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Obstacle Avoidance in Person Following for
Vision-Based Autonomous Land Vehicle

Guidance Using Vehicle Location
Estimation and Quadratic

Pattern Classifier
Ching-Heng Ku and Wen-Hsiang Tsai, Senior Member, IEEE

Abstract—An obstacle avoidance method for use in person fol-
lowing for vision-based autonomous land vehicle (ALV) guidance
is proposed. This method is based on the use of vehicle location
estimation and a quadratic pattern classifier, and aims to guide
the ALV to follow a walking person in front by navigating along
a derived collision-free path. Before generating the collision-free
path, the person’s location is obtained from extracted objects in
the image by a person detection method. The object closest to a
predicted person location is regarded as the followed person and
the remaining objects are regarded as obstacles. The collision-free
navigation path is designed for ALV guidance in such a way that
the ALV not only can keep following the person but also can avoid
collision with nearby obstacles. The navigation path results from a
quadratic classifier that uses the vehicle and all of the objects in the
image as input patterns. A turn angle is then computed to drive the
ALV to follow the navigation path. Successful navigation sessions
confirm the feasibility of the approach.

Index Terms—Autonomous land vehicle guidance, obstacle
avoidance, person following, quadratic pattern classifier, vehicle
location estimation.

I. INTRODUCTION

I N RECENT years, many approaches to autonomous land
vehicle (ALV) guidance in indoor and outdoor environments

have been developed. How to guide the ALV to navigate by
following a walking person in a certain environment and avoid
obstacles in the mean time is the major goal of this paper.

In the study of obstacle avoidance, some vision-based navi-
gation methods [1], [2] for mobile robots with obstacle avoid-
ance capability have been proposed. Ohya [1] used a model
edge map for vehicle navigation on a planned path. Obstacles
are detected by computing the difference between the edges es-
timated from the three–dimensional (3-D) environment model
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and the edges detected from the actual camera image. The nav-
igation system developed by Lorigo,et al. [2] consists of three
independent vision modules, an edge module, an RGB module,
and a hue, saturation, value (HSV) module, for obstacle de-
tection. The obstacle boundaries from the individual modules
are combined into a single obstacle boundary which is con-
verted to motor commands. Yang [3] used an adaptive-network-
based fuzzy classifier to define 3-D obstacle regions that must
be avoided. Biewald [4] used a human-like concept and a more
qualitative world model to plan routes. Ku and Tsai [5] used
a quadratic classifier in pattern recognition for collision avoid-
ance in ALV navigation in an unknown indoor environment.

When a vision-based ALV navigates by following a person
walking in front, the person has to be detected first from
the image captured by a camera. Although the image of the
person is also detected in some pedestrian tracking systems,
the approaches [6]–[8] to detecting a pedestrian using the
difference between two consecutive images cannot be used in
a person-following system. The image for pedestrian tracking
is acquired using a stationary charge-coupled-device (CCD)
camera. The difference between two consecutive images
contains the information of the moving person. However, the
camera used in person following is mounted on the ALV and
moved along the path of the ALV. The moving person cannot
be detected using the image difference information when the
camera is not stationary.

On the other hand, after the relative position of the person
to the ALV is calculated, a trajectory for the ALV need be
generated to obtain the turn angle of the front wheels of the
ALV. Some trajectory planning approaches [9]–[11] have
been proposed. Munoz and Ollero [9] combined a kinematic
visibility graph planning method, a path generation algorithm
based on beta-spline curves, and a cubic spline speed profile
definition technique to propose a smooth trajectory planning
method for mobile robots. Shiller and Serate [10] proposed
a trajectory planning method for computing the track forces
and track speeds of planar tracked vehicles required to follow
a given path at specified speeds on horizontal and inclined
planes. Ku and Tsai [11] used sequential pattern recognition
techniques for ALV smooth navigation by person following.
These methods do not consider the existence of obstacles.
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Fig. 1. System flow chart.

