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1 Introduction
Edge detection plays an important role in many applications,
such as industrial inspection, pattern recognition, scene anal-
ysis, image coding, etc. Since human visual perception is
sensitive to edges and contours, we can simplify shape anal-
ysis and perform more accurate object recognition if the
boundary of an object can be extracted successfully. In ad-
dition, image data compression is crucial to reducing the
amount of storage and transmission time in the applications
of database management and network communication, re-
spectively. Therefore, some effective data reduction tech-
niques that do not destroy object shape boundaries are de-
sired. The goal of this study is to develop a new edge-
detection technique with subpixel accuracy that can be used
in image data compression.

For a survey of edge-detection techniques with "pixel"
accuracy, see Ref. 1. The gradient and the Laplacian are two
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Abstract. In contrast to the numerous edge-detection techniques that
detect edges either point by point or using overlapping circular windows,
an edge detector using nonoverlapping rectangular windows is pro-
posed. The detector examines the pixels within each rectangular window
of an image, and decides whether an edge element is present or not in
the window. Based on the gray and mass moment-preserving principles,
the step edge is estimated locally to subpixel accuracy using analytical
formulas. To apply the edge detection results to image compression, the
detected edge elements are then tracked and grouped based on prox-
imity and orientation. Using the line parameters of the grouped edge
elements, region boundaries are approximated in a piecewise linear
manner. This reduces the amount of data required to describe region
shapes and is useful for compressing some types of images. Good ex-
perimental results of compressing character and trademark images are
also included to show the feasibility of the proposed approach.

basic edge operators for noiseless pictures, which respond to
changes in gray levels.1 To reduce the effect of noise on the
response of an operator, some operators that compute dif-
ferences of local averages were In addition, many
approaches to modifying the gradient and the Laplacian op-
erators have also been provided. Nevatia and Babu2 cone-
lated windowed data with masks conesponding to square-
aperture-sampled ideal step edges oriented in six selected
directions. The magnitude of the conelated output and the
highest output at each pixel are recorded as the edge mag-
nitude and angle, respectively. Frei and Chen3 developed a
set oforthogonal functions that were closely related to distinct
image features and allowed efficient extraction of object
boundary elements.

Statistical analysis is another approach to edge detection.
Suk and Hong4 described a new edge-extraction technique
specifically developed for noisy images that eliminates the
necessity of noise-removal preprocessing or postprocessing.
The algorithm was based on parallel statistical tests for which
indeterministic decisions were allowed. From the viewpoint
of statistical classification, Kundu and Mitra5 assumed a two-
valued region model. Whenever the sliding window enters
the decision process, only three parameters are varied to
achieve the optimal performance even in the presence of
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noise. Huang and Tseng6 exploited the statistical theory of
hypothesis testing based on the likelihood ratio test to filter
the noise and detect the edges in the mean time.

Haralick7 proposed the use of the facet model for edge
detection. The facet model fits a polynomial surface (plane,
quadratic, etc.) to the image data in a neighborhood of each
pixel. This polynomial surface is used as a model of the
underlying continuous image. Thus, any processing to be
done on the image data is instead done on this polynomial
surface. An edge was defined to occur at a pixel if at some
point in the pixel's neighborhood there is a negatively sloped
zero crossing of the second directional derivative taken in
the direction of a nonzero gradient at the pixel center. But
some problems are associated with the use of zero crossings
of the second derivative to detect and/or localize step edges.
The reason is that the derivative operation is very sensitive
to noise; besides, if the surface-fitting basis is inadequately
selected, then the zero crossing can result in extremely bad
localization.

Because some problems need accurate measurements, sev-
eral researchers have tried to develop methods to obtain edge
locations with ' 'subpixel'

'
accuracy. Hueckel8 first derived

a regional operator of this type for 2-D images. He developed
an algorithm to determine the presence of edges by fitting a
unit disk of data to a Hilbert space spanned by a set of nine
orthonormal Fourier-type basis functions. An ideal edge of
arbitrary contrast, orientation, etc. was also projected onto
this space. The parameters of the ideal edge whose coeffi-
cients, in a sum of square error sense, most closely matched
those of the input image was used to estimate the edge lo-
cation to subpixel accuracy. Instead of using Hueckel's
weighting function over a bounded disk,8 Hartley9 took a
data structure called pyramid in which the basis has an ap-
proximately Gaussian weighting function over the plane. Us-
ing subsets of this basis, the operator becomes equivalent to
either a gradient edge operator or a zero-crossing edge op-
erator.

Similar to Haralick's method,7 a problem with Hueckel's
method8 is the choice of an adequate basis. In addition, it
often fails to exploit the directional characteristics of edges.
Unlike the previous work, the basis proposed by Nalwa and
Binford'° was constrained to be directional. The edge-
detection process is to fit a series of oriented 1-D surfaces to
each window in the sense of the least squares error with the
fewest parameters. From the above three methods, it should
be emphasized that there cannot be any unique basis that is
appropriate to describe the image data in all windows. If we
attempt to do this, we will obtain noise-sensitive results if
the basis is not minimal and extremely bad localization if the
basis is inadequate.

