
416 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 3, JUNE 1999

Correspondence

Obstacle Avoidance for Autonomous
Land Vehicle Navigation in Indoor

Environments by Quadratic Classifier

Ching-Heng Ku and Wen-Hsiang Tsai

Abstract—A vision-based approach to obstacle avoidance for au-
tonomous land vehicle (ALV) navigation in indoor environments is pro-
posed. The approach is based on the use of a pattern recognition scheme,
the quadratic classifier, to find collision-free paths in unknown indoor
corridor environments. Obstacles treated in this study include the walls
of the corridor and the objects that appear in the way of ALV navigation
in the corridor. Detected obstacles as well as the two sides of the ALV
body are considered as patterns. A systematic method for separating
these patterns into two classes is proposed. The two pattern classes are
used as the input data to design a quadratic classifier. Finally, the two-
dimensional decision boundary of the classifier, which goes through the
middle point between the two front vehicle wheels, is taken as a local
collision-free path. This approach is implemented on a real ALV and
successful navigations confirm the feasibility of the approach.

Index Terms—ALV navigation, collision-free path, computer vision,
obstacle avoidance, obstacle detection, pattern recognition, quadratic
classifier.

I. INTRODUCTION

A. Survey of Related Studies

In recent years, autonomous land vehicles (ALV’s) have been
studied intensively. How to guide the ALV to navigate in a certain
environment and avoid obstacles in the mean time is the major goal.
In the study of obstacle avoidance, two cases can be identified,
namely, navigation in a known environment or in an unknown one.
In a known environment, the vehicle usually generates a collision-
free path in an off-line phase using the map of an environment
knowledge base and a certain scheme of path planning, such as the
A� and the breadth-first search algorithms in Hyland and Fox [1],
the dynamic programming algorithm in Cesarone and Eman [2], the
use of visibility graphs in Acosta and Moras [3], and the potential
field method in Kim and Khosla [4]. Alternatively, some on-line
methods have also been proposed using the information of the global
environment to generate a collision-free path in real time, such as
the uses of the cubic function in Onoguchiet al. [5], the B-spline
curves in Yang [6], and the least-mean-square-error classification in
Wang and Tsai [7].

In an unknown environment, the vehicle can only use locally
observed features to generate a collision-free path. Some approaches
to achieving the goal of safe navigation in an unknown environment
have been proposed, such as the method of combining certainty grids
and potential fields in Borenstein and Koren [8], and the use of the
Bug2 and Tarry algorithms in Skewis and Lumelsky [9]. Besides,
Baueret al. [10] used the properties of geometry and kinematics for
wheel control in an unknown environment.

Manuscript received August 27, 1996; revised September 18, 1998. This
work was supported by the National Science Council under Grant NSC84-
2213-E009-122.

The authors are with the Department of Computer and Information Science,
National Chiao Tung University, Hsinchu 300, Taiwan R.O.C.

Publisher Item Identifier S 1083-4419(99)03543-8.

Some vision-based navigation methods [14], [15] for mobile robots
with obstacle avoidance capability have also been proposed. Ohya
[14] used a model edge map for vehicle navigation on a planned
path. Obstacles are detected by computing the difference between the
edges estimated from the three-dimensional (3-D) environment model
and the edges detected from the actual camera image. The system
[15] consists of three independent vision modules, the edge module,
the RGB module, and the HSV module, for obstacle detection. The
obstacle boundaries from the individual modules are combined into
a single obstacle boundary which is converted to motor commands.
Yang [16] used an adaptive-network-based fuzzy classifier to define
the three-dimensional obstacle regions that must be avoided. Biewald
[17] used a human-like conception and a more qualitative world
model to plan routes.

In this study, an algorithm using the quadratic classifier in pattern
recognition [11] is proposed for collision avoidance for ALV naviga-
tion in an unknown indoor environment. This algorithm employs real-
time operations to find safe collision-free paths. A local navigation
path is calculated for each navigation cycle. A difference from the
fuzzy classifier method [16] is that the path is a two-dimensional
quadratic decision boundary of the classifier by which the vehicle
can be guided smoothly. The boundary is generated by treating
all obstacles and the two sides of the vehicle body as patterns. A
systematic method is proposed for separating the patterns into two
classes for use as the design sample input for the classifier.

B. Overview of Proposed Approach

The first step of the proposed obstacle avoidance approach for ALV
navigation in a corridor environment is to analyze the image captured
by a monocular camera to find out obstacles. Second, a collision-free
path is generated by the distribution of obstacles. Finally, a precise
turning angle is obtained for ALV wheel control at the current position
using the collision-free path. These steps are executed cyclically. The
system flowchart is shown in Fig. 1. The details are described as
follows.

1) Step 1: Image acquirement: The front view of the vehicle
is captured by a wide-angle (8 mm) camera mounted on the
vehicle. The image is used to extract relevant information of
the unknown environment.

2) Step 2: Obstacle detection: Image points that compose the
baselines of the obstacles, including the walls of the corridor
and the objects that appear in the way of ALV navigation in
the corridor, are detected using an obstacle detection algorithm
introduced in Section IV.

3) Step 3: Coordinate transformation: The coordinates of the
image points obtained in Step 2 in the image coordinate system
(ICS) are transformed into the space coordinates in the vehicle
coordinate system (VCS) using some formulas introduced in
Section II-D. These space coordinates are all on thex-y plane
in the VCS.

