set Qr where the dependent word sequences are 
surrounded by red squares. (b) Set I that corresponds to the set Qr for solving the dependency problem. 

 
To avoid this problem in creating Di from Di–1, we propose a two-step scheme: 1) decompose Qr into 

a set of lists, I = {I1, I2, …, Iu}, with each list Ii including a group of mutually dependent word 
sequences (i.e., with every word sequence in each Ii being dependent on another in the same list) and 
every two word sequences in two different lists, respectively, in I being independent of each other; and 
2) select only word sequences from different lists in set I and change them to construct a new revision. 
The details to implement the first step is described in Algorithm 2. After applying the first step on the 
set Qr as shown in Figure 5(b), it will be transformed into I = {(q1), (q2, q3, q4, q5), (q6), (q7), (q8), (q9, q10), 
(q11)} where each pair of parentheses encloses a list of mutually dependent word sequences. With I 
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ready, we can now select word sequences from distinct lists Ii in it, such as q1, q2, q6, and q9, to 
simulate changes of word sequences in revision Di–1 without causing the dependency problem. 

3.2.2.2. The selection problem. It is desired to select word sequences for use in the simulated 
revisions according to their usage frequencies in DBcw, so that a more frequently-corrected word 
sequence has a larger probability to be selected, forging a more realistic revision. For this aim, 
following [Liu and Tsai 2007; Wayner 1992], we adopt the Huffman coding technique to create 
Huffman codes uniquely for the word sequences in Qr according to their usage frequencies, and select 
word sequences with their codes identical to the message bits to be embedded. Specifically, according 
to a property of Huffman coding, the lengths of the resulting Huffman codes of word sequences are in 
reverse proportion to the usage frequencies of the word sequences. So a word sequence with a shorter 
Huffman code will have a larger probability to be selected, which can be computed as (1/2)L where L 
denotes the number of bits of the code. That is, the use of Huffman coding indeed can achieve the aim 
of selecting word sequences in favor of those which are more frequently corrected in real cases. 

But a problem arises here  after we select one word sequence qy in this way, qy cannot be used in 
the revision again for encoding an identical succeeding code in the message because qy has already 
been changed into another word sequence, causing a problem which we call the selection problem. This 
problem comes partially from the unique decidability property of Huffman coding. To illustrate this 
problem, for the previous example as shown in Figure 5 again, the Huffman codes for word sequences 
q1 through q11 are shown in Figure 6(a), and the message bit sequence to be embedded currently is 
“100100…” with the first six bits being just two repetitions of the code “100.” For this, at first we 
select word sequence q4 and change it into another in the revision because the first three message bits 
to be embedded, “100,” are just the code for q4 (indicated by red color). After this, the next three 
message bits to be embedded are again the code “100” (the blue color of message bits in Figure 6(a)); 
however, the corresponding word sequence q4 cannot be selected any further because it has already 
been changed in the current revision version, and other word sequences cannot be selected, either, 
because their codes are not the same as the current message bits “100” to be embedded. 

 

  
(a) (b) 

Fig. 6.  Illustration of the selection problem. (a) Huffman codes for the word sequences and the message bits that are 
encountered in the selection problem. (b) Dividing of the word sequences into groups to solve the selection problem. 

 

To solve this selection problem, suppose that based on the use of a key, we assign randomly the 
word sequences in Qr consecutively into Ng groups G1 through GNg, each group including multiple, but 
distinct, word sequences, where Ng is the number of word sequences changed in Di–1. Then, starting 
from group G1, we apply Huffman coding to assign codes to all word sequences in the currently-
processed group Gk according to their usage frequencies, and select a word sequence in Gk with its 
assigned code identical to the leading message bits for use in the revision. We apply this step 
repetitively until all groups are processed. In this process, Huffman coding is applied to each Gk with 
word sequences distinct from those in the other groups, so that the selection problem of choosing a 
word twice to change due to code repetition in the message will not happen any more. For example, as 
shown in Figure 6(b), Qr is divided into three groups: G1, G2, and G3, represented by red, blue, and 
green colors, respectively. Starting from G1, we assign Huffman codes to the elements in each group as 
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shown in Figure 6(b). Then, q2 will be selected because the code of q2 is the same as the first three bits 
“100…” of the message to be embedded. Then, next in G2, q8 will be selected because the message bits 
to be embedded are currently “100…” Finally, q11 in G3 will be selected because the current message 
bits to be embedded are “0…” In this way, the previous problem of being unable to embed the 
repetitive code “100” is solved automatically. In short, by decomposing randomly the candidate set Qr 
of word sequences for changes into groups and representing each group by a Huffman code, we can 
embed message bits sequentially by changing only one word sequence in each group without causing 
the selection problem.  

However, the above process is insufficient; it must be modified in such a way that word sequences 
which have mutual dependency relations are divided into an identical group in order to avoid the 
dependency problem as discussed in Section 3.2.2.1. For this aim, instead of decomposing the word 
sequences in Qr directly into random groups as mentioned previously, we divide randomly the 
mutually-independent list elements of I mentioned in Section 3.2.2.1 into Ng groups, where each group 
is denoted by GIk. Then, we take out all the word sequences in the lists in each GIk to form a new group 
of word sequences, denoted as Gk, resulting again in Ng groups of word sequences. For instance, for 
the previous example as shown in Figure 5, let Ng = 2 and suppose that the list elements of I are 
decomposed randomly into two groups: GI1 = {I1, I2, I3, I4} and GI2 = {I5, I6, I7}. Then, this procedure will 
yield the two groups of G1 = {q1, …, q7} and G2 = {q8, q9, q10, q11}. 