Tabatabai and presented an operator that lo-
cates edges by fitting the first three gray-level moments to
the image data. They derived a line equation to calculate a
local edge location to subpixel accuracy. Since a line equation
is a degenerate case of conics, Chen and Tsai'2 proposed an
advanced detector to estimate curved edge locations locally
using a parabolic equation. They used a decent method with-
out derivatives to solve the coefficients as a minimization
problem, and curved edge points could be detected to subpixel
accuracy, too. Moreover, Liu and Tsai13 introduced the prin-
ciple of mass moment preserving to detect a general corner
in a given circular area, with the first three gray-level mo-

ments preserved also. By the assumption that the edges are
locally straight, Hyde and Davis'4 provided another subpixel
line edge detectorthat best predicts the intensities ofthe pixels
along the edge.

Image compression is significant for mass image trans-
mission and storage. Certain applications ofimage processing
require the storage of a large number of images. An example
is the identification of trademark images to prevent a newly
registered trademark from being identical or similar to ex-
isting ones. For this application, a huge image database for
all existing marks is required. Hence, image compression is
useful.

Since one of the most striking features of human visual
perception is the sensitivity to edges and contours, recent
neurophysiological results suggest the use of a general con-
tour/texture model for image processing and coding. Some
techniques attempt to use explicit representations of geo-
metric structures to code images. The coding problem in-
cludes (1) efficient extraction and coding of contour infor-
mation and (2) coding oftexture between contours. The work
of Graham15 starts by noting that if the spatial frequency
spectrum of an image is split into a low-frequency and a high-
frequency part, the high-frequency part will reproduce the
sharp intensity changes in the image, i.e., the contours mark-
ing the transitions between the object and the background.
On the other hand, the low-frequency part approximates the
smooth areas between contours. By using explicit represen-
tations of contour geometry, the efficiency of the coding of
the high-frequency part can be increased. Kunt, Ikonomo-
poulos, and Kocher'6 used the duplicate approach to contour
extraction in trying to define the smooth areas between con-
tours. Their approach is based on a region-growing and split-
and-merge scheme to find the smooth regions. These regions
are then approximated using low-order polynomials. The
contours are obtained as the boundaries between the smooth
regions.

The methods of edge detection mentioned above can be
classified into two categories. Each method in the first cat-
egory should be repeated over the whole image by shifting
the window in one-pixel steps in the x and y directions.2'°"7
A method of the second category aims to divide a digital
picture into a set of contiguous overlapping 4.5-unit circles,
the distance between the centers of every two neighboring
circles in the horizontal or vertical direction being 5 pix-
els.' 1-13 However, each of them suffers from a prominent
weakness. That is, a rather heavy processing burden neces-
sary to achieve this way of edge detection or contour ex-
traction.

In this paper, an edge detector is proposed to scan the
entire image by nonoverlapping rectangular windows instead
of overlapping circles and examine whether an edge element
is present within each window by statistical analysis of gray-
value variations. If a rectangular window contains an edge
element, the edge operator then uses the gray and mass
moment-preserving principle to obtain an analytical solution
that determines the step edge location to subpixel accuracy.
Once a group of short linear edge elements are detected, a
tracking technique is used to stretch an edge element along
its orientation as long as possible under a given linearity
criteria, and the final tracked elements are approximated by
piecewise line segments to obtain a more compact represen-
tation. In this way, data compression of certain types of im-
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Fig. 1 Step edge detection in an 8 x 8 rectangular window:
h1=l5and h2=97.

ages, such as Chinese character images, trademark images,
etc., can be achieved. Because the brightness contrast of the
images in our specific applications is assumed to be apparent,
the gray-level information on both sides of each contour need
not be coded along with the contour location.'8 The coor-
dinates of the set of fitted boundary segments and a classi-
fication map about the whole set of windows, together with
the representative gray values, are recorded to achieve image
compression. Reconstruction of an image is performed sim-
ply by regenerating boundary segments from the stored co-
ordinates and referencing the decoded classification map to
fill appropriate gray values into reproduced regions.

The remainder of the paper is organized as follows: we
describe the proposed step edge operator in Sec. 2, edge track-
ing is described in Sec. 3 for use in the application of some
types of image data compression, experimental results with
brief discussions are presented in Sec. 4 to show the effec-
tiveness and efficiency of this approach, and conclusions are
given in Sec. 5.