In this paper, an obstacle avoidance method for use in person
following for vision-based ALV guidance using vehicle location
estimation and quadratic pattern classifier design is proposed.
This method aims to guide the ALV to follow a walking person
in front along a corridor with obstacles. This goal is achieved
in this study by guiding the ALV to navigate along a derived
collision-free path. First, the translation of the ALV location at
the current sampling instant relative to that at the previous sam-
pling instant is estimated using the ALV control information.
The translation is then used together with previous person loca-
tions with respect to the vehicle location at the previous sam-
pling instant to predict the person location at the current sam-
pling instant. After all of the objects appearing in the image are
extracted, the object closest to the predicted person location is
regarded as the followed person and the remaining objects are
regarded as obstacles. A collision-free navigation path is then
derived for ALV guidance in such a way that the ALV not only
can keep following the person but also can avoid collision with
nearby obstacles. The navigation path is derived by the use of the
quadratic classifier that regards the vehicle and all of the objects
in the image as input patterns. All patterns are categorized into
two groups as the input to the quadratic classifier using a pattern
generation method proposed in this paper. A turn angle is then
computed to drive the ALV to follow the navigation path. The
main ideas of this paper include the categorization of the loca-
tions of the person and obstacles without special marks, and the
use of the quadratic classifier to generate a collision-free path
for safe person following in the navigation.

A flow chart of the proposed obstacle avoidance method for
person following is shown in Fig. 1. In this paper, , we focus
on the steps of the detection of the locations of the person and
obstacles, and the use of the quadratic classifier to generate a

collision-free path. Some other details of the processes to im-
plement the proposed method are presented in [5]. The details
of the system flow chart are described as follows.

Step 1) Image Acquisition: Capture the image of the front
view of the vehicle with a wide-angle camera
mounted on the vehicle.

Step 2) Vehicle Location Estimation: Estimate the transla-
tion of the ALV location at the current sampling in-
stant relative to that at the previous sampling instant
using the ALV control information. The estimation
method is described in detail in Section II-A.

Step 3) Object Detection: Detect the image points that com-
pose the baselines of the objects, including those of
the walls of the corridor, the followed person, and
the obstacles that appear in the way of ALV naviga-
tion in the corridor. This step is conducted by the use
of an obstacle detection algorithm introduced in [5].
The obstacle detection algorithm uses scan lines and
image processing techniques such as local thresh-
olding and region growing methods to detect obsta-
cles. An originality of the algorithm is the concept
that obstacles are assumed to lie on the ground and
represented by baselines.

Step 4) Person Location Prediction: Predict the person loca-
tion at the current sampling instant using the trans-
lation of the ALV together with the person loca-
tion at the previous sampling instant. The prediction
method is described in Section II-B.

Step 5) Person Location Detection: Take the object closest
to the predicted person location as the followed
person and regard the remaining objects as ob-
stacles. The person detection method is described
in Section II-C. In addition, check whether the
followed person is detected or not. If yes, continue;
otherwise, stop the vehicle.

Step 6) Pattern Generation: Categorize the patterns repre-
senting the obstacles, the person, and the two sides of
the vehicle body into two classes using a pattern gen-
eration algorithm introduced in Section III-B. Add
some extra points as patterns using a pattern addition
algorithm described in [5] to take into consideration
the width of the vehicle.

Step 7) Collision-Free Path Calculation: Generate a colli-
sion-free path using a quadratic classifier described
in Section III-A. The path is just the decision
boundary of the classifier designed with the input
patterns generated in Step 6).

Step 8) Wheel Control: Steer the ALV front wheels ac-
cording to the turning angle derived by a method
described in [5] based on the collision-free path
generated in Step 7). In this way, the vehicle keeps
its trajectory on a collision-free path continually.

Step 9) Go to Step 1).

In the process described above, the proposed system does
not use any environment knowledge given in advance; instead,
the guidance of the ALV is based on local visual information
only. At least five advantages are found in this approach. First,
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the locations of the person and obstacles can be discriminated.
Second, the ALV can follow the walking person based on the
collision-free path. Third, the derived quadratic path is more
precise to match the kinematic trajectory of the vehicle than the
linear path derived by most other methods. Fourth, by following
the quadratic path it is easier to go through obstacles without
collisions than other approaches using linear paths [5]. In this
study, the generated quadratic collision-free path goes through
the center of the ALV. This means that the ALV is located on the
collision-free path in every cycle and need not navigate to ap-
proximate a collision-free path that is usually a linear one. Fifth,
and last, both the current locations of the vehicle and the person
are taken into consideration while generating the quadratic col-
lision-free path.