3.2.2.3. The consecutiveness problem. As shown in Figure 7(a), for example, the word sequence 
“increase in” in revision Di–1 is seen to become “improve themselves” in revision Di. This effect comes 
from two changes made during message embedding: the word sequence “increase” in Di–1 was changed 
to be “improve” in Di; and the word sequence “in” in Di–1 was changed to be “themselves” in Di. 
However, because of the consecutiveness of the two words “improve” and “themselves” in Di, the two 
changes might be considered as a single one during secret message extraction, i.e., the word sequence 
“increase in” in Di–1 might be regarded to have been changed to be “improve themselves” in Di. This 
ambiguity causes a problem, namely, we cannot know whether a change from a word sequence in Di–1 
to be another in Di is from one group or two, or equivalently, we cannot know the true number Ng of 
changed word sequences in Di–1, so that we cannot extract later the embedded messages bits correctly. 
We call this difficulty in message extraction a consecutiveness problem. 

 

 

  
(a) (b) 

Fig. 7.  Illustration of the consecutiveness problem. (a) An example for illustration of the consecutiveness problem. (b) Choosing 
splitting points randomly to solve the consecutiveness problem. 

 
Obviously, word sequences in different groups must be made non-consecutive in order to solve the 

problem. For this aim, the previously-mentioned solution to the selection problem is modified further. 
Specifically, by the use of a key again we choose randomly Ng – 1 lists, say Ii1, Ii2 , …, IiN (with N = Ng  
1), of the set I for use as splitting points to divide I into Ng groups with Ii1 through IiN not included in 
any of the Ng groups. For instance, let Ng = 2 for the previous example as shown in Figure 5 and the 
number of splitting points may be computed accordingly to be Ng – 1 = 1. Consequently, as shown in 
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Figure 7(b), we choose a splitting point, say I5, to divide the set I into two groups: GI1 and GI2, both not 
including I5. The final groups of word sequences then become: G1 = {q1, q2, q3, q4, q5, q6, q7} and G2 = {q9, 
q10, q11}. Because of the existence of the splitting point I5 = (q8), groups G1 and G2 are non-consecutive, 
and accordingly uses of them for creating word sequence changes in revisions will now cause no 
consecutiveness problem. 

3.2.2.4. The encoding problem. The issue up to now is how to determine the aforementioned number 
Ng of word sequences to be changed in Di–1. Although a limit Nc is set for Ng, the maximum number Nm 
of word sequences that can be selected in Di–1 may even be smaller than Nc. Therefore, we must 
compute Nm first before we can embed message bits according to the number Ng. After Nm is decided, 
Ng may then be taken to be a number not larger than Nm. The actual value of Ng is decided by the 
leading secret message bits, say nm ones. Consequently, we may assume that Nm satisfies the two 
constraints of 1) Nm = 2 mn  and 2) 1 ≤ Nm ≤ Nc, where nm is a positive integer. In addition, in order to 
embed message bits by selecting a word sequence from a group Gk, the number of elements in Gk 
should not be smaller than two so as to embed at least one message bit by Huffman coding; hence, 
each group GIk mentioned previously should be created to include at least two elements of I. 
Accordingly, the maximum number Nm of word sequences to be changed in Di–1 can be figured out to 
satisfy the following formula: 

 [NI  (Nm  1)]/Nm  2, (1) 
where NI is the number of elements in set I and Nm – 1 represents the aforementioned number of 
chosen splitting points. The inequality (1) can be reduced to 

 Nm  (NI + 1)/3. (2) 
Accordingly, we can compute Nm by the following rule: 

 if (NI + 1)/3 > Nc, set Nm = Nc;   

 if 1  (NI + 1)/3  Nc, set 2log ( 1)/32 IN
mN    . (3) 

Furthermore, the content of Di–1 might be too little for Nm to be decided by Eq. (3). In that case, we 
abandon the original cover document D0 from which Di–1 is generated, and use another longer cover 
document as the input. After the value of Nm is computed, we can then use the leading nm bits of the 
message to decide the number Ng of changed word sequences in Di–1 by two steps: 1) express the first 
nm message bits as a decimal number; and 2) increment the decimal number by one. The second step 
is required to handle the case that the first nm message bits are all zeros, which leads to the undesired 
result of no word sequence being changed in the current revision. In this way, Ng becomes really a 
carrier of nm message bits. For example, the number of elements of the set I for the previously-
mentioned example as shown in Figure 5 is NI = 7. Let Nc = 4. Because (NI + 1)/3 = (7 + 1)/3 ≈ 2.67 ≤ 4 
= Nc, Nm is computed to be 

log (7 1)/32
2

    = 21 according to Eq. (3). So, nm = log2Nm = 1. And if the secret 

message is “101001…,” then the number Ng of changed word sequences should be taken, according to 
the above two steps, to be Ng = (1)2 + (1)10 = 2 because the first bit of the secret message is “1.” 