4) Step 4: Pattern generation: The patterns representing the obsta-
cles and the two sides of the vehicle body are clustered into
two classes using a pattern generation algorithm introduced
in Section II-B. In additional to the two classes of patterns,
some series of additional points are included as patterns using
a pattern addition algorithm described in Section II-C. The

1083–4419/99$10.00 1999 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 16, 2009 at 06:48 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 3, JUNE 1999 417

Fig. 1. System flowchart.

additional patterns are generated according to the locations of
obstacle patterns and the vehicle width in this study. Besides,
whether there exists enough route space to allow the vehicle to
go through or not is also checked. If yes, continue; otherwise,
stop the vehicle.

5) Step 5: Collision-free path calculation: A quadratic collision-
free path is generated using some formulas derived in
Section II-A. The path is the decision boundary of the quadratic
classifier designed with input patterns coming from Step 4.

6) Step 6: Wheel control: Proper control of the ALV front wheels
is executed according to the turning angle computed with some
formulas derived in Section III based on the collision-free path
generated in Step 5. In this way, the vehicle keeps its trajectory
on a collision-free path continually.

7) Step 7: Repeat Steps 1–6 until there is no path way to go
through.

In the processes described above, the proposed system does not use
any environment knowledge set up in advance and the guidance of the
ALV is based on local visual information. At least three advantages
are found in this approach. First, the curve properties of the quadratic
path are used to match the kinematic trajectory of the vehicle. Second,
by following the quadratic path it is smoother to go through unknown
environments with obstacles than other approaches using linear paths.
Third, the current location of the vehicle is taken into consideration
while generating the quadratic collision-free path.

In the remainder of this study, the proposed ALV navigation
method is described in Section II, including a review of the quadratic
classifier in pattern recognition, the use of the proposed approach to
find collision-free paths, the generation and addition of patterns, and
the coordinate transformations of patterns. The vehicle wheel control
according to the turning angle for path following is described in
Section III. The image processing techniques employed for obstacle
detection are described in Section IV. Experimental results are found
in Section V. And conclusions are given in Section VI.

Fig. 2. Two-dimensional decision boundary,h(X); passing through the
origin of the vehicle coordiante system.

II. PROPOSEDALV N AVIGATION METHOD

A. Principle of Using Quadratic Classifier for Finding
ALV Navigation Paths for Obstacle Avoidance

From the result of the pattern generation processes described in
Sections II-B and II-C, we obtain two pattern groups,L andR; each
of which includes patterns representing obstacles, corridor walls on
one side of the vehicle, and the two sides of the vehicle body. We use
the quadratic classifier to determine a quadratic decision boundary,
h(X); betweenL andR: The decision boundary is then taken as a
collision-free path which the ALV follows to achieve safe navigation.
The path does not go through the area that consists of the patterns of
L or R; and is constrained to go through the middle point between
the two front wheels of the vehicle in this study. See Fig. 2 for an
illustration, whereOL andOR are patterns representing obstacles,
and V L and V R are patterns representing the vehicle body sides.
Each pattern of the two pattern groups consist ofx andy values in
the vehicle coordinate system (VCS). We denote the coordinates of
the ith pattern inL as [xLi yLi]

T and those of thejth pattern inR
as [xRj yRj]

T :

According to the theory of pattern recognition, we can find a
quadratic decision boundary between the patterns of two classes to
form a quadratic classifier. A general representation of the quadratic
classifier is as follows:

h(X) =X
T
QX + V

T
X + v0

Q =
q11 q12
q21 q22

V =
v1
v2

(1)

where v0 is a constant, and the vectorX = [x1 x2]
T specifies a

pattern ofL or R: If h(X)< 0; it means thatX belongs toL; if
h(X)> 0; it means thatX belongs toR; and if h(X) = 0; it means
that X falls on the decision boundary.

In this study, we project patterns from the 3-D space onto a plane
represented by the corridor floor, so the dimension of patterns are
reduced from three to two. Besides, since it is constrained that the
collision-free path goes through the middle point between the two
front wheels of the vehicle, i.e., the origin of the VCS, the value of
v0 in (1) can be set to zero. Now (1) can be represented as follows:

h(X) =X
T
QX + V

T
X

=

2

i=1

2

i=1

qijxixj +

2

i=1

vixi

=

3

i=1

�iyi +

2

i=1

vixi

=A
T
Y + V

T
X

= [�1 �2 �3 v1 v2] � [y1 y2 y3 x1 x2]
T (2)

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 16, 2009 at 06:48 from IEEE Xplore. Restrictions apply.

418 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 3, JUNE 1999

where

A = [�1 �2 �3]
T = [q11 q12 + q21 q22]

X = [x1 x2]
T and

Y = [y1 y2 y3]
T = [x21 x1x2 x

2

2]
T
:

Note that in (2), the originally quadratic equation is simplified to
a linear one, so we can use the design technique for linear classifiers
to find the coefficients(�1; �2; �3; v1; v2):

Let M = [Y T XT] = [y1 y2 y3 x1 x2]
T : The values of matrix

M come from those of the patterns ofL andR: Matrix M for L
andR will be denoted asML andMR; respectively. If the values
of x1 andx2 in matrixM are substituted by those of theith point of
L; x1 = xLi andx2 = yLi ; we denote the resulting matrixM byML

i :

Similarly, if the values ofx1 andx2 in matrixM are substituted by
those of theith point ofR; x1 = xRi andx2 = yRi ; we denote the
resulting matrixM by MR

i :

Accordingly, the nonlinear solutions of the coefficients for the
quadratic classifier whose input design patterns come from the points
of L andR are equal to the linear solutions of the coefficients for
the linear classifier whose input design patterns come from the points
of ML andMR: So, the five coefficients of (2) can be solved and
the result is as follows [11]:

[�1 �2 �3 v1 v2]
T = [1

2
KL + 1

2
KR]

�1(DR �DL) (3)

whereDL andDR; andKL andKR are the means and variances of
ML andMR; respectively, computed as follows:

DL =
1

m

m

i=1

M
L
i =

1

m

m

i=1

[(xLi)
2
x
L
i y

L
i (y

L
i)

2
x
L
i y

L
i]
T

DR =
1

n

n

i=1

M
R
i =

1

n

n

i=1

[(xRi)
2
x
R
i y

R
i (y

R
i)

2
x
R
i y

R
i]

T

KL =
1

m

m

i=1

(ML
i �DL) � (M

L
i �DL)

T

KR =
1

n

n

i=1

(MR
i �DR) � (M

R
i �DR)

T (4)

andm andn are the numbers of points ofL andR; respectively.
By (3) and (4), the five coefficients of (2) can be obtained and a

quadratic decision boundary,h(X); in (2) is generated. This decision
boundary is a collision-free path which the ALV can follow, as shown
in Fig. 2. In Section II-B, pattern generation and pattern clustering
for generating collision-free paths are described.

B. Pattern Generation for Quadratic Classifier Design

After performing the pattern coordinate transformations described
in Section II-D, we can get the space coordinates,(x; y; z); of each
pattern. Because thez coordinates are all zero, we can project the
patterns onto thex-y plane without changing the values of thex
and y coordinates. Hence in the following analysis, only thex and
y values instead of allx; y; and z values are used, i.e., the three-
dimensional coordinates in the space are treated as two-dimensional
coordinates on a plane.

Before analyzing the patterns, we first introduce the definition
of the minimum distance of the two clusters of points. If there
are two clusters,U and V; of variant points,Ui and Vj ; where
1 � i � m; 1 � j � n;m is the number of points in clusterU ; andn
is the number of points in clusterV; letD(Ui; Vj) denote the distance
between any pointUi in U and any pointVj in V: The minimum
distance betweenU and V; denoted asDUV ; is defined to be the
minimum of allD(Ui; Vj) values, i.e.,DUV = mini;j D(Ui; Vj):
The valueDUV will be used to determine the width of the corridor
space through which the vehicle passes between the two clustersU

and V of obstacle points.

Fig. 3. Three kinds of obstacles and two kinds of vehicle patterns in the
vehicle coordinate system.

In this study, obstacles are all assumed to lie on the ground, so
there are intersections between the surfaces of obstacles and the
ground, which are called baselines in this study. All patterns detected
by the techniques described in Section IV are considered to be the
baselines of certain obstacles, so we will now analyze the types of
the distributions of the obstacle baselines instead of the patterns. The
purpose is to group all baselines into three sets,OL; OC ; andOR

for use in classifier design where the components ofOL andOR

represent the baselines which are located on the left and the right
sides of they axis, respectively, and the components ofOC represent
the baselines which lie across they axis in the VCS (see Fig. 3). And
this is accomplished in this study by the following rule:

assignBi to

�
OL; if STARTX(Bi)< 0 andENDX(Bi)< 0
Oc; if STARTX(Bi)< 0 andENDX(Bi)> 0
OR; if STARTX(BI)> 0 andENDX(Bi)> 0

(5)

whereBi specifies a baseline, andSTARTX(Bi) andENDX(Bi)
specify the values of thex coordinates of the starting and ending
points, respectively, ofBi:

On the other hand, as shown in Fig. 3, we also regard the vehicle
as two sets of patterns,V L andV R; representing the points of the
projections of the left and right sides of the vehicle, respectively,
in the x-y plane of the VCS. And we want to associate separately
each of these two sets of patterns,V L andV R; with one of the sets
OL; OC ; andOR for finding the collision-free path. A scheme for
this purpose proposed in the following considers the location of the
vehicle and enforces the collision-free path to go through the origin
of the VCS, i.e., to go through the middle point between the two
front wheels of the vehicle. The scheme is to separate the five kinds
of patterns,OL; OC ; OR; V L; andV R; into two groups,L andR;
by the following rule:

setL = V
L [O

L [L
C
; R = V

R [O
R [RC

with

L
C =

OC ; if (OL [OR = � andSLOPE(OC)>0)
or (OR = � andOL 6= � and

DO ;O >j;WV)

or (OR 6= � andOL 6= � and
DO ;O <DO ;O)

�; otherwise,

R
C =

OC ; if (LL [OR = � and
SLOPE(OC)< 0)

or (OL = � andOR 6= � and
DO ;O >WV)

or (OR 6= � andOL 6= � and
DO ;O >DO ;O)

�; otherwise

(6)

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 16, 2009 at 06:48 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 3, JUNE 1999 419

(a) (b)

Fig. 4. Only OC exists.

Fig. 5. OnlyOC is nonexistent.

where theSLOPE(OC) means the slope of the baselineOC ; the
valueWV means the width of the vehicle, the valueDO ;O means
the minimum distance betweenOL andOC ; and the valueDO ;O

means the minimum distance betweenOR andOC : The setL is the
union of V L; OL; andLC ; and the setR is the union ofV R; OR;

andRC : The idea behind the above rule is explained in the following.
According to the existences of the three kinds of baselines,

OL; OC ; andOR; denoted asNL; NC ; andNR; we get eight dif-
ferent kinds of their combinations, each denoted by(NL; NC ; NR);
where the definitions ofNL; NC ; andNR are as follows:

N
L =

0; if OL = �;
1; if OL 6= �,

NC =
0; if OC = �;
1; if OC 6= �,

N
R =

0; if OR = �;
1; if OR 6= �.

In grouping the three kinds of baselines and the two kinds of vehicle
patterns into two setsL andR; all possible merges of eight kinds of
combinations of the baselines with the two kinds of vehicle patterns
need be considered. The following are the descriptions of all of the
different situations.