2 Proposed Edge Detector

2.1 Principle of Proposed Method
The proposed edge operator estimates an edge location by a
line equation. Based on the principle of 2-D spatial moment
preserving, an analytical definition of edge location is then
given. This new approach, different from that of Tabatabai
and Mitchell," uses nonoverlapping rectangular windows
and accepts as input a set of grid squares equal to the size
of the window [see Fig. 1(a)I. In this paper, we address only
step edges. We assume that the rectangular window is small
enough so that a step edge element (briefly called an edgel
in the sequel) existing in the detection window will lie be-
tween two neighboring regions with nearly constant gray
levels. The proposed detector generates as output an ideal
step edgel defined over a rectangular window with two gray
values h, and h2 (assume h2 >h,). The edgel separates the
window into two regions A, and A2 with h1 and h2 being the
representative gray values for A , and A2, respectively, as
shown in Fig. 1(b).
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(b)

(a) input data and (b) output data with

To obtain the areas of A , and A2, as well as their cone-
sponding gray values h, and h2, define the first three spatial
moments of empirically obtained data in the n Xm window

i=1,2,3

where s the intensity associated with the j'th grid. Since
all of the information of an image comes from the gray values
of the pixels, by preserving the first three gray moments in
the detection window (this is reasonable because the window
is small), we can obtain four equalities as follows:

J' P1h=m , i=1,2,3

and

P,+P2=1

where P, and P2 are the fractions ofA, and A2, respectively.
Now, we have four equations for four unknown parameters
P,, P2, h,, and h2. These unknowns can be solved by Ref.
19, whereby the areas ofA, and A2 can be readily computed
as a1 =mnP, and a2 =mnP2.

In this approach, no rotation of the window is needed.
Such rotations are found in several previous approaches. '
After checking each of the four corners of the window (see
Fig. 2), if the average gray value of the four pixels of the
corner is less than the following threshold:

Td=(3.h,+h2)/4

then the corner is flagged to be ''black'' ; otherwise, it is
flagged to be ' 'white.' ' According to the geometric config-
urations in the window, twelve distinct ways for the edgel
to intersect the window are shown in Fig. 3.

For a window with an edgel, the proposed step edge op-
erator identifies the location of the edgel by two intersection
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Fig. 2 Checking the four corners of a window. Each corner consists
of 4 pixels.

points on the window boundary, say P = (x1,y1) and
Q = (x,y). These points determine the line equation of the
edgel. Let the line equation be described by

Ax+By=C, (1)

where

A =Y1Y2'
B = x2—x1,

C = x2y1 —x1y2.

Since the location of a window is known at any time, each
of the two intersection points P and Qhasonly one unknown
parameter, say p and q, respectively, which determines the
edge! position. For example, for the case ofFig. 4, line Eq. (1)
becomes

(p—q)x+(s1—s0)y=s1p—s0q . (2)

We derive next some equations for computing p and q by
the mass moment-preserving principle?0 Let R be a lamina
of constant intensity p(x,y) = h>O in the xy plane, where the
x axis is drawn horizontally pointing to the right, and the y
axis is drawn vertically pointing downward. The general rule
about the mass moment is

M11(R)=JJx1y'p(xy)
dx dy . (3)

In the following, we only investigate the case of Fig. 3(d);
the other cases can be derived in the same manner. Note that
when the window slides over the entire image, the coordinates
of the four corners in it are always kept track of. Let and
A2 be the two constant subregions separated by edge! I with
areas a1 and a2 and representative gray values h1 and h2,
respectively. Moreover, assume that edgel 1 with equation
PaX + 'c intersects the window at two points, (s0,p)
and (s1,q) (see Fig. 4), where p and q are two unknown pa-
rameters to be solved. By preserving the zeroth-order and
the first-order mass moments of A1 and A2, we can derive
the following lemma to solve the unknown parameters p and
q analytically, and so determine the location of the edge! to
subpixel accuracy.

p+q [M00(A)/(s1 —s0)] +h2t0—h1t1
2

—

h2—h1

and

q—p — 6{M10(A) — [(s1 + s0)/2]M00(A)}

2
—

(s1—s0)2(h2—h1)
(5)

Proof. Let 8T1 and 3T2 be the boundaries (the polygons
enclosing the areas) ofA1 and A2, respectively. Since 0T1 and

are two piecewise simple closed curves, by using a mod-
ified theorem,'3'2° the total mass moment of the window A is

Moo(A)=JJp(xy) dx dy

= JJp(xy) dx dy+ Jfp(xy) dx dy
Ai A2

=h1Jf dx dy+h2 if dx dy
Ai A2

= _h1f y dx+ (—hj y dx)8Tj aT2

h1(s1 s0)( P+)+h(S s1)(

p+q\= — tl — —
to — —i—-)

(s1 so)[hiti h p+q= — — 2to+(h2_hi)] , (6)

where parameters t0 and t1 are the y coordinates of the four
corners of the detection window (see Fig. 4 for an illustra-
tion).