In the remainder of this paper, the approach to obtaining the
person position by the proposed person detection method is de-
scribed in Section II. The approach includes three steps, namely,
the estimation of the vehicle location between two sampling in-
stants, the prediction of the person position, and the detection of
the person position. In Section III, the method for deriving the
collision-free path is described. The method includes a pattern
generation method and a path generation method. In Section IV,
some experimental results are illustrated. Conclusions are in-
cluded in Section V.

II. PROPOSEDDETECTIONMETHOD OFPERSONLOCATION

A method for detecting the person location is proposed in this
section. In this study, all obstacles are all assumed to lie on the
ground, so the surfaces of obstacles will contact the ground at
certain spots, which appear as line segments in most cases and
will be called baselines in this study. When all the baselines of
the objects, including the obstacles and the followed person, in
a corridor are detected in an image, the ALV does not know
which object is the person to follow. The proposed person de-
tection method aims to discriminate obstacles from the followed
person.

Because the moving direction and the speed of the person is
unpredictable, the person location with respect to the vehicle
coordinate system (VCS) at the current sampling instant cannot
be found only by vision-based information unless the cycle time
is zero. However, the person location at the current sampling
instant can be estimated using the control-based information and
the person location at the previous sampling instant. After all
of the objects appearing in the image are extracted, the object
closest to the estimated person location by the control-based
ALV information is regarded as the followed person and the
remaining objects are regarded as obstacles.

More specifically, as shown in Fig. 2, let denote the person
position and denote the vehicle coordinate system at the
beginning of cycle during navigation. Assume that, at the be-
ginning of cycle , the and coordinates of the person posi-
tion at with respect to have been found. We use
the ALV control information to estimate the translation from

to , which is then used to compute theand
coordinates of the person position at with respect to .
Also, assume that, at the beginning of cycle , the and

Fig. 2. Illustration of the positionP ; P ; P , andP .

coordinates of the person position atwith respect to
have been found. Again, the ALV control information is used to
estimate the translation from to , which is then
used to compute theand coordinates of the person positions
at and with respect to .

After and are found in cycle , we then detect
as follows. We first predict the person position, called , at
the beginning of cycle using and . The prediction
process is illustrated in Fig. 2, where it is assumed that the trans-
lation from to is identical to that from to . The
predicted person position is reasonable because in the short du-
ration between two cycles the person may be assumed to move
straightforward with a constant speed in general. Since theand

coordinates of the person positions at and with respect
to have been computed previously, theand coor-
dinates of the person position at with respect to
can be solved accordingly. Then, the predicted person position

is used to detect the real person position . The way
is to find the object closest to and take it as the detected
person located at .

The details of the above process are described in the fol-
lowing. We first state the estimation process of the translation
from to in Section II-A. Then, in Section II-B,
the derivation process of the coordinates of the person position
at and with respect to is introduced, followed
by a description of the prediction process of the person position
at . Finally, the detection process of the person position at

is introduced in Section II-C.
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Fig. 3. Analysis of the pathS, through which the vehicle navigates from
locationA toB by turning an angle of�.

A. Estimation of Translation from to

The translation from to is estimated using the
ALV control information, namely, the speed and the turn angle
of the ALV, and the time interval between two sampling instants.
These values can be obtained from the feedback information of
the ALV and then used to estimate the kinematic trajectory of
the ALV from to . Accordingly, the translation
and the rotation of the two VCSs can be obtained. The details
are as follows.

Consider the simple kinematic model for an automobile with
front and rear tires [12], as shown in Fig. 3. The rear tires are
aligned with the car body sides while the front tires are allowed to
spin about the vertical axes. Besides, the center position between
the two front wheels is treated as the origin of the VCS. As shown
in Fig. 3, the vehicle moves a distancefrom location to lo-
cation by turning an angle of , where and represent the
origin of the and that of the , respectively. We as-
sume that the vehicle speedand the navigation time interval
of the vehicle are both known in advance. Hence, the navigation
distance is a constant and can be computed by .