1) (0, 0, 0):OL; OC ; andOR are all nonexistent, so setL = V L

andR = V R:

2) (0, 0, 1): OnlyOR exists, so setL = V L andR = V R [OR:

3) (1, 0, 0): OnlyOL exists, so setL = V L [OL andR = V R:

4) (0, 1, 0): OnlyOC exists, so we check the slope ofOC : If it
is larger than zero, then setL = V L [OC andR = V R;
otherwise, setL = V L andR = V R [OC : This enforces the
vehicle to pass the obstacle specified byOC from the right-
hand side or the left-hand side ofOC ; considering the slope
of OC (see Fig. 4).

5) (1, 0, 1): OnlyOC is nonexistent, so we calculate the space
width betweenOL and OR: If DO ;O � WV ; with WV

being the width of the vehicle, then stop the vehicle; otherwise,
setL = V L [OL andR = V R [OR: This enforces the
vehicle to go through the space betweenOL and OR (see
Fig. 5).

(a) (b)

Fig. 6. OnlyOL is nonexistent.

(a) (b)

Fig. 7. OnlyOR is nonexistent.

(a) (b)

Fig. 8. All OL; OC ; andOR exist.

6) (0, 1, 1): OnlyOL is nonexistent, so we check the space
width betweenOC andOR to see whether it is larger than
the width of the vehicle or not. IfDO ;O >WV ; then set
L = V L [OC andR = V R [OR; otherwise, setL = V L

andR = V R [OC [OR: This enforces the vehicle to pass
the wider corridor space, considering the space width between
OC andOR (see Fig. 6).

7) (1, 1, 0): OnlyOR is nonexistent, so we check the space width
betweenOL andOC to see whether it is larger than the width of
the vehicle or not. IfDO ;O >WV ; then setL = V L [OL

andR = V R [OC ; otherwise, setL = V L [OL [OC and
R = V R: This enforces the vehicle to pass the wider corridor
space, considering the space width betweenOL andOC (see
Fig. 7).

8) (1, 1, 1): All of OL; OC ; and OR exist, so we calculate
the space width betweenOL and OC ; and that between
OC and OR in order to find the wider corridor space to
go through. Ifmax(DO ;O ; DO ;O)<WV ; then stop the
vehicle; otherwise, ifDO ;O >DO ;O ; then setL = V L [

OL andR = V R [OC [OR; if DO ;O � DO ;O ;

then setL = V L [OL [OC andR = V R [OR: This
enforces the vehicle to go through the space betweenOL and
OC ; or betweenOC andOR (see Fig. 8).

The above analysis is concluded by Rule (6). The space between
the two groups,L andR; is guaranteed to be wide enough to allow

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 16, 2009 at 06:48 from IEEE Xplore. Restrictions apply.

420 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 3, JUNE 1999

(a) (b)

Fig. 9. Two diffrent situations without and with a series of additional points.

Fig. 10. Two series of additional pints,SL andSR; are included as patterns
before generating decision boundary,h(X):

the vehicle goes through.L and R are used as part of the input
for designing the quadratic classifier described in Section II-A. In
addition to L and R; some additional patterns generated using a
pattern addition algorithm described in Section II-C next constitute
the remaining part of the input for designing the quadratic classifier.

C. Addition of Patterns for Creating Safe Distance
Between Obstacles and ALV Navigation Paths

Because the vehicle has width in real implementation and the
collision-free path generated is enforced in this study to go through
the middle point of the two font wheels of the vehicle, it is found
necessary to create some artificial points as additional patterns for
designing the classifier in generating collision-free paths. To illustrate
this, check the two different situations, one without and the other with
a series of additional points,SC ; as shown in Fig. 9. In Fig. 9(a),
although a correct path is generated, the space specified by the width
W between the path and the obstacleOC is smaller than half of the
vehicle body width,WV =2; so that the vehicle cannot pass the object
without collision. On the contrary, in Fig. 9(b) due to the addition of
the series of dotted points,SC ; as extra patterns, which is parallel
to the obstacleOC with a distance ofWV =2; the generated path
will allow sufficient space (with a distance large thanWV =2 to OC)
for the ALV to pass the obstacleOC without collision. In short, the
additional point series works to keep a safe distance between obstacles
and the collision-free path so that the generated path guarantees that
no collision will occur.

Hence in this study, in addition to the image points of the detected
obstacles and the two sides of the vehicle body, a series of additional
points at a distance ofWV =2 to the obstacles are also included as
patterns. According to the three kinds of baselines,OL; OC ; and
OR; three kinds of series of additional points,SL; SC ; andSR; are
generated, respectively. As shown in Fig. 10, the additional points
SL are generated in such a way that for each pointP in OL; there is
a corresponding pointQ in SL with Q being on the right-hand side of
P at a distance ofWV =2: S

R is generated similarly except each point
in SR is put to the left of its corresponding one inOR: As shown in

(a) (b)

Fig. 11. The additional pointsSC are generated.

Fig. 12. The three coordinate systems.

Fig. 11,SC is also generated similarly except that each point inSC

is put at the lower side of its corresponding one inOC : Additionally,
SL; SC ; andSR are assigned to be in the same classes(L or R) as
OL; OC ; andOR; respectively, so Rule (6) for generatingL andR
should now be modified as follows:

setL = L0

[SL [LS ; R = R0

[SR [RS ;

with

LS = SC andRS = � if OC 2 L;

or LS = � andRS = SC if OC 2 R:

whereL0andR0 are theL andR in (6), respectively.

D. Pattern Coordinate Transformations

In this study, the ALV navigation environment is described by the
following three coordinate systems, as shown in Fig. 12.