The y mass moment of A is

OPTICAL ENGINEERING I July 1 993 I Vol. 32 No. 7 I 1599

Lemma. The unknownparameters p and q satisfy the fol-
lowing relations:

(4)

M10(A) = fJp(xy) dx dy

= Jfxp(xy) dx dy + JJxp(xY) dx dy

= hiffx dx dy + h2JJx dx dy

=M10(A1) +M10(A2)

=—h1J xYdx+(_h2J xYdx)8Ti 3T2
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(h)

Fig. 3 An edgel may intersect a window in 12 ways.

,, t)
(s1, q)

For the discrete representation of an image, the mass moment
of A can be computed as follows:

M13(A) = x'y11(x,y) , (8)
(x,y) EA

where I(x,y) is the observed gray value at location (x,y), which
is constant over the grid centered at (x,y). From Eq. (8), we
can reformulate Eq. (6) to be

p+q [M00(A)/(s1 —s0)] +h2t0—h1t1
2

—

h2—h1

and Eq. (7) to be
y

Fig. 4 An edgel intersecting the rectangular window at two points
(s0, p) and (s1, q).

I-s1+so 1

=hlL 2 a1+-j-(s1—s0)2(p—q)

[0+, 1

+ h2L 2 a2+ Tj-(si — s0)2(p — q)

s1+s2 1=
2 Moo(A)+j-(si_so)2(p_q)(h2_hi) . (7)

q—p —6{M10(A) — [(s1+so)/2]M00(A)}
2 (s1 —s0)2(h2—h1)

and the lemma is proven.
Now, we can solve the analytical Eqs. (4) and (5) for p

and q. It is found that p and q may be nonintegers, so the
edgel location in a window can be estimated to subpixel
accuracy. For display purposes, by rounding p and q to
the nearest integers, we can obtain the line equation
PaiX + "biY for edgel l where 'ai P q, bi =l
and P=s1p—s0q.

An edgel-map is introduced in the study as a look-up table
to be referenced by the edge-tracking process described in
Sec. 3. Each entry in the map corresponds to a window in
the original picture and is declared to be a no-edge! type

1600/OPTICAL ENGINEERING/July 1993/Vol. 32 No.7
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nl + n2 —2

nl +n2 —2

the decision rule

Let X1, X2 X,1 and Y1, Y2 Y,2 denote, respectively,
the independent random samples from the two independent
distributions having, respectively, the probability density
functions n(ji1, cr2) and n(i2, if2). Denote the means of the
samples by X and , and the variances of the samples by
S and S, respectively. According to the stochastic indepen-
dence property described in Ref. 21, X and Y are normally
and stochastically independently distributed with means
and i2 and variances cr2Inl and if2/n2, respectively. Thus,
the difference Y— X is normally distributed with mean

— and variance (ff2/nl) +(ff21n2). Since variance if2 is
unknown, an unbiased estimation of if2, denoted by S2, is
needed, which can be formulated as

- 2 + -

initially. By a decision strategy described later, if a window
contains an edgel, we apply the appropriate formula and fill
the corresponding entry with the edgel type and the computed
edgel location.

2.2 Decision Making about Existence of an Edge!

One inherent property of edge detection is that the operation
requires the examination of several pixels within continuous
or overlapping subareas, followed by a decision as to whether
an edge is present or not within each subarea. We proceed
now to analyze this decision process and suggest certain so-
lutions to the problem. By considering the evidence that noise
usually corrupts the edges, the decision making about the
existence of an edgel are divided into two stages. In the first
stage, the gray-level distribution of the pixels in the window
is analyzed. Two parameters T0 and T1 are preselected: T0 is
used to determine the existence of unimodal windows (i.e.,
constant regions), whereas T1 is used to determine the ex-
istence of bimodal windows (i.e., two-valued regions). The
mechanism of this simple test is described in the following.

Divide the gray-level range [0, 255] into 16 intervals, say
iii' j =: 2 16, and let O represent the number of pixels
with gray levels falling in interval I. If the tested window is
bimodal, the values of O will become diverse and small. On
the other hand, if the tested window is unimodal, the values
of O will concentrate on several larger values. Compute O
for each window, where j = 1, 2 16. And compute the
index difference

Diff_indx =Max_indx-Min_indx

where Max_indx and Min_indx are the index numbers of
max{01} and min{01} for i = 1, 2 16, respectively. In the
experiments, the critical values of the two parameters T0 and
T1 are assigned to be 1 and 3, respectively. If Diff_indx is
less than or equal to T0, the window is determined to be
uniform and contain no edgel; if Diff_indx is larger than or
equal to T1, the window is determined to contain an edgel;
and if Diff_indx is greater than T0 and less than T1, the
window is regarded as an ''ambiguous'

'
region. This simple

parametric test can speed up the decision process of edgel
existence by eliminating those windows whose gray values
are clearly unimodal or bimodal distributions and reduce the
unnecessary computation time significantly.