The translation specified by the valuesand in the
is acquired by the following equations [5]:

(1)

where
rotation radius;
distance between the front wheels and the rear wheels;

, corresponding angle and the secant line of, respec-
tively;
turning angle of the front wheels.

Fig. 4. Illustration of� and'.

According to (1), the translation ( ) from to
is computed to be as follows:

(2)

(3)

Next, we state the derivation process of the rotation angle,
denoted as , from to . Since the direction vector
of the vehicle head in the VCS is that of theaxis of the VCS,
the angle can be obtained by calculating the angle between the
direction vector of the vehicle head at the positionand that at
the position , as shown in Fig. 3. Thus, the direction vector
of the vehicle head at the positionwith respect to can
be written as

(4)

In addition, as shown in Fig. 4, the direction vectorof the
vehicle head at the position with respect to can be
derived from the direction vector of the front wheels of the
vehicle at the position in the following way. First, since the
vector is the tangent of the trajectory of the ALV, it can be
obtained to be as follows [14]:

(5)

Then, because the angle between vectorsand is the turn
angle of the vehicle, the vector can be calculated to be as
follows:

(6)
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Fig. 5. Illustration of the coordinates ofP , P , andP with respect to
V CS andV CS .

Hence, the angle between the two direction vectors and
can be calculated according to the following equation:

(7)

By substituting (4) and (6) into (7), the anglecan be derived
to be as shown by(8), at the bottom of the page.

B. Prediction of Person Position at

In this section, we describe the derivation process of the co-
ordinates of the person position at and with respect to

, followed by a description of the prediction process of
the person position at . As shown in Fig. 5, let and

denote the coordinates of the person position at with
respect to . Similarly, let and represent the coordi-
nates of the person position atwith respect to . Assume
that the coordinates ( ) and ( ) with respect to

have been obtained. The translation ( ) and the rota-
tion angle from to , obtained in the previous
section, can be used to calculate the coordinates ( )
and ( ) of the person position at and with re-

spect to , respectively, by the following equations:

(9)

(10)

In (9), the center of is translated to that of
so that the coordinates of with respect to have
to decrease the translation ( ). In addition, the direction of

is rotated to be the same as that of according to
the angle . Hence, the coordinates ( , ) of with
respect to can be obtained in (9). In the mean time,
the coordinates ( ) of with respect to is
obtained in (10).

Since we assume that the translation from to is iden-
tical to that from to , the coordinates ( ) of the
predicted person position at with respect to can
be calculated to be as follows:

(11)

(12)

C. Detection of Person Position at

When the predicted person position is obtained, the
person position can be detected, as mentioned previously,
to be the object closest to . However, each candidate ob-
ject is necessarily just a point in shape; it is a group of points
composing a baseline segment. Therefore, a more sophisticated
method is adopted in this study, based on the use of the mean
and the variance of the detected baselines. The meanof the
baseline of an object represents the position of the object and its
value is obtained by the following equation:

(13)

where is the number of the points that compose a baseline of
an object and represents the coordinates of those
points from the top view of the VCS. The calculated mean of
the object is used to compute the Euclidean distance to the po-
sition . Since the coordinates and of the position

(8)
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Fig. 6. Illustration of the detected person positionP and the distance
threshold valueT .

have been obtained, the Euclidean distancebetween the
mean and the position can be obtained by the following
equation:

(14)

The obtained distance is taken as one of features to detect
the person position . As shown in Fig. 6, if an object is the
person that we want to detect, its distancewill be smaller
than a given threshold value . On the other hand, the variance

of the points that compose a baseline of an object is taken as
another feature and its value can be obtained by the following
equation:

(15)

Since the length of the baseline of a person is smaller than
that of a wall and an obstacle in general, the varianceof the
person will be smaller than a given threshold value. Hence,
the proposed method for detecting the position includes
two steps and is described in the following. In the first step, we
check whether the variance and the distance of an object
are smaller than the thresholds valueand , respectively. The
conditions may be written as follows:

(16)

and

(17)

When all detected objects are tested using the two conditions
(16) and (17), three situations might happen. The first situation
is that no object satisfies both of the two conditions. It means
that the ALV misses the followed person. In this case, the ALV
is stopped. The second situation is that just one object satisfies

both of the two conditions. The object is then taken as the fol-
lowed person at . The last situation is that more than one
object satisfies both of the two conditions. Then, the object with
the smallest distance is chosen to be the person to follow.
That is, in the second step, when the distancebetween
and an object is the smallest, the object is regarded as
the followed person at and the remaining objects are re-
garded as obstacles. If the object with the smallest distance is
an obstacle instead of the followed person, the followed person
cannot be detected around the area that is predicted using the
proposed method in Section II-B. Hence, the ALV will stop in
the next cycle and restart to detect an moving object as the fol-
lowed person.

III. PROPOSEDCOLLISION-FREE PATH GENERATION METHOD

FOROBSTACLE AVOIDANCE IN PERSONFOLLOWING

In this section, the guidance method for obstacle avoidance
in person following is proposed. The goal of this method is to
generate a collision-free path that passes through the location of
the followed person and the middle point between the two front
wheels of the vehicle without hitting the obstacles. This goal is
achieved using the proposed pattern generation method and the
path generation method described in the following.

In the proposed path generation method, the decision
boundary of the quadratic classifier is treated as the generated
collision-free path. When the quadratic classifier is applied,
there need two classes of patterns for use as the input. On the
other hand, the proposed pattern generation method provides
a systematic way to categorize all patterns into two groups
and . These patterns include the baseline of obstacles, two
sides of the vehicle body, and two series of artificial patterns
generated on the left-hand and the right-hand sides of the
person location. The pattern generation method is proposed in
Section III-A. In Section III-B, the formula of the quadratic
classifier is described.

A. Pattern Generation for Quadratic Classifier Design

In this section, a pattern generation method is proposed to
categorize all patterns into two groupsand , which include
two kinds of obstacle patterns and , two kinds of vehicle
patterns and , and two kinds of person patterns and

in the VCS. The details of the processing step are described
in the following.

In this study, all detected objects except the followed person
are treated as obstacles. The baseline of an obstacle is catego-
rized into one of two sets and according to a derived
reference line in the VCS. As shown in Fig. 7, the reference
line passes through the person’s positionand the origin
of the VCS. With the coordinates and of the person’s
position obtained in Section II-C, the formula of the reference
line can be derived to be as follows:

(18)

If a point ( ) is located on the left-hand side of the line, the
value of with respect to ( ) is smaller than zero. Hence,
if the mean of the baseline of an obstacle is on the left-hand
side of the reference line , i.e., if , the baseline of
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Fig. 7. Two kinds of obstaclesO andO , two kinds of vehicle patternsV
andV , and two kinds of person patternsP andP in the VCS.

the obstacle is assigned to a component of the set. Here, the
mean position of the baseline points of an obstacle represents the
position of the obstacle. On the contrary, if the mean position of
the baseline points of the obstacle is on the right-hand side of

, i.e., if , the baseline of the obstacle is assigned to a
component of the set . That is, the baseline of an obstacle
can be categorized by the following rule:

assign to
if
if

(19)

where represents the mean of the baselineof the ob-
stacle.

In the following, we state the proposed method for generating
two sets and of patterns to represent the left-hand side
and the right-hand side of the person position, respectively. The
scheme makes the decision boundary pass through the person’s
position so that the collision-free path can be used as a naviga-
tion path in person following. As shown in Fig. 7, the person’s
position is taken to be the mean of the baseline of the person.
Each of the two generated pattern setsand are designed
to be composed of a series of points that are located on the
left-hand or the right-hand sides, respectively, of the position

. The distance between the pattern setand the position ,
and the pattern set and the position are both 30 cm. The
length of or is also 30 cm.

Besides the pattern sets and , as shown in
Fig. 7, we regard the points of the projection of the left-hand
and the right-hand sides of the vehicle body in the– plane of
the VCS as two sets of patterns and , respectively. This
scheme makes the collision-free path to go through the origin of
the VCS, i.e., to go through the middle point between the two
front wheels of the vehicle.