1) The image coordinate system (ICS): denoted asu-w: The origin
I is the image plane center and theu-w plane coincides with
the image plane. Any point in the image is specified by the
coordinates(u;w):

2) The camera coordinate system (CCS): denoted asU -V -W:
Every camera has a camera coordinate system and its originC
is attached to its lens center. TheV -axis is the optical axis and
theU -W plane is the same as that of the ICS. Any point related
to the originC in the space is specified by the coordinates
(U; V;W):

3) The vehicle coordinate system (VCS): denoted asx-y-z: The
origin V is at the middle point of the line segment which
connects the two contact points of the two front wheels of
the vehicle with the ground. Thex-axis andy-axis are on the
ground and parallel to the short side and the long side of the
vehicle body, respectively. Thez-axis is vertical to the ground.
Any point related to the originV in the space is specified by
the coordinates(x; y; z):

The transformations between the ICS, CCS, and VCS are described
as follows (see Fig. 13). Assume that any point in the image plane

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 16, 2009 at 06:48 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 3, JUNE 1999 421

Fig. 13. Illustration of the coordinate transformations between the camera
coordinate system (CCS) and the vehicle coordinate system (VCS).

has the CCS coordinates(uP ;�f;wP) where(uP ; wP ;) specify the
coordinates in the ICS andf is the focus length. We get the VCS
coordinates(xP ; yP ; zP) of point P in the image [12] as

xP =uP (cos � cos + sin � sin� sin) + f(sin � cos�)

+ wP (sin � sin� cos + cos � cos) + xd

yP =uP (sin � cos + cos � sin� sin)� f(cos � cos�)

� wP (cos � sin� cos + sin � sin) + yd

zP =uP (cos � sin)� f sin�+ wP (cos � cos) + zd

where(xd; yd; zd) are the VCS coordinates specifying the translation
vector from the origin of the VCS to the origin of the CCS,� is the
pan angle,� the tilt angle, and the swing angle, of the camera
with respect to the VCS.

As shown in Fig. 13, after backprojecting a pointP in the image
into the VCS, we can get a line LP which passes the lens center and
P: The equation of line LP is

x� xd

xP � xd
=

y � yd

yP � yd
=

z � zd

zP � zd
= k: (7)

Let point P 0 be the intersection point of the planez = h and the
line LP. By substitutingz = h into (7), the desired VCS coordinates
(xP ; yP ; zP) of point P 0 can be solved to be

xP = xd +
h� zd

zP � zd
(xP � xd)

yP = yd +
h� zd

zP � zd
(yP � yd)

zP =h: (8)

In this study, the origin V of the VCS is on the ground, so the plane
z = 0 is on the ground. All obstacle points on the ground possess
the propertyh = 0; so the coordinates of such points in the VCS
detected in Section IV can be obtained by Formula (8) withh = 0:

III. PATH FOLLOWING

In Section II, collision-free paths,h(X); for obstacle avoidance
are generated to be the decision boundary of the quadratic classifier.
When the vehicle navigates by following the quadratic path,h(X);
it can pass the obstacles safely. In this section, we describe a method
proposed in this study for generating an optimal turning angle by
which the vehicle can control the wheels to follow on the quadratic
path,h(X); in every navigation cycle.

Before investigating the computation of the turning angle for the
wheels, the kinematic trajectory of the vehicle is introduced first. If
the behavior model of the vehicle is understood, the location at which
the vehicle arrives can be estimated. As shown in Fig. 14, the vehicle

Fig. 14. Analysis of the path,S; which the vehicle navigates from location
A to location B by turning an angle of�:

moves a distanceS from location A to location B by turning an angle
of �: We assume that the speed,V; and the navigation time,T; of the
vehicle are both known. So, the navigation distanceS is a constant
computed by

S = V T:

The translation specified by the valuesm and l can be acquired by
the following equations [13]:

m =P cosu

l =P sinu

P =R 2(1� cos r)

R =
d

sin �

u =
�

2
� � �

r

2

r =
S

R
(9)

whereR is the rotation radius,d is the distance between the front
wheels and the rear wheels,r and P are the corresponding angle
and secant line ofS; respectively, and� is the turning angle of the
front wheels.

According to Formula (9), the translation(m; l) of the next location
with respective to the current one is computed as follows:

m =
d

sin �
2 1� cos

V T sin �

d
cos

�

�

2
� � �

V T sin �

2d

l =
d

sin �
2 1� cos

V T sin �

d
sin

�

�

2
� � �

V T sin �

2d
:

So,m andl are determined by the vehicle lengthd; the vehicle speed
V; the navigation timeT; and the turning angle� of the front wheels.
In this study, the length and speed of the vehicle are constants, and the
navigation time set as the interval between the issues of two system
commands is also a constant. So, the turning angle� determines the
values ofm and l alone.

When the coordinates of location B are generated, the system can
estimate the possible locations at which the vehicle arrives. We hope

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 16, 2009 at 06:48 from IEEE Xplore. Restrictions apply.

422 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 3, JUNE 1999

Fig. 15. Determining the start and the end columns, using the left scan line
and the right scan one, respectively, for vertical scans of the image.