3.2.3 Encoding the Changed Word Sequences in the Current Revision for Data Hiding.  According to 
the previous discussions, we may assume that we have computed the number Ng of word sequences 
which should be changed in the current revision Di–1 according to the first nm bits of the secret 
message, and that we have classified the available word sequences in Qr into Ng groups, where each 
group Gk includes at least two word sequences and all word sequences in Gk are encoded by Huffman 
coding according to their usage frequencies. Specifically, the usage frequency of a word sequence sj' is 
taken to be the summation of the correction counts of all the correction pairs in the chosen set of sj', 
which have sj' as their common new word sequence. Then, starting from G1, we may select from each 
group Gk one word sequence with a Huffman code identical to the leading bits of the message to be 
embedded, achieving the goal of data hiding via changing word sequences in Di–1. 
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For example, assume that the usage frequencies of the word sequences in group G2 as shown in 
Figure 7(b) are: q9 = 100, q10 = 50, and q11 = 150; and the message is “10100….” Then, the Huffman 
codes assigned to q9, q10, and q11 are “01,” “00,” and “1,” respectively; and so we select q11 to hide the 
first bit “1” of the message because the code of q11 is “1.” 

3.2.4 Encoding the Replacing Word Sequences in the Previous Revision for Data Hiding. 
Symmetrically, we may use as well the replacing word sequences in Di to embed message data, where 
each replacing word sequence sj in Di corresponds to a changed word sequence sj' in Di–1, forming a 
correction pair <sj, sj′>. Specifically, recall that for each sj', we can find a chosen set of correction pairs 
from DBcw. From this set, we can collect all the original word sequences of the correction pairs as 
another set Qc', with each word sequence in Qc' being appropriate for use as the replacing word 
sequence sj. Let Qc' = {s1, s2, …, sw}. Then, to carry out message data hiding, we encode all sj in Qc' by 
Huffman coding according to their usage frequencies as well, and choose the one with its code 
identical to the leading message bits for use as the word sequence sj replacing sj'. Here the usage 
frequency of each sj is the correction count of the correction pair <sj, sj'>. For example, Table III shows 
the chosen set of the word sequence “such as” with all included original word sequences already 
assigned Huffman codes according to their usage frequencies. Based on the table, if the message to be 
embedded currently is “01001001…,” then we change the word sequence “such as” in the current 
revision Di–1 to be the word sequence “for example” in the previous revision Di because the Huffman 
code for “for example,” namely, 0100, is the same as the first four bits of the secret message. 

3.2.5 Secret Message Embedding Algorithm. As a summary, we have demonstrated the usability of 
the aforementioned four characteristics of revisions for data hiding. Therefore, we can generate a 
stego-document with a forged revision history which looks like a realistic work written by people 
collaboratively. The details of the proposed message embedding process are described in Algorithm 2 
below. 

Algorithm 2. Secret message embedding 
Input: a cover document D0 with an article to be revised collaboratively, a binary message M of length 

t, a secret key K, and a collaborative writing database DBcw constructed by Algorithm 1. 
Output: a stego-document D′ with a revision history {D0, D1, D2, …, Dn}. 
Stage 1  message preparation and parameter determination. 

1) (Message composition) Affix an s-bit binary version of t to the beginning of M to compose a new 
binary message M′, where the value s is agreed by the sender and the receiver beforehand. 

2) (Message encryption) Randomize M′ to yield a new binary message M′′ using K. 
3) (Parameter determination) Use K to decide randomly both the number Na of authors and the limit 

Nc on the number Ng of word sequences to be changed in every revision. 
4) (Author encoding) Use K to select Na authors from those who were involved in works conducted on 

the collaborative writing platform to form an author list Ia, and assign a unique na-bit code to 
each selected author in Ia. 

Stage 2  revision generation and message embedding. 
5) (Message embedding and revision generation) Generate the previous revision Di from the current 

revision Di–1 repeatedly while embedding the binary message M′′ by running Algorithm 4 which 
was designed according to the schemes described in Sections 3.2.1 through 3.2.4 and is shown in 
the Online Appendix with the inputs Di–1, M'', K, and Ia until all bits in M'' are embedded, where 
i = 1 initially. 

6) If message M'' is not exhausted, then repeat the above process to generate more revisions; 
otherwise, collect the finally-revised article and the history of all the revisions, D0 through Dn, as 
a stego-document D'; and take D' as the output for use on the collaborative writing platform.  
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3.3 Secret Message Extraction 

We can extract the secret message in the stego-document by a reverse version of the message 
embedding process described by Algorithm 2. The details are described by Algorithm 3 in the following. 

Algorithm 3. Secret message extraction 
Input: a stego-document D′ including revision history {D0, D1, D2, …, Dn} of a collaboratively-revised 

article, the secret key K used in Algorithm 2, and the database DBcw constructed by Algorithm 1. 
Output: a binary message M. 
Stage 1  preparation. 

1) (Parameter determination and author encoding) Use K to decide randomly the number Na of 
authors, the limit Nc on the number Ng of word sequences to be changed in every revision, and 
the list Ia of Na authors, in the same way as Steps 3 and 4 of Algorithm 2. 

Stage 2  encrypted message extraction. 
2) (Message bit extraction) For each revision Di–1 with i = 1 initially, extract the binary message m 

by running Algorithm 5 which is essentially a reverse version of Algorithm 4 and shown in the 
Online Appendix with the inputs Di–1, Di, K, and Ia; and append the result m to a bitstream M'' 
until i > n where M'' is set empty initially. 

Stage 3  message content recovery. 
3) (Message decryption) Decrypt the bitstream M′′ to get M' using K. 
4) (Message extraction) Express the first s bits of M' in decimal form as t and output the (s + 1)th 

through (s + t)th message bits of M' as the secret message M.  