Now, we describe how to associate separately each of the pat-
tern sets and with the person pattern sets and ,
and the obstacle pattern sets and for finding the colli-
sion-free path. The scheme for categorizing the six kinds of pat-
terns , and into two groups and
is based on the following rule:

(20)

and

(21)

More specifically, the left vehicle pattern set is associated
with the left person pattern set and the obstacle pattern set

. On the other hand, the right vehicle pattern set is as-

Fig. 8. A two-dimensional decision boundary,h(X), passing through the
origin of the VCS (i.e., through the middle point of the two vehicle wheels)
and the person’s location, is found by the quadratic classifier.

sociated with the right person pattern set and the obstacle
pattern set . In this way, the two groups and are obtained,
which are then used as the input to the classification designed
by the way described in the next section.

B. Quadratic Classifier for Path Generation

From the result of the pattern generation processes to be
described in Sections III-A, we can obtain two pattern groups
and , each of which includes patterns representing obstacles,
corridor walls on one side of the vehicle, the two sides of the
vehicle body, and that of the person. In this study, the quadratic
classifier is used to generate a quadratic decision boundary

between and . The decision boundary is taken as
a collision-free path that the ALV follows to achieve safe
navigation in person following. Since the generated path is
limited to go through the middle point between the two front
wheels of the vehicle (i.e., through the origin of the VCS) in
this study, as shown in Fig. 8, the decision boundary will
approach the person’s location without hitting the obstacles.
The vehicle can thus safely follow the person by navigation
along the derived collision-free path . The details for
generating the decision boundary are described as follows.

As shown in Fig. 8, let and be two groups of pat-
terns representing obstacles, and be those representing
the followed person, and and be those representing the
vehicle body sides. In this study, and belong to the
group , and and belong to the group . Each pat-
tern in the pattern group consists ofand values in the VCS.
We denote the coordinates of theth pattern in as
and those of theth pattern in as .

According to the theory of pattern recognition [13], we can
find a quadratic decision boundary between the patterns of two
classes to form a quadratic classifier. A general representation
of the quadratic classifier is written as follows:

(22)

where is a constant, and the vector specifies
a pattern of or . If , it means that belongs to ;
if , it means that belongs to .
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Since the collision-free path is limited to go through the
middle point between the two front wheels of the vehicle, i.e.,
the origin of the VCS, the value of in (22) can be set as
zero. The formula of the decision boundary in (22) can
be represented as follows [5]:

(23)where

and

We can use the technique for designing a linear classifier to find
the coefficients ( ) as follows.

Let . The values of
matrix come from those of the patterns ofand . Matrix

for and will be denoted as and , respectively.
Substitute the values of and in matrix by those of the
th point of and , and denote the resulting

matrix by . Similarly, substitute the values of and
in matrix by those of theth point of and

, and denote the resulting matrix by .
Accordingly, the nonlinear solutions of the coefficients for the

quadratic classifier whose input design patterns come from the
points of and are equal to the linear solutions of the coeffi-
cients for the linear classifier whose input design patterns come
from the points of and . Therefore, the five coefficients
in (23) can be solved [5] and the result is represented as follows:

(24)

where and and and are the means and variances
of and , respectively, and are computed as follows:

(25)

and and are the numbers of points ofand , respectively.

Fig. 9. The vehicle is guided automatically to follow a person who walks in
front of the vehicle.

Fig. 10. The prototype ALV used in this study.

By substituting (25) into (24), the five coefficients of in
(23) are obtained so that the quadratic decision boundary is
generated.TheALVcannavigatealong thederivedcollision-free
path to achieve safe navigation by person following.