Fig. 16. An example of obstacle detection results.

that the coordinates,mi andli; of the next location of the vehicle are
as close as to the collision-free pathh(X):0 Let the coordinates,m0

and l0; specify the location closest to the pathh(X): The previous
analysis tells that the best coordinates,m0 and l0; which keeps the
vehicle away from collision by following the collision-free path, can
be obtained by selecting a proper turning angle. The turning angle of
the vehicle is limited in this study to be within thirty degrees to the
left or right. It is computed as follows:

min
� 2f�30;K;30g

jh(Xi)j = min
� 2f�30;...;30g

jXT
i QXi + V

T
Xij

= min
� 2f�30;...;30g

j�1m
2

i + �2mili

+ �3l
2

i + v1mi + v2lij (10)

in which Xi = [mi li]
T and jh(Xi)j specifies the absolute value of

the sum ofXT
i QXi and V TXi:

According to the property of the quadratic classifier, ifh(X)< 0;
thenX belongs to the left-hand side ofh(X); if h(X)> 0; thenX
belongs to the right-hand side ofh(X); and if h(X) = 0; thenX
falls on h(X): The closer the location specified by the coordinates
(mi; li) to the pathh(X); the smaller the absolute value ofh(X):
Hence,m0 and l0 make the absolute value ofh(X) minimum.

After getting the turning angle� by (10), the vehicle immediately
controls the front wheels to turn� degrees and keeps moving forward
until the next control command is received. It is in this way that the
vehicle keeps on the collision-free path to achieve collision avoidance
and navigation in real time.

IV. OBSTACLE DETECTION

In this study, obstacles are assumed to lie on the ground and
represented by baselines. Obstacles that have to be detected include
the walls of the corridor and the objects that appear in the way of

Fig. 17. Prototype ALV used in this study.

Fig. 18. System structure of the prototype ALV.

ALV navigation in the corridor. By the result of obstacle detection,
the space coordinates of obstacles are computed and the vehicle uses
this information to find a safe collision-free path. We use only a
monocular camera to detect obstacles in the corridor for real-time
computation. Additionally, the properties of baselines, which are the
intersections of obstacles and the ground, are used to compute the
three-dimensional coordinates of the obstacles because all the points
on the baselines have the property that the heights are zero.

In this section, an obstacle detection method is proposed. The
points that compose the baselines of obstacles are detected by local
thresholding since the gray levels of the obstacles and those of the
ground are generally different. Each baseline consists of a cluster of
points. After baseline points are detected, region growing is used to
collect the baselines. The details of the obstacle detection method are
described as follows.

1) Step 1: Determining a threshold value and performing local
thresholding. First, compute the average gray value, denoted as
GAV G; of the image. The purpose of computing theGAV G
first is to understand the lighting of the environment and give a
reference in determining the threshold value,TV: This makes
the detection of obstacles more stable. When theGAV G value
is high, it means that the environment is bright and the contrast
is strong, so a lowerTV value is set up, and vice versa. More
specifically, we setTV asTV = TH �GAV G; whereTH

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 16, 2009 at 06:48 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 3, JUNE 1999 423

(a) (b)

Fig. 19. Experimental result of generated collision-free path for a case with left and right obstaclesOL andOR:

(a) (b)

Fig. 20. Experimental result of generated collision-free path for a case with left obstaclesOL:

is a preselected constant value obtained from experimental
experience.

2) Step 2: Determining the start and end columns for vertical
scans of the image. The purpose is to detect the left and right
corridor boundary in the bottom line of the image. The values
are assigned to the initial and end values of Step 3. We scan
the bottom line in the image from the center to the left and
to the right bounds, called the left scan line and the right one,
respectively. See Fig. 15 for an illustration. LetPl;0 be the first
point in the left scan line such thatjgl(l; 0)�gl(l�1; 0)j>TV;

wheregl(i; j) means the gray level of the image point at(i; j):
Let Pr;0 be the first point in the right scan line such that
jgl(r; 0)� gl(r+ 1; 0)>TV: Obstacle detection is performed
on the image area between thelth and therth columns.

3) Step 3: Detecting the baselines of the obstacles. The image is
vertically scanned in a way described by the following steps
from the lth column to therth column.

a) Step 3.1: Scan theith vertical line of the image from
bottom to top. LetPi;j be the first point in the scan line
such thatjgl(i; j)� gl(i; j + 1)>TV: If this point is
found, continue; otherwise, go to Step 3.3.

b) Step 3.2: Region growing is performed to combine
the clusters of points that compose the baselines. The
points detected in Step 3.1 are merged with other points
detected in the previous cycles to form the desired
baselines. The criterion for merging a newly detected
point with previously detected points is to check if the
new point is within the 15� 15 neighborhood of any

previously detected point. If the point is independent of
others or if a group of points is small in size to compose
a baseline, the points are treated as noise and discarded.

c) Step 3.3: Move the scan line to the(i + 1)th column
and go to Step 3.1.

The above algorithm detects the intersection points of the obstacles
and the ground to form the baselines of the obstacles. An example
of results is shown in Fig. 16, in which the white points are the
detected points and the white lines consisting of the white points are
the resulting baselines of the obstacles. Some other detected points
on the ground which cannot compose a baseline are treated as noise
and are ignored.

V. EXPERIMENTAL RESULTS

The proposed method has been implemented and used to au-
tonomously steer a real ALV, as shown in Fig. 17. This prototype
ALV is modified from a commercial vehicle by adding power
conversion systems, some control circuits, cameras, and an on-board
computer. The vehicle is four-wheeled with two motors controlling
the front and rear wheels, respectively. The width between the front
wheels is 48 cm, and that between the rear wheels is 55 cm. The
vehicle body is 135 cm in length. The front wheels can be controlled
to turn leftward or rightward, while the rear wheels can be driven
to go forward or backward. Above the front wheels is a vertical
pole with two cross-shaped racks and one load-bearing platform. The
lower crossbar is mounted with one CCD camera used in this study
and a laser tube used in other studies. TheX-Y -Z coordinates of the
camera used in this study in the VCS are(�19:87; 13.05, 72.11). The

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 16, 2009 at 06:48 from IEEE Xplore. Restrictions apply.