4. EXPERIMENTAL RESULTS 

A collaborative writing database DBcw was constructed by mining the huge collaborative writing data 
in Wikipedia using Algorithm 1 described previously. Note that this is a totally automatic work and 
need be performed only once for building the database DBcw using Algorithm 1, where 3,446,959 
different correction pairs were mined from 2,214,481 pages with 33,377,776 revisions in English 
Wikipedia XML dump. The total size of the downloaded Wikipedia data is about 210.3 GB and the size 
of the mined data is just 888 MB. Moreover, some revisions might suffer from vandalism [Bronner and 
Monz 2012; Dutrey et al. 2010], and by the method proposed by Bronner and Monz [2012], such 
revisions were ignored if they have been reverted due to vandalism. Also, keywords in Wiki markup1 
were ignored as well. Table I shows the top 20 most frequently used correction pairs, where the one in 
the first place is the pair <“BCE”, “BC”> with a correction count of 19,430. Table II shows some 
correction pairs, each having more than one word either in its original word sequence or in its new 
word sequence. One of the correction pairs in this table is <“like”, “such as”> with a correction count of 
773. 

The constructed database DBcw contains 1,688,732 chosen sets of correction pairs where all the 
correction pairs in a chosen set have identical new word sequences, meaning that there are 1,688,732 
word sequences which can be chosen and changed to other word sequences in the message embedding 
phase. Figure 8 shows an illustration of the numbers of entries in the chosen sets with sizes from 2 to 
40. Table III shows the content of a chosen set with the new word sequence “such as,” as well as the 
usage frequency and Huffman code for each original word sequence which may be replaced by “such 

                                            
1 http://en.wikipedia.org/wiki/Help:Wiki_markup 
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as” during message embedding. From the table, we can see that the most frequently used original 
word sequence is “like,” so it has the shortest code “1” and the largest probability to be chosen. 
 

 
 

 
 

 
After the message embedding phase, the proposed system will generate a stego-document to be 

kept in a collaborative writing platform and a user can later extract the embedded message from it 
using a key. Each generated stego-document including its revision history was kept on a Wiki site 
which was constructed in this study using the free software: MediaWiki2. Note that though here the 
pre-selected collaborative writing platform is the constructed Wiki site, yet the proposed method can 
be used on other collaborative writing platforms as well. As an example, with a cover article as shown 
in Figure 9(a), the message “Art is long, life is short,” and the key “1234” as inputs into Algorithm 2, a 
stego-article as shown in Figure 9(c) together with a revision history as shown in Figure 9(b) was 

                                            
2 http://www.mediawiki.org/wiki/MediaWiki. 

 
Fig. 8.  The number of entries of chosen sets with the size from 2 to 40. 

Table II.  Some Correction Pairs Each with More Than One Word Either in the Original Word Sequence or in the 
New Word Sequence 

Original word 
sequence 

New word 
sequence 

Usage 
frequency 

Original word 
sequence 

New word 
sequence 

Usage 
frequency 

Irish evil Evil 2,367 due to because of 933 
Evil Irish evil 2,253 like such as 773 
US United States 1,094 didn't did not 665 
It's It is 1,052 passed away died 374 
due to the fact that because 359 doesn't does not 489 
have been were 348 WWII World War II 395 
will be was 903 UK United Kingdom 599 

Table I.  Top Twenty Frequently Used Correction Pairs 

Original word 
sequence 

New word 
sequence 

Usage 
frequency 

Original word 
sequence 

New word 
sequence 

Usage 
frequency 

BCE BC 19,430 the a 7,009 
BC BCE 17,878 is are 6,908 
color colour 15,356 a the 6,278 
colour color 14,852 are is 5,430 
The the 14,232 colors colours 5,301 
a an 9,792 colours colors 5,078 
it's its 9,658 CE AD 4,833 
is was 9,607 AD CE 4,262 
an a 8,954 image Image 4,259 
was is 7,407 was were 3,924 
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generated by the proposed method. We can see from Figure 9(b) that five revisions have been created 
in order to embed the secret message. And Figures 9(d) and 9(e) show the extracts of the differences 
between the two newest revisions, where the words in red in Fig. 9(d) were corrected to be those in red 
in Figure 9(e) by the author “Natalie.” Figures 9(f) and 9(g) shows respectively the messages extracted 
by Algorithm 3 using a right key and a wrong one. These results show that when a user uses a wrong 
key, the system will return a random string as the message extraction result. 
 

 
 

 

(a) (b) (c) 

  
(d) (e) 

  
(f) (g) 

Fig. 9.  An example of generated stego-documents on constructed Wiki site with input secret message “Art is long, life is short.” 
(a) Cover document. (b) Revision history (c) Stego-document. (d) Previous revision of revision of (e) with words in red being those
corrected to be new words in revision of (e) in red. (e) Newest revision of created stego-document. (f) Correct secret message 
extracted with the right key “1234.” (g) Wrong extracted secret message with a wrong key “123.” 

 
A series of experiments with different parameters have also been conducted to quantitatively 

measure the data embedding capacity of the proposed method using a lot of cover documents as inputs. 
Since the data embedding capacity is dependent on the secret message content which influences the 
selections of authors and changed word sequences for each revision, we have run experiments for each 
document ten times using different messages as inputs, and recorded the average of the resulting data 
embedding capacities. The parameters of six different cover documents are shown in Table IV. For 
example, document 1 has 2,419 characters, 641 words, and 80 sentences; document 3 has 10,128 
characters, 2,211 words, and so on. 

In these experiments, firstly we selected the replacing word sequences for a revision to be the top n 
most frequently used ones in the database DBcw, where n = 2, 4, 8, 16, 32. Figure 10(a) shows the 
resulting data embedding capacities from which we can see that the more the selected replacing word 
sequences, the more the embedded message bits. This result comes from the fact that when more 
replacing word sequences are available, the constructed Huffman codes will become longer. 