IV. EXPERIMENTAL RESULTS

The proposed method has been implemented on a real ALV to
follow a walking person, as shown in Fig. 9. The ALV, as shown
in Fig. 10, is four-wheeled with two motors controlling the front
and rear wheels, respectively. The width and the length of the
ALV are 40 and 120 cm, respectively. The length between the
front wheels and the rear wheels of the ALV is 82 cm. The struc-
ture of the vehicle system is introduced in detail in [5]. In our
experiments, images taken by the image frame grabber are 512

486 pixels in resolution. The velocity of the vehicle is 31.75
cm/s, which is equivalent to 1.14 km/h. This velocity is accept-
able in many applications in indoor environments. In addition,
the vehicle modifies the turning angle every 1.5 s. Because the
speed of the person has to be smaller than that of the ALV, the
maximum speed of the person is about 31.75 cm/s. In addition,
in the experiment, one situation that the followed person does
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Fig. 11. An example of baseline detection results.

Fig. 12. An experimental result of the generated collision-free path. (a)
Detection result of walls and the followed person. (b) Top view of obstacles
and a generated path.

Fig. 13. Another experimental result of generated collision-free path. (a)
Detection result of a wall, the followed person, and an obstacle on the ground
of the corridor. (b) Top view of obstacles and a generated path.

not appear in the captured image may cause the wrong com-
mand in the navigation. This case is discussed and solved using
a method proposed in [14].

An example of the captured image is shown in Fig. 11,
in which the detected baselines are drawn as white lines.
Figs. 12–16 show some experimental results in a real indoor
corridor environment. Figs. 12(a) and 13(a) are real images
captured by a wide-angle camera. The white lines in these
figures are composed of the patterns of the detected obstacles.
Figs. 12(b) and 13(b) show the– plane of the VCS. All
the patterns representing the obstacles, the followed person,
and the vehicle in the VCS are shown as white points. The

Fig. 14. An experimental result shows that the distance between the followed
person and a wall is smaller than the width of the vehicle body. (a) Detection
result of walls and the followed person. (b) Top view of obstacles and a generated
path.

generated collision-free path that goes through the origin of
the VCS and the person position is also shown in Figs. 12(b)
and 13(b). According to the generated path, a modification of
the turning angle can be computed using the path following
method described in [5].

As shown in Fig. 12, two walls and the followed person are
detected and the collision-free path is correctly generated. As
shown in Fig. 13, the generated collision-free path is between
the wall and the obstacle. If the distance between the followed
person and obstacles is smaller than the width of the vehicle
body, the person patterns are not treated as input to generate a
collision-free path. As shown in Fig. 14, since the distance be-
tween the followed person and the wall is smaller than the width
of the vehicle body, the generated collision-free path does not
pass through the location of the followed person so that the ve-
hicle will avoid collision with the wall when it navigates along
the path. An experimental result showing the ALV successively
following a walking person without collision in the corridor is
shown in Fig. 15. The sequence of the captured images is shown
in Fig. 15(a). The corresponding– planes of the VCS with re-
spect to the captured images are illustrated in Fig. 15(b). Fig. 16
includes another sequence of experimental images showing the
ALV following a person in the corridor.

V. CONCLUSIONS

In this paper, an obstacle avoidance method for use in person
following for vision-based ALV guidance has been proposed.
The approach is based on the use of vehicle location estima-
tion and the quadratic pattern classifier, and enables the ALV to
follow safely a walking person through corridor environments
with obstacles by navigating along a derived collision-free path.
In this approach, the estimated translation of the vehicle location
from the previous sampling intant to the current one is used to
predict the person location at the current sampling instant. The
object closest to the predicted person location is regarded as the
followed person and the remaining objects are regarded as ob-
stacles. After obtaining the person’s location from extracted ob-
jects by the proposed person detection method, a collision-free
path can be generated by a path generation method. The navi-
gation path is generated from a quadratic classifier that uses the
vehicle and all of the objects in the image as input patterns. All
patterns are categorized into two classes to be the input to the
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Fig. 15. A sequence of experimental images in the corridor of a real indoor environment. (a) Captured images. (b) Top views of obstacles and generated
collision-free paths with respect to the captured images.

Fig. 16. A sequence of experimental images in the corridor of a real indoor environment.

classifier using a pattern generation method. The collision-free
navigation path is designed for ALV guidance in such a way that
the ALV not only can keep following the person but also can
avoid collision with nearby obstacles. This approach has been
implemented on a real ALV. Successful and safe navigation ses-
sions confirm the feasibility of the approach.
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