424 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 3, JUNE 1999

(a) (b)

Fig. 21. Experimental result of generated collision-free path for a case with obstaclesOC :

(a) (b)

Fig. 22. Experimental result of generated collision-free path for a case with obstables,OL and OR:

(a) (b)

Fig. 23. Experimental result of generated collision-free path for a case with obstables,OL and OC :

pan, tilt, and swing angles of the camera are�0:09;�0:15; and 0.04
degrees, respectively. In addition to the camera used in this study, the
three cameras mounted on the upper crossbar and the CCD camera
attached to the middle of the pole are all used in other studies. On the
platform, there are two monitors. One is used to display images and
the other is used as a computer monitor. Below the person-carrying
seat, there is a Pentium-133 personal computer, a pair of 12-volt
batteries, a set of power converters, and a motor control system.

The architecture of the ALV system is illustration in Fig. 18.
The ALV system is composed of three main modules: a visual
system, a power system, and a motor control system. The set of

the power converters together with the batteries supplies the power
of the entire ALV system. The motor control system consists of a
main control board with an Intel 8085 controller, a motor driver,
and two motors. Turning and speed adjustments are accomplished
by sending commands to the motor control system through an RS-
232 interface. The visual system is made up of two monitors, a PC,
an image frame grabber, and a CCD camera. In our experiments,
images grabbed by the image frame grabber are 512� 486 pixels
in resolution. Throughout the entire navigation process, all image
processing and decision making tasks are performed in the Pentium-
133 MHz microprocessor equipped with 32-mega byte RAM.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 16, 2009 at 06:48 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 3, JUNE 1999 425

(a) (b)

Fig. 24. Experimental result of generated collision-free path when the vehicle goes through the door of a classroom.

(a) (b)

Fig. 25. Experimental result of generated collision-free path when two persons go through the corridor.

Figs. 19–25 show some experimental results in a real indoor
corridor environment. Every figure includes two parts (a) and (b). Part
(a) is a real image captured by a wide-angle camera. The white points
in (a) are the patterns of the detected obstacles and the white lines
consist of the patterns of the obstacles. Part (b) shows thex-y plane
of the VCS. All the coordinates of the patterns of the obstacles and
the vehicle in the VCS are shown. Besides, the generated collision-
free path that goes through the origin of the VCS is also shown in
(b). Note that some quadratic paths have two parts (such as the two
curves of a hyperbola); only the ones going through the vehicle are
the desired ones. According to the generated path, a modification of
the turning angle is also computed, which is described in the caption
of (b).

Fig. 19 shows that the vehicle keeps moving forward with a small
left turn when left and right obstacles,OL and OR; exist. Fig. 20
shows the case withOL only, in which the vehicle turns the wheels
to the right-hand side ofOL: Fig. 21 shows that the case withOC

only, in which the vehicle turns the wheels to the left-hand side
of OC : The hyperbola curve on the right part of (b) is the unused
part of the generated quadratic decision boundary. Fig. 22 shows that
the vehicle passes the left-hand side of the obstacle which is on the
ground of the corridor. Fig. 23 shows that the vehicle passes the
right-hand side instead of the left-hand one ofOC since the space
width betweenOL andOC is too narrow to allow the vehicle to go
through. Figs. 24 and 25 show that the vehicle passes the door of a
classroom and two persons going through the corridor, respectively.

The above cases and a lot of other experiments show that this
approach indeed can find out safe collision-free paths. Additionally, in
continuous navigation, this approach also proved to be able to modify
the turning angles of the vehicle wheels in real time to achieve the
purpose of obstacle avoidance. An example of continuous navigation

Fig. 26. Top view of the experimental indoor environment and an ALV
continuous navigation.

is shown in Fig. 26, which is a top view of the experimental
environment and the ALV location in all the navigation cycles. The
velocity of the vehicle is 31.75 cm per second that is equivalent to
1.14 km per hour. This velocity is acceptable in many application
indoor environments. In addition, the vehicle modifies the turning

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 16, 2009 at 06:48 from IEEE Xplore. Restrictions apply.

426 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 3, JUNE 1999

angle every 1.5 s such that this approach can deal in reasonable
response time with common obstacles that might cause collisions in
indoor environments.

VI. CONCLUSIONS

In this study, a vision-based obstacle avoidance approach for ALV
navigation has been proposed. The vehicle can detect obstacles,
including walls and objects in the way, in an unknown indoor
environment and safe collision-free paths can be generated from
quadratic classifier design in real time. According to the collision-
free path, the vehicle can modify the turning angle of the wheels
to achieve the purpose of collision avoidance. Besides, a systematic
method has been proposed for generating input patterns for classifier
design to compute safe quadratic paths.

The use of quadratic paths instead of linear ones produces smoother
paths and prevents dead-reckoning navigation to increase the flexi-
bility of ALV applications in unknown complex environments with
obstacles. Additionally, quadratic paths also match the ALV trajectory
better than linear ones. A method for computing the optimal turning
angle to avoid collisions in real time has also been proposed. The
proposed approach has been implemented on a real ALV and a lot of
successful navigations confirm the feasibility of the approach.

REFERENCES

[1] J. C. Hyland and S. R. Fox, “A comparison of two obstacle avoidance
path plannings for autonomous underwater vehicles,” inProc. Symp.
Autonomous Underwater Vehicle Technology, Washington, DC, June
1990, pp. 216–222.

[2] J. Cesarone and K. F. Eman, “Mobile robot routing with dynamic
programming,”J. Manufact. Syst., vol. 8, no. 4, pp. 257–266, 1989.

[3] C. Acosta and R. G. Moras, “Path planning simulator for a mobile
robot,” Comput. Indust. Eng., vol. 19, no. 1–4, pp. 346–350, 1990.