Table III.  An Example of a Chosen Set with the New Word Sequence “such as” 

Original word 
sequence 

Usage frequency Huffman code Original word 
sequence 

Usage frequency Huffman code 

like 773 1 specifically 12 011001 
including 143 00 namely 10 011000 
for example 39 0100 particularly 10 0111111 
of 29 01110 like the 10 010100 
notably 23 01101 most notably 10 010101 
especially 20 01011 include 9 0111110 
and 16 011110    
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We have also conducted experiments on using different numbers of revisions (1, 2, 4, 8) in the 
generated stego-documents to see the resulting data embedding capacities. Figure 10(b) shows the 
results which indicate that when the number of revisions in the stego-document is larger, more 
message bits can be embedded, as expected. This means that if we want to embed a larger secret 
message, more revisions should be generated. Yet, on a Wiki site, each revision will be stored as its 
original text without any compression. Thus, a larger storage space is required to store more 
generated revisions when the secret message is longer. However, one can solve this issue by simply 
comparing the difference between two adjacent revisions and only storing the difference between them 
where this comparison function may be provided by other collaborative writing platforms if desired. 
Furthermore, we can see also from Figures 10(a) and 10(b) that when a cover document has a larger 
size, the resulting data embedding capacity will be larger as well. Thus, if we want to embed more 
data, we have to choose a larger cover document. 
 

 
 

  
(a) (b) 

Fig. 10.  The embedding capacities. (a) Embedding capacities of documents with chosen sets of different sizes. (b) Embedding 
capacities of documents with different number of revisions. 

 
Figure 11 shows a comparison of the resulting embedding capacities yielded by the proposed 

method with those yielded by Liu and Tsai’s method [2007]. We can see from Figure 11 that when the 
number of revisions of the proposed method is equal to one, the embedding capacity of the proposed 
method is very close to that yielded by Liu and Tsai [2007]. Note that not every word sequence in the 
current revision Di–1 can be utilized for data embedding in the proposed method, because we limit the 
maximum number of corrected word sequences in a revision. Thus, when the number of revisions is 
just one, the embedding capacity of the proposed method may not be better than that of Liu and Tsai 
[2007] which allows the use of every word for message embedding. However, when the number of 
revisions is equal to or greater than two, the embedding capacities of the proposed method are instead 
much larger. 

Like the methods proposed by [Bronner and Monz 2012 Bronner et al. 2012] which can be utilized 
for multiple languages, we have tried to apply Algorithm 1 to two adjacent revisions of a Chinese 
document and obtain the correction pairs for them successfully, where the two revisions are shown in 
Figure 12. Note that since Chinese has no explicit word segmentation mark, we cannot use spaces to 
split an article in Chinese into words. Therefore, each character in Chinese was treated as a word 
directly to solve the issue. Figure 12 shows the found correction pairs between the two revisions, in 
which, e.g., one of the found correction pairs is <做到, 達成>, where both word sequences in the pair 
mean the same as “achieve” in English. 
 

Table IV.  The Information of Experimental Documents 

Document Character Word Sentence Document Character Word Sentence 
Document 1 2,419 641 80 Document 4 11,215 2,617 86 
Document 2 4,762 956 45 Document 5 26,591 6,180 631 
Document 3 10,128 2,211 121 Document 6 60,349 14,306 1,603 
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Fig. 11.  Comparison of embedding capacities yielded by Liu and Tsai [2007] and proposed method using different numbers of 
revisions. 

 

 
Fig. 12.  An example to show the interoperability of the proposed method which can be applied on Chinese articles. 

 
Moreover, for the purpose of presenting the contributions made by the proposed method, we have 

compared it with several other methods for data hiding via texts [Bolshakov 2005; Chapman et al. 
2001; Shirali-Shahreza and Shirali-Shahreza 2008; Liu and Tsai 2007] as shown in Table V. Firstly, 
the synonym replacement methods [Bolshakov 2005; Chapman et al. 2001; Shirali-Shahreza and 
Shirali-Shahreza 2008] utilize synonym dictionaries to embed messages, where the synonym 
dictionaries were usually manually built by language experts. And the embedding capacities of these 
methods are limited, since only those word sequences in the cover document which exist in the 
synonym dictionary can be utilized for data embedding. Also, since they replace the word sequences in 
a cover document into their synonyms, the resulting stego-document is usually a worse version of the 
original cover document due to the possible losses of the original meanings in the replacements. 
Furthermore, the usage frequencies of the corresponding synonyms of a word sequence are not 
analyzed in these methods. Secondly, the change tracking method proposed by Liu and Tsai [2007] 
utilizes synonym dictionaries and a small collaborative writing database with only 7,581 chosen sets 
to embed messages, where the synonym dictionaries were built manually as well. Also, the embedding 
capacities of this method is limited, since only two revisions are generated by two authors and only 
the word sequences in the cover document are degenerated for data embedding. Moreover, the usage 
frequencies of word sequences of this method are just a simulated one created by using the Google 
SOAP Search API. 