If it fails to make a decision in the first stage, a simple
test about the gray level variations using Student's
t-distribution is introduced in the second stage. If an edgel
exists in a window, let the constant subregions separated by
the edgel be denoted asA1 andA2, respectively. Among them,
one is ' 'darker' ' with respect to the other. To implement this
test, we assume that the picture is a 2-D discrete random field
that is a collection of random samples. Each random sample
is supposed to have a normal distribution and represents the
gray value of each pixel. We also assume that the random
samples are stochastically independent with their variances
being unknown, but equal. Under these assumptions, we can
regard subregions and A2 as two independent normal dis-
tributions, say n(ji1, if2), andnQi2, if2), where and I-2 are
two unknown means of A1 and A2, respectively. For con-
venience, it is hoped that 2 is larger than (i.e., subregion
A2 is "brighter" than A1) and a hypothesis testing for I2—

may be obtained as follows.

and the estimated standard derivation SD of the difference
between X and Y is then derived to be

1S2 S2\''2 I i i \V2
SD(+) =s(—+-—J . (10)\fll n2, \fll n2,

(9)
Now consider the hypothesis testing

H0:2—1<T,

against

H1:ji2—i1T2

where T2 is a preselected tolerance upper bound of gray-level
similarity such that two pixels are declared to be in the same
region if their absolute gray-value difference is equal to or
lessthan T2. Inourexperiments, T2issettobe 15. ByEq. (10),

=(--T2 (11)

has a Student's t-distribution with (nl +n2 —2) degrees of
freedom. The critical t value at the 0.5% significance level
in our experiments for (n 1 +n2— 2) degrees of freedom can
be taken from the tables listed in the appendix of Ref. 21. If
the observed value of exceeds this postulated critical tvalue,
then H0 is rejected and we confirm that the tested window is
bimodal (i.e., we confirm that the window contains an edgel).
Otherwise, the tested window is regarded as a region with
no edgel.

3 Edge Tracking and Application to Image
Data Compression

3.1 Edge-Tracking Princip!e
Theproposed edge-tracking method tends to extend an edgel
along its orientation. In connecting the next boundary edgel

OPTICAL ENGINEERING / July 1993 / Vol. 32 No. 7 / 1601
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Fig. 5 Eight different search areas for the next boundary edgel. The arrow represents the direction to
which the direction of the current edgel is similar. The search areas are denoted by E, F, and G.
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from the current edgel 1, only three of its eight neighbors,
called search areas, are examined. Although there are 12
distinct ways in which an edgel can exist in a window, we
can further classify them into eight edgel orientations, and
eight possible search areas are thus derived, as shown in
Fig. 5. From the edgel map obtained from the edge detector,
an unfitted edgel is selected as the ''start edgel.' ' An object
boundary may be traced by following the successive edgel
with an orientation that agrees with the cunent checking
orientation and with the collinearity measurement dmax (de-
fined later) that does not exceed some preset threshold . A
temporarily fitted segment 1 is obtained simply by connecting
the start edgel and the current successive edgel. The Euclid-
ean distance is used to measure the collinearity:

, (12)

where (1a' 'b are the line parameters of the temporarily
fitted segment 1 and (x1, y) are coordinates of the end points
of the edgels that will be approximated by 1. This tracking
process is repeated until an edgel with no successor or until
a previously fitted edgel is reached. Hence, a newly fitted
boundary segment can be formed by connecting the start
edgel and the end edgel to approximate a group of ordered
edgels just passed through. After all of the detected edgels
are traced, the measure of fitting error Eai2gi that determines
the fitting quality of the whole tracking process is defined as

CangiO+Oangi , (13)

where 0 and angl are the mean and the standard deviation
of the intersection angles, respectively, between the fitting
line segments and the corresponding edgels. If EangiS no less
than some preset limit E2, then decrease by a fixed value
and restart the tracking process; otherwise, the tracking stage

1602/OPTICAL ENGINEERING/July 1993/Vol. 32 No.7

is terminated, resulting in an acceptable compact represen-
tation for the object contour. Formally, the algorithm for edge
tracking is given below.

Algorithm 1. Edge tracking.

Input. An edgel map.
Output. A set of fitted boundary segments, SEG

SET.
Step 1. Create an empty segment set, SEG_SET.
Step 2. Create an empty queue SEG.
Step 3. Choose an unfitted edgel from the edgel

map as the current edgel. Push it into SEG.
Step 4. Examine the possible search areas of the

current edgel to determine a successive ed-
gel that is not fitted yet.

Step 5. If no successive edgel exists, go to Step 8.
Step 6. Connect the first edgel in SEG and the suc-

cessive edgel ii to form a temporary fitted
segment i.

Step 7. Check the collinearity of the edgels in SEG
and I. For each end point P of any edgel
in SEG, compute the Euclidean distance
from P to i and choose the maximum, say
dmax. Ifdmax E1, push the successive edgel
ifs into SEG, let i be the current edgel, and
goto Step4.