[4] J. O. Kim and K. Khosla, “Real-time obstacle avoidance using hormontic
potential functions,”IEEE Trans. Robot. Automat., vol. 8, pp. 338–349,
June 1992.

[5] K. Onoguchi, M. Watanabe, Y. Okamoto, Y. Kuno, and H. Asada, “A
visual navigation system using a multi-infomation local map,” inProc.
1990 IEEE Int. Conf. Robotics Automation, Cincinnati, OH, vol. 2, pp.
767–774, May 1990.

[6] D. C. H. Yang, “Collision-free path planning by using nonperiodic
B-spline curves,”J. Mech. Design, vol. 115, pp. 679–684, Sept. 1993.

[7] L. L. Wang and W. H. Tsai, “Collision avoidance by a modified least-
mean-square-error classification scheme for indoor autonomous land
vehicle navigation,”J. Robot. Syst., vol. 8, no. 5, pp. 677–798, Oct.
1991.

[8] J. Borenstein and Y. Koren, “Real-time obstacle avoidance for fast mo-
bile robots,” IEEE Trans. Syst., Man, Cybern., vol. 19, pp. 1179–1187,
Sep./Oct. 1989.

[9] T. Skewis and V. Lumelsky, “Experiments with a mobile robot operating
in a cluttered unknown environment,” inProc. 1992 IEEE Int. Conf.
Robotics Automation, Nice, France, vol. 2, pp. 1482–1487, May 12–14,
1992.

[10] R. Bauer, W. Feitern, and G. Lawitzky, “Steer angle fields: An approach
to robust manoeuvring in cluttered, unknown environments,”Robot.
Auton. Systems, vol. 12, pp. 209–212, 1994.

[11] K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd
ed. San Diego, CA: Academic, 1990.

[12] C. C. Lai, “Outdoor autonomous land vehicle guidance by road infor-
mation using computer vision and fuzzy wheel adjustment techniques,”
M.S. thesis, Inst. Comput. Inf. Sci., National Chiao Tung Univ., Hsinchu,
Taiwan, R.O.C., June 1993.

[13] S. D. Cheng and W. H. Tsai, “Model-based guidance of autonomous
land vehicles in indoor environments by structured light using vertical
line information,” J. Elect. Eng., vol. 34, pp. 441–452, Dec. 1991.

[14] A. Ohya, A. Kosaka, and A. Kak, “Vision-based navigation of mobile
robot with obstacle avoidance by single camera vision and ultrasonic

sensing,” inProc. 1997 IEEE/RSJ Int. Conf. Intelligent Robot Systems,
Grenoble, France, Sept. 1997, vol. 2, pp. 704–711.

[15] L. M. Lorigo, R. A. Brooks, and W. E. L. Grimsou, “Visually-
guided obstacle avoidance in unstructured environments,” inProc. 1997
IEEE/RSJ Int. Conf. Intelligent Robot .Systems, Grenoble, France, vol.
1, pp. 373–379, Sept. 1997.

[16] Y. G. Yang and G. K. Lee, “Path planning using an adaptive-network-
based fuzzy classifier algorithm,”13th Int. Conf. Computers Applica-
tions, Honolulu, HI, Mar. 1998, pp. 326–329.

[17] R. Biewald, “Real-time navigation and obstacle avoidance for nonholo-
nomic mobile robots using a human-like conception and neural parallel
computing,” in Int. Workshop Parallel Processing Cellular Automata
and Array, Berlin, Germany, Sept. 1996, pp. 232–240.

Dynamic Fuzzy Control of Genetic
Algorithm Parameter Coding

Robert J. Streifel, Robert J. Marks, II, Russell Reed,
Jai J. Choi, and Michael Healy

Abstract—An algorithm for adaptively controlling genetic algorithm
parameter (GAP) coding using fuzzy rules is presented. The fuzzy GAP
coding algorithm is compared to the dynamic parameter encoding scheme
proposed by Schraudolph and Belew. The performance of the algorithm
on a hydraulic brake emulator parameter identification problem is
investigated. Fuzzy GAP coding control is shown to dramatically increase
the rate of convergence and accuracy of genetic algorithms.

I. INTRODUCTION

Genetic algorithms are powerful search techniques which have
been applied to many practical problems. However, the accuracy of
the final solution found by binary coded genetic algorithms is limited
by the number of bits used to code search parameters into strings.
The low resolution of binary coding does not seriously affect the
solution for many problems (e.g., integer and combinatorial searches).
Accuracy becomes a more important consideration when

1) the search space consists of floating point parameters;
2) the parameters have a large dynamic range;
3) a relatively small number of bits are used to code the param-

eters.

The standard genetic algorithm uses no problem specific informa-
tion except the relative fitness of the coded binary strings. Lack of
gradient information can cause slow progress in search regions where
the objective function has nearly zero gradient. The combination of
low slope areas and low resolution binary coding can cause slow
convergence on many practical problems.

The fuzzy genetic algorithm parameter (GAP) coding methodology
presented in this paper is specifically designed to improve the search
performance on a parameter identification problem. Conventional
genetic algorithm parameter coding is static, the coding is constant for
the entire search. This results in slow convergence. Greater accuracy

Manuscript received April 15, 1996; revised July 5, 1997. This paper was
recommended by Associate Editor L. O. Hall.

R. J. Streifel, R. J. Marks, II, and R. Reed are with the University of
Washington, Seattle, WA 98195 USA (e-mail: robert.j.streifel@boeing.com).

J. J. Choi and M. Healy are with the Boeing Information and Support
Services, Seattle, WA 98195 USA.

Publisher Item Identifier S 1083-4419(99)00903-6.

1083–4419/99$10.00 1999 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 16, 2009 at 06:48 from IEEE Xplore. Restrictions apply.