As a summary, several merits of the proposed method can now be pointed out, which include: (1) 
the database of the proposed method is constructed automatically from Wikipedia, which is the largest 
collaborative writing platform on the Internet; therefore, the resulting stego-document generated by 
the proposed method is more realistic than that generated by the other four methods [Bolshakov 2005; 
Chapman et al. 2001; Shirali-Shahreza and Shirali-Shahreza 2008; Liu and Tsai 2007]; (2) the 
dababase constructed by the proposed method is much larger than that by Liu and Tsai [2007], with 
1,688,732 chosen sets in the former and only 7,581 in the latter; (3) the usage frequency of each 
correction pair used in the proposed method is a real parameter obtained by mining the collaborative 
writing data found on Wikipedia, but that of Liu and Tsai [2007] is just a simulated one created by 
using the Google SOAP Search API; and (4) the proposed method can simulate the collaborative 
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writing process conducted by multiple authors and revisions, but Liu and Tsai [2007] can only 
generate one pre-draft version of a cover text, simulating the work of two authors. Thus, to the best of 
our knowledge, this is the first work that can simulate the real collaborative writing process with 
multiple authors and revisions by mining the revision histories on Wikipedia or similar platforms and 
using the characteristics in the collaborative writing process effectively for message embedding. 
 

 
 
Furthermore, to illustrate the usability of the proposed method in the real world, it is pointed out 

that one can build a collaborative writing platform, such as a Wiki site, for uses by a school, company, 
or government and then implement the proposed method on this platform. For example, for a school, 
especially with a large size, the teachers may establish a big wiki site with many documents for 
general teaching, administration, and communication uses, which are accessible by teachers, staff 
members, students, parents, etc. Sometimes, a teacher might want to communicate with a student’s 
parents in a secret way. Then, the wiki site may be used as a platform for such covert communication 
of messages. In addition, the teacher may keep secret records of the students on the wiki site using 
the data embedding schemes provided by the proposed method. That is, a collaborative writing 
platform can not only let people work collaboratively but also can let people hide message into the 
documents existing on this platform for applications of covert communication and secret data keeping. 

5. SECURITY CONSIDERATION 

5.1 Camouflage 

In the proposed method, we collected collaborative writing data in Wikipedia written by real people to 
construct the database DBcw for use in message embedding. Therefore, the stego-document created 
using DBcw is more robust to attacks by malicious users since the stego-document looks like a realistic 
work completed by multiple virtual authors on a collaborative writing platform. These authors do not 
actually edit these revisions and so are regarded as virtual authors. These virtual authors are created 
to simulate the real-world authors and used to embed messages to avoid the problem of involving real 
authors who might leak the secret. Also, to increase the realisticness of the created stego-document, 
the content of the corrected word sequences in a revision and the word sequences replacing the 
corrected ones are selected according to the real usage frequencies mined from the collaborative 
writing data in Wikipedia. Thus, the statistical property of simulated corrections in the generated 
stego-document is close to that of a real one.  

Moreover, in order to increase the camouflage effect of the stego-document created by the proposed 
method, two additional ways can be adopted. The first is to change the time of editing for each 
generated revision in a stego-document to make it fit the model of revision time in reality, such as the 
analyzed patterns of revision history mentioned in [Viégas et al. 2004]. This can be achieved by using 

Table V.  Comparison of Methods for Data Hiding via Texts 

Method Utilized database Database 
construction 

Embedding 
capacity 

# of 
revisions 

# of 
authors 

Usage 
frequencies of 

word sequences 

Chapman et al. [2001] Synonym dictionary Manually Limited 1 1 − 

Bolshakov [2005] Synonym dictionary Manually Limited 1 1 − 

Shirali-Shahreza and 
Shirali-Shahreza [2008] Synonym dictionary Manually Limited 1 1 − 

Liu and Tsai [2007] 
Synonym dictionary + 

Small collaborative writing 
database 

Mainly 
manually Limited 2 2 Simulated 

Proposed method Large collaborative writing 
database Automatically Unlimited Unlimited Many Real data 
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a key to select randomly a time for each revision in a possible time duration between the related pair 
of adjacent revisions. The second way is about the selection of authors for data embedding. If an 
author makes more realistic corrections in his/her revision history of creating a stego-document, then 
inclusion of him/her as one of the collaborative authors will cause less conspicuousness to adversaries. 
This idea can be implemented simply by pre-generating some revision data of virtual authors who 
looks like owning the real collaborative writing work from the collaborative writing platform, as 
conducted in the study. 

In addition, since we assume that only word sequence corrections will occur in the collaborative 
writing process, the stego-document created by the proposed method contain only such a type of 
correction. We can remedy this by manipulating additionally the unused portions of the stego-
document to include more types of corrections, such as paraphrases and factual edits, to mislead the 
adversary, where these extra corrections will be ignored during message extraction. 

5.2 Randomness  

According to Kerckhoffs’ principle [Kerckhoffs 1883], it may be assumed that an adversary, who 
understands the system but does not have the secret key, can obtain no information about the 
embedded message. By using the key to enhance the security of the proposed technique, some 
randomness measures in the phases of secret message embedding and secret message extraction are 
adopted in the proposed method: (1) randomization of the bits of the secret message to be embedded by 
encryption; (2) randomization of the parameters and author encoding, including the number of 
authors, the maximum allowed number of word sequences changed in the revision, the author list, 
and the author codes; and (3) randomization of the selections of the splitting points for each revision. 