Step 8. If SEG contains only one edgel, remove it
from SEG and go to step 2; otherwise, con-
nect the first and the last edgels in SEG to
form a new fitted segment i and push it into
SEG_SET.

Step 9. Compute the intersection angle between
each edgel in SEG and i.

Step 10. If any edgel remainsunfitted, go to Step 2.
Step 1 1. Compute the mean 0 and standard devia-

tion crangl of the intersection angles between
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Fig. 6 A gap may exist between two fitted segments in four ways.

the fitted segments and the corresponding
edgels.

Step 12. Measure the fitting quality angl of all the
fitted segments in SEG_SET. If Eangi <
output all of the fitted segments in G and
exit; otherwise, reinitialize SEG_SET as
empty and adjust to a smaller value, say
E1 — . Go to Step I for the next iteration.

Since some edgels may not be included into any fitted
segments during the tracking process, these untouched edgels
correspond to the gaps that significantly reduce the visual
acceptability. To solve this problem, each of the gaps can be
bridged simply by examining 24 neighbors of the cone-
sponding untouched edgel I, and picking two of the fitted
segments, say T1 and T2, nearest to I. The geometric relations
of T1, T2, and I can be classified into four classes, as shown
in Fig. 6. If T1 and T2 are nearly parallel [see Figs. 6(a) and
6(b)1, choose two end points P1 and P2 nearest to edgel 1
and reassign the coordinates of P1 and P2 to their midpoint
Q [see Figs. 7(a) and 7(b)]; otherwise, as seen in Figs. 6(c)
and 6(d), stretch T1 and T2 along their individual orientations
to obtain an intersection point Q as the new end point, and
properly reassign Q to the end points of T1 and T2, respec-
tively, such that T1 and T2 have a common end point Q[see
Figs. 7(c) and 7(d)]. An advantage of using fixed end points
in the approximation under the preset maximum Euclidean
distance criteria is that, in practical applications, slight de-
viations from the minimum error norm are generally ac-
ceptable and usually preferred because they can result in
considerable savings of computational time without sacrific-
ing the accuracy of the result.

3.2 Application to Image Data Compression

Recentlydeveloped image data compression techniques, such

as segmentation-based coding,'6 directional decomposition-
based coding,2' etc., aim at reducing storage space by the
use of explicit representations of geometric structures. How-
ever, they usually require substantial amounts of computing
time. This restricts their applications, especially when fast
compression/decompression is needed. The set of fitted line
segments, resulting from the edge-tracking process, can be
used to represent shape boundaries that obviously are useful
for data reduction or compression, because line segments, in
general, can be represented by their equation coefficients
using a much smaller number of bits.

Once object contours are represented by a set of fitted line
segments, the entire image is then separated into distinct
constant regions. Since the brightness contrasts of images are
assumed to be prominent in our application, each of these
segmented constant regions can be colored simply by a single
gray value. A blockwise connected component labeling
method is employed to distinguish these regions by sequential
labels that are recorded in a resulting classification map. In-
stead of coding gray levels of contour pixels as proposed by
Carlsson,'t image compression can be achieved by recording
the coordinates of these boundary segments and using fewer
bits to store the classification map and the label table. How-
ever, the method of constructing the classification map and
the label table still needs improvement because of the fol-
lowing two reasons: (1) the distinct labels may not be indexed
in sequential numbers and (2) there may be two or more label
indices in the label table whose corresponding average gray
values are very much close.

For reason (1), we rearrange the distinct labels in se-
quential numbers. This reduces the size of the label table.
For reason (2), a threshold T4 is selected to allow a tolerance
in judging the similarity among the calculated average gray
values; the gray values of any two labels are determined to
be of the same class if their difference is less than T4. In our
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Fig. 7 Two ways of gap filling: (a) and (b) are for two nearly parallel fitted segments and (c) and (d)
for two nonparallel fitted segments.

experiments, T4 is set to be 25. A detailed description of the
modified blockwise connected component labeling algorithm
is described below.

An edgel map.
A classification map C_MAP and a label
table T_LAB.
Create a classification map C_MAP, with
each entry corresponding to a window in
the original picture.
An entry of C_MAP is set to 1 if the cor-
responding rectangular window contains an
edgel; otherwise, it is set to 0.
Examine each entry of C_MAP in a row-
majored top-down manner.
Search for the first nonzero entry. If it is
not found and the map has been scanned
over, go to Step 8.
Find the set ADJ of four adjacent labeled
entries.
If ADJ is empty, assign a new label to this
entry; otherwise, choose the minimum label
in ADJ as the new label and record that the
other labels in ADJ and the minimum label
are equivalent, i.e., they represent an iden-
tical class.
Go to Step 4 to determine the label for the
next entry.

Step 8. Relabel entries based on the recorded
equivalent labels, such that a class is rep-
resented by only a label.

Step 9. If any label change occurs, do the process
from Step 4 to Step 8 in a row-majored bot-
tom-up manner.

Step 10. Number the distinct labels in sequence and
then modify the corresponding entries in
C_MAP.
Construct a label table T_LAB with its size
equal to the number of labels in C_MAP.
Group the entries having an identical label
in C_MAP and compute the average gray
value G_AVE of the corresponding uni-
form windows. Record each 0_AVE value
and the corresponding label number on
T_LAB.

Step 13. If there exist two or more labels in T_LAB
with the difference of the corresponding
average gray values being less than T4,
mark these labels as being equivalent and
record them as belonging to an identical
class; otherwise, output C_MAP and
T_LAB with the label numbers in se-
quence, and exit.

Step 14. Relabel the entries of C_MAP based on the
equivalence classes. Go to Step 12.

To measure the compression ratio (CR), the following
notations are employed:
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Algorithm 2. Connected component labeling.

Step 11.

Step 12.

Input.
Output.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.



MOMENT-PRESERVING EDGE DETECTION

Fig. 8 The result of applying the proposed step edge detector to a Chinese character image:
(a) original input image; (b) output image with 6 x 7 nonoverlapping squares as output areas and with
detected short edge element drawn in each square; (c) output image resulting from edgel tracking and
line segment approximation, in which c = 8.8, 0 = 13.5 and ang/= 9.2; (d) output image identical to (c)
except that the gaps around the corners are bridged; and (e) reconstructed image with CR = 248.83.

ROW = number of rows in the image
COL = number of columns in the image
leng = length of the rectangular window
wid = width of the rectangular window
no = number of elements contained in the label

table

seg = number of fitted boundary segments
nbit = number of bits required to represent a pixel.

Now, we briefly summarize the total number of bits re-
quired to code an image of 512 X 512 pixels. The bits come
from the following sources.

1. Size of the classification map, map_size:

/ROW COL\
map_size = x —--- j x [log2(no+ 1)1

\ leng wid /

2. Size of the label table, lab_size:

lab_size =nbit X [log2(no + 1)1

3. Size of coordinates for two end points of an edge!,
coor_size:

coor_size =2 x ([!og2ROW1 +[log2COLl)

Let the gray level of each pixel be coded with 8 bits (denoted
as nbit), then the CR is

CR =
ROW X COL X nbit

map_size + lab_size+ seg X coor_size

To summarize, the CR depends on the content of an image.
In our case, it is the amount of fitted boundary segments that
mainly determines the CR. Therefore, the preset limit of the
maximum Euclidean distance and the size of the rectangular
window chosen in the edge detection process can be varied
to obtain various CR.

4 Experimental Results
The proposed approach has been tested on several images
using a PC/AT 386. Some results are shown in Figs. 8 and
9. The step edge detector is applied to digital images taken
from an image capture board with resolution 5 12 X512 X
8 bits. Given a window size, an image is divided into a set
of contiguous nonoverlapping quadrilaterals. For the purpose
of display, the pixels drawn by these edge line equations are
set to a predetermined white intensity value, say 255.

Figures 8(a) and 9(a) are the original images of a Chinese
character and a trademark, respectively. The edge detection
results with fixed window sizes of 6 X7 and 7 X 8 are given
in Figs. 8(b) and 9(b), respectively. After all of the edgels in
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Fig. 9 The result of applying the proposed step edge detector to a trademark image with two colors:
(a) original input image; (b) output image with 7 x 8 nonoverlapping squares as output areas and
detected short edge element drawn in each square; (c) output image resulting from edgel tracking and
line segment approximation, in which = 4.3, 0=9.7, and angi=89; (d) output image identical to (c)
except that the gaps around the corners are bridged; and (e) reconstructed image with CR = 269.5.

an image are identified, the available line parameters of the
edgels together with the edgel map are then exploited in the
stage of edge tracking. At the end of this tracking process,
a more compact representation of the contours of regions or
objects is thus constructed. Figures 8(c) and 9(c) show the
set of fitted boundary segments in which some gaps occur
around the corners. An improving step used to bridge these
gaps is then performed, and the final results are displayed in
Figs. 8(d) and 9(d).

After performing the edgel-tracking process, the infor-
mation extracted from an original image includes: (1) the
coordinates of the set of available fitted boundary segments
and (2) a classification map and a label table about the set of
constant windows. Such information forms a simple and per-
spicuous representation and can be used for image recon-
struction. Figures 8(e) and 9(e) exhibit the reconstructed im-
ages with CRs 248.83 and 269.5, respectively. Figure 10
shows the experimental results of a third image with a CR
of 324. 1 . For various choices of the preset values of the
collinearity controlling threshold and the window size, the
resulting CRs together with the mean and the standard de-
viation of intersection angles are listed in Tables 1 through
3. Tables 1 through 3 show that the larger the window size,
the larger the CR that can be obtained, under the same value
of . Besides, when the value of grows larger (i.e., en-
during more fitting errors in the edge-tracking process), the
mean value of the intersection angles, as well as the CR in
general, are increased. In most cases, the fitting quality is
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highly dependent on the window size, and the influences
resulting from various values of are less prominent.