More specifically, in the first measure, the secret message is randomized though encryption by 
using the key, where the encryption method we adopted is AES-256. The Advanced Encryption 
Standard (AES) is one of the most popular ciphers and provides very high security  the public 
known attacks up to now have all been shown to be computational infeasible [Bogdanov et al. 2011; 
Biryukov and Khovratovich 2009]. In the second measure, the parameters (the number of authors and 
the maximum allowed number of word sequences changed in the revision) and the author encoding 
(the author list and the author code for each author) are decided by the key and some pseudo-random 
number generators. In the third measure, for each revision, Ng – 1 lists of the set I for use as the 
splitting points are selected randomly by the key and a pseudo-random number generator. Let the 
resulting stego-document D′ include revision history {D0, D1, D2, …, Dn} with Na authors, the size of 
the set I of word sequences for selection in each revision Dk be Ik, and the number of word sequences 
changed in each revision Dk be Ngk. Then, for an adversary who does not have the key, he/she needs to 
execute Algorithm 3 for all possible combinations of word splitting points of the revisions and the 
author codes, and observe the result to check the correctness of the encrypted secret message. The 
time complexity for this work is of the order of (Na!)× 1

0 ( , 1)
k

n
k k gC I N
    which is a very big number, 

where ( , )C a b  means the combination of a things taken b at a time without repetition. Moreover, it is 
very hard for an adversary to decide which result yielded by the algorithm is correct because the 
secret message is encrypted by AES-256 and looks like random noise. Therefore, the proposed method 
is expected to be secure for secret message hiding. 

Additionally, the collaborative writing database may be available to adversaries since they can re-
construct the collaborative writing database by using the same Wikipedia data and the same 
algorithms as those proposed in this study. To increase the security against this type of attack, one 
additional way to increase the robustness of the proposed method is to use the key to decide the subset 
of a chosen set and select a word sequence from the subset. Therefore, only authorized users with the 
key can know the correct subset of the chosen set, and an adversary cannot. 
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5.3 Possible Extensions for the Proposed Method Using Natural Language Processing Methods 

For the ability of constructing the collaborative writing database automatically and generalizing 
the proposed method for multi-language uses, four characteristics of collaborative writing as 
mentioned previously have been analyzed based on the assumption that only word sequence 
corrections will be made in a revision. However, the real collaborative writing process is much more 
complicated and language-dependent, so data hiding via collaborative writing is still worth intensive 
researches. 

Many possible methods in natural language processing [Bronner and Monz 2012; Bronner et al. 
2012; Dutrey et al. 2010] may be applied to extend the proposed method. For example, some original 
word sequences in an input cover document may be polysemous. Therefore, selecting appropriate word 
sequences from DBcw by the proposed method to replace such polysemous word sequences might 
constitute a meaningless context. One possible way out is to analyze the distributional similarity of 
word sequences [Madnani and Dorr 2010] to find appropriate replacing word sequences that do not 
cause this problem, where distributional similarity means the similarity in the meanings of those 
words that have the same contexts in documents. Moreover, we can also build language models 
[Bronner and Monz 2012; Bronner et al. 2012; Dutrey et al. 2010], such as dependency trees used in 
grammatical analysis, to embed messages during revision generations based on the model. 

6. CONCLUSIONS 

A new data hiding method via creations of fake collaboratively-written documents on collaborative 
writing platforms has been proposed. An input secret message is embedded in the revision history of 
the resulting stego-document through a simulated collaborative writing process with multiple virtual 
authors. With this camouflage, people will take the stego-document as a normal collaborative writing 
work and will not be expected to realize the existence of the hidden message. To generate simulated 
revisions more realistically, a collaborative writing database was mined from Wikipedia, and the 
Huffman coding technique was used to encode the mined word sequences in the database according to 
the statistics of the words. Four characteristics of article revisions were identified, including the 
author of each revision, the number of corrected word sequences, the content of the corrected word 
sequences, and the word sequences replacing the corrected ones. Related problems arising in utilizing 
these characteristics for data hiding have been solved skillfully, resulting in an effective multi-way 
method for hiding secret messages into the revision history. Moreover, because the word sequences 
used in the revisions were collected from a great many of real people’s writings on Wikipedia, and 
because Huffman coding based on usage frequencies is applied to encode the word sequences, the 
resulting stego-document is more realistic than other text steganography methods, such as word-shift 
methods [Kim et al. 2003], non-displayed characters based methods [Lee and Tsai 2010]], synonym 
replacement methods [Bolshakov 2005; Chapman et al. 2001; Shirali-Shahreza and Shirali-Shahreza 
2008], etc. The experimental results have shown the feasibility of the proposed method. Future works 
may be directed to analyzing more characteristics of collaborative writing works or establishing 
appropriate language models [Bronner and Monz 2012; Bronner et al. 2012; Dutrey et al. 2010] for 
more effective data hiding or other applications. 
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Online Appendix to: 
A New Data Hiding Method via Revision History 
Records on Collaborative Writing Platforms  

YA-LIN LEE1 AND WEN-HSIANG TSAI1, 2, 1National Chiao Tung University, 2Asia University, Taiwan 

A. SUPPLEMENTAL ALGORITHMS 

The algorithms for message embedding and revision generation which are utilized in the phases of 
secret message embedding and secret message extraction are described in the following as Algorithms 
4 and 5, respectively.  