It takes about 2 to 3 mm to process an image, the amounts
of time being dependent on the complexity of the processed
image contents. Most of the time (more than half) was spent
in edge detection and the t-distribution test if applied. If faster
computers such as workstations are used, the processing time
can be greatly reduced.

5 Conclusions
The moment-preserving principle is a useful technique in
image processing to keep as much information of the input
image as possible. A new method for step edge detection has
been proposed. This method can be applied directly to an
observed picture. For each rectangular window, the proposed
detector analytically computes a line equation for the location
of an edgel to a good accuracy level, if the decision strategy
claims that an edgel is contained in it, by the use of the gray
and mass moment-preserving principles, as well as various
geometric relations in the detection window.

The derived edgel equations are useful as the input data
for the work of boundary tracking. Based on a linearity mea-
sure using Euclidean distances and intersection angle vari-
ations, piecewise line segment approximations with fixed end
points are employed to represent the contours of regions or
objects in a compact way, and data reduction is thus achieved.
The original picture can then be segmented into a set of
constant regions. Using the modified blockwise connected



MOMENT-PRESERVING EDGE DETECTION

Fig. 1 0 The result of applying the proposed step edge detector to a trademark image with three colors:
(a) original input image; (b) output image with 6 x 7 nonoverlapping rectangles as output areas with a
detected short edge element drawn in each area; (c) output image resulting from edgel tracking and
line segment approximation, in which = 3.6, 0 = 10.1 , and ang/ 11 .9; (d) output image identical to
(c) except that the gaps around the corners are bridged; (e) reconstructed image with CR = 324.1

Table 1 Evaluation of the CR and the corresponding 0 and ong/
values with various preset limits for the image of Fig. 9 with a
6 x 6 window.

fi 4.6 5.5 6.6 7.5 8.3 9.5 10.8 15.6

9.5 11.0 11.1 11.0 11.5 11.4 12.4 13.9 15.1

angl 5.4 6.38 6.33 6.41 6.65 5.7 8.2 9.94 9.52

199.4 233.4 204.0 74 211.9 211.1 216.0 216.1 223.9

Table 2 Evaluation of the CR and the corresponding 0 and (Tang!
values with various preset limits for the image of Fig. 9 with a
6 x 7 window.

fi 3.5 4.6 5.5 6.6 7.5 8.3 9.5 10.8 15.6

9.53 1 1.0 1 1.3 12.4 12.0 12.4 13.0 13.2 14.1

ang1 4.7 5.84 5.75 7.03 6.67 7.0 7.74 7.7 9.05

217.1 221.0 222.7 228.3 235.0 238.2 238.9 240.0 246.0

Table 3 Evaluation of the CR and corresponding 0 and angi values
with various preset limits E for the image of Fig. 9 with a 8 x 8
window.

3.5 4.6 [ 5.5 6.6 7.5 8.3 9.5 10.8 [ 15.6

8.3 9.3 10.2 10.2 10.6 1 1.5 1 1.8 1 1.9 13.4

°uig1 4.93 5.2 6.0 6.0 6.05 6.36 6.33 6.0 6.02

270.3 268 0 273 1 275 7 277 0 2828 281 3 283.5 296.0

component labeling scheme, each region can be identified
just by a label. Using the compact representations of the
object contours, we have shown examples of compression
with CRs larger than 195.5 for pictures with gray-level res-
olutions of 8 bits/pixel.

The proposed edge detector does not need a thinning pro-
cess. Although it is sensitive to noise similar to most image
processing techniques using moments, the process of bilevel
gray moment-preserving thresholding can remove the noise
of low intensities without preprocessing and postprocessing.
Besides, no iteration is required and only algebraic compu-
tations are involved in processing the entire image.

Compared with other similar approaches using the
moment-preserving principle (like the Tabatabai and Mitchell
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approach' 1), the proposed approach of edge detection has at
least the following advantages. (1) Window overlapping,
which is encountered in the other approaches using overlap-
ping circular windows, is avoided, and this speeds up the
edge-detection process applied to the entire image. (2) The
detected edges will not overlap or be disconnected by gaps
since the rectangular windows are contiguous and nonover-
lapping. Note that this is not the case for the other approaches
using overlapping circular windows that do not completely
cover the entire image, resulting in more difficulty in the
postprocessing steps of edge tracking and linking.

The acquired range of the CRs has been shown to be
satisfactory for pictures with clear regions. For textured pic-
tures like natural scenes, the performance of the proposed
method will be worse, but the method is still applicable. The
CRs are in the range of 20 to 30, as revealed by a similar
study by Cheng and Tsai.27
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