A.1. Message embedding and revision generation 

Algorithm 4. Message embedding and revision generation 
Input: the current revision Di–1, a binary message M'', a secret key K, an author list Ia, and the 

collaborative writing database DBcw constructed by Algorithm 1. 
Output: a previous revision Di for Di–1. 
Stage 1  embedding data via author encoding. 
1) (Embedding bits by an author code) Choose an author aj for Di from Ia with its author code being 

identical to the leading na bits of M′′; and remove these na bits from M''. 
Stage 2  embedding data using the number of changed word sequences in the current revision. 
2) (Finding candidate word sequences for changes in Di–1) Create a candidate set Qr of word 

sequences for changes in Di–1 by the following steps. 
a) Take in order an unprocessed word w in Di–1, and set q as w initially. 
b) If q is identical to any new word sequence in DBcw, then add q to Qr and continue; if q matches 

some leading words in any new word sequence in DBcw, then let q be the concatenation of the 
old q and the right word of q in Di–1 and go to Step 2.b; else, continue. 

c) If there still exists any unprocessed word in Di–1, go to Step 2.a; otherwise, continue. 
3) (Finding independent word sequence lists in Qr) Decompose Qr to form a set I = {I1, I2, …, Iu} by 

the following steps. 
d) Take each word sequence in Qr as a list initially. 
e) Check the ordered word sequences in Qr one by one sequentially: 

if the currently-checked word sequence qs and its previous one qt include some common 
consecutive words, then regard qs as dependent on qt, add qs into the list of qt in I, and 
eliminate the list of qs itself in I; else, keep the list of qs in I. 

4) (Deciding the number of word sequences to be changed) Decide the number Ng of groups into 
which Qr is to be divided by the following steps. 
f) Compute Nm by Eq. (3) and compute nm as log2Nm. 
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g) Decide Ng as the decimal value of the first nm bits of message M'' plus one, and remove these 
nm bits from M''. 

Stage 3  embedding data via the word sequences changed in the current revision. 
5) (Choosing splitting points) Choose randomly Ng – 1 elements of I as splitting points using K. 
6) (Classifying the word sequences into independent sets) Divide the elements of I into Ng groups, GI1 

through GINg, by the splitting points, and take out all the word sequences in the lists in each GIk 
to form a new group, denoted as Gk, resulting in Ng groups of word sequences, G1 through GNg. 

7)  (Choosing word sequences to change) For each group Gk with k = 1 initially, encode its word 
sequences by Huffman coding according to their usage frequencies, choose and mark the word 
sequence sj' in Gk with its code matching the leading message bits of M'' as the word sequence to 
be changed, and remove the matched leading bits from M''. 

Stage 2.4  embedding message data via replacing the word sequences in the previous revision. 
8) (Finding the chosen set) Find the chosen set of the previously marked sj' from the correction pairs 

kept in DBcw, and collect all the original word sequences in the chosen set as a set Qc'. 
9) (Choosing the original word sequence for use in replacement) Encode the word sequences sj in Qc' 

by Huffman coding according to their usage frequencies, choose sj in Qc' with its code matching 
the leading message bits of M'', and remove the matched leading bits from M''. 

10) (Conducting word sequence correction) Replace the word sequence sj' in Di–1 with sj. 
11) (End of looping) Increase k by one and go to Step 7 until k > Ng. 
12) (Revision generation) Take the final revised content of Di–1 as the desired previous revision Di. 

A.2. Message extraction 

Algorithm 5. Message extraction 
Input: the current revision Di–1, the previous revision Di, a secret key K, the author list Ia, and the 

collaborative writing database DBcw constructed by Algorithm 1. 
Output: a binary message m. 
Stage 1  extracting message data from the author. 
1) (Extracting message bits from the author code) Find the author aj of the previous revision Di and 

let m be the na-bit code of this author. 
Stage 2  extracting message bits carried by numbers of changed word sequences in current revisions. 
2) (Finding Qr and I) Find Qr in Di–1 and I from Qr by performing Steps 2 and 3 of Algorithm 4. 
3) (Finding the correction pairs between Di and Di–1) Perform Algorithm 1 with Di and Di–1 as the 

input to get the correction pairs between Di and Di–1. 
4) (Collecting the information of correction pairs) Collect all the correction pairs yielded in the last 

step as a set CP, where each element cpo = <wo, wo′> in CP includes an original word sequence wo 
in Di and a new word sequence wo′ in Di–1. 

5) (Extracting the code for the number of changed word sequences) Conduct the following steps to 
extract the code for the number of changed word sequences in Di–1: 
a) compute Nm in Di–1 by Eq. (3) and nm as log2Nm; 
b) express the number of elements in set CP, which is also the total number Ng of the changed 

word sequences in Di–1, as an nm-bit binary number Ng'; 
c) decrement Ng' by one and append the nm bits of Ng' to m. 

Stage 3  extracting data via changed word sequences in current revisions. 
6) (Choosing splitting points) Choose splitting points in the same ways as Step 5 of Algorithm 4. 
7) (Classifying word sequences into independent sets) Perform Step 6 of Algorithm 4 to classify the 

elements of I into Ng groups. 
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8) (Choosing changed word sequences for message extraction) For each group Gk created in Step 7 
with k = 1 initially, encode its word sequences by Huffman coding according to their usage 
frequencies, and for each sj' in Gk, check whether sj' is identical to a new word sequence wo′ in CP: 
if so, append the code of sj' to m; else, check the next word sequence in Gk repeatedly. 

Stage 4  extracting message data via replacing word sequences in previous revisions. 
9) (Finding the chosen set) Find the chosen set of word sequence sj' from DBcw, and collect all the 

original word sequences in the correction pairs of the chosen set as a set Qc'. 
10) (Extracting the code of replacing word sequences) Encode the word sequences in Qc' by Huffman 

coding according to their usage frequencies, and for each sj in Qc', check whether sj is identical to 
an original word sequence wo in CP  if so, then append the Huffman code of sj to m and go to 
Step 8 with k increased by one until k > Ng; else, check the next word sequence in Qc' repeatedly. 


