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Abstract

Chou, S.-L., J.-C. Lin and W.-H. Tsai, Fold principal axis—a new tool for defining the orientations of rotationally symmetric

shapes, Pattern Recognition Letters 12 (1991) 109-115.

A new type of principal axis, namely, fold principal axis, is introduced in this paper, which can be used to define the orienta-
tions of rotationally symmetric shapes. A given shape is first transformed into a new shape on which the well-defined traditional
principal axis is detected. The traditional principal axis is then transformed back to obtain the proposed fold principal axes
of the given shape. The properties of such axes, including the uniqueness, existence, and invariance under rotation, translation,
and scaling, are investigated. Some illustrative examples are also given.

Keywords. Rotationally symmetric shape, fold-expanded shape, principal axis, fold principal axis, high-order generalized prin-

cipal axis.

1. Introduction

Rotationally symmetric shapes are frequently
encountered in real applications. For example,
stars, regular polygons, crosses, gears, etc., are all
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rotationally symmetric shapes. When a robot is
told to pick up an article with a shape of this type
in a machine parts assembly work, the robot usual-
ly has to locate the article first, including the deter-
mination of the position as well as orientation of
the article shape. The computation of shape orien-
tations is thus an essential step for many automa-
tion applications. For shapes which are not
rotationally symmetric, the principal axes of the
shapes (Rosenfeld and Kak, 1982) usually give
enough information about the orientation of the
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shapes. For shapes which are rotationally sym-
metric, however, principal axes no more exist (Tsai
and Chou, 1990). We thus have a question to
answer: can the definition of principal axis be
modified so that the orientation of rotationally
symmetric shapes can be detected using the
modified principal axes? The answer to this ques-
tion is positive and there exist at least two possible
approaches to solving it. The first is to use high-
order generalized principal axes, as defined and il-
lustrated in (Tsai and Chou, 1990). Another ap-
proach which in general requires less computation
time is proposed in this paper. Instead of using
high-order generalized principal axes, this new ap-
proach still makes use of traditional principal axes
and defines a new type of principal axis, called fold
principal axis. More specifically, in the proposed
approach the traditional principal axis is first com-
puted from a new shape, called fold-expanded
shape, transformed from the original shape. The
traditional principal axis of the new shape is then
detected and transformed back onto the original
shape to obtain the proposed fold principal axes
which define the orientation of the original shape.
Figures will be given to illustrate the idea.

In Section 2 the definitions of rotationally sym-
metric shapes and fold-expanded shapes will be
given. The idea of fold principal axes and several
properties of them will also be introduced. In Sec-
tion 3 the uniqueness of the fold principal axes is
proved and the existence of fold principal axes is
also investigated. Concluding remarks are given in
Section 4.

2. Fold-expanded shape and fold principal axes
A shape S is called an n-fold rotationally sym-
metric shape (abbreviated as an #n-RSS henceforth)

if it becomes identical to itself after being rotated
around its centroid through any multiple of 27/n.

*+++

Figure 1. Some common rotationally symmetric shapes.
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Figure 2. The corresponding fold-expanded shapes of the
shapes listed in Figure 1 and their principal axes.

For simplicity, we assume that no other larger in-
teger n has this property. Shapes like those shown
in Figure 1 all belong to this class and are frequent-
ly encountered in real applications. Throughout
this paper, we take the origin of the coordinate
system to be the centroid of S. With this conven-
tion, the shape S, when sampled in the polar coor-
dinate system, can be described as

S=] z(r1,90)|i=1,2,...,n1, and
joi
. 27
9[/‘:0[1‘}'(./_1)7} (1)

where m is the number of points in one fold of §
and # is the number of mutually disjoint folds con-
tained in S. Here a fold of S is defined as any con-
tiguous area of the #n-RSS S bounded by an angle
of 27/n. Therefore, there are totally n - m points in
S.

The exact value of n for the given shape S can
be detected easily, as is illustrated in (Leou and
Tsai, 1987) or (Highnam, 1986). We thus assume
that n, the number of folds for S, is a given fixed
integer throughout this paper.

It has been proved in (Tsai and Chou, 1990) that
the traditional second-order principal axis is
undefined for any n-RSS with n>3. To overcome
this difficulty, it is found in this study that we can
first transform the original shape S into a new
shape E which is not rotationally symmetric (see
Figure 2 for examples), then compute the tradi-
tional principal axis on E, and finally convert it
back into S to define the orientation of S. The
details are as follows.

For the n-RSS § described by eq. (1), let f=7,
be a fold of S illustrated by

2n
f=fg=i(r,0)eS|9<9<9+7} ()
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Figure 3. The folds with 0 =0, /12, n/4, and 7/2, respectively
(shaded portions) and the identical fold-expanded shape E (the
heart shape on the right) expanded by these folds.

where ¢ is any real number lying in the range
[0,27r). Then we define the fold-expanded shape
generated by f, to be

E,={(r,nd) | (r,0)€ef,}. 3)

It will be shown in Proposition 1 below that
E,=E, for all o, i.e., no matter which fold is ex-
panded, the generated fold-expanded shape is
always identical, namely, E, (see Figure 3 for il-
lustrations). In other words, the fold-expanded
shape E of S can be defined as

E=E,. 4)
Proposition 1. E,=E, for all o.
Proof. Let j be the integer satisfying
2n  2m .
Q€ —J,—(J+1)>~
n° n
Let 0,€[0,2n/n) be defined as
2n .
©1=0——J.
n
Then

2n
fo= {(r,ﬂ)GS’Q<9<Q+7}

) 27
{(r,e)e5|g<0<u+1)—}
n
. 2n 2n
U {(r,@)eS](J+1)—<0<Q+—}
n n

2n
= [<r,-,t9,~1 +_/—> | (r;,0;)) €S and
n

2n
n

. 2n
U {<r,,9,-1+(1+ 1)—> | (r;,6;1) €S and
n

0:1€10, Ql)}
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where 0;; is the one defined in eq. (1). Therefore,

E,={(r,n0)|(r,0)€ef,}

{(’h nb;,+2mnj)| (r;,0;)) € S and

27
01 € [91,_>}
n

U {(r;,n0;;+2r(j+ 1)) | (r;, 0;)) € S and

0;1€10,0))}

2n
{(ri’neil) | (r,6;))€S and 6;, € [0,7»
={(r,n0)| (r,0)efy} = E,. O

Proposition 2 below includes two properties of
the fold-expanded shape.

Proposition 2. Ifan n-RSS S is rotated through an
angle of B, then

(i) E will be rotated through an angle of np,
and

(ii) the principal axis of E will also be rotated
through an angle of np.

Proof. The definition
2n
E= {(r,nm | (r,0)eS,0<6<—3
n

implies that if we replace 6 by 6+ f, then the né
will be replaced by n(6 + ) =n6 + nf which implies
a rotation through an angle of nf. Statement (i) is
a direct result of (i). [J

To define some axes of S in terms of the prin-
cipal axis of E so that the orientation of S can be
defined, one of the basic requirements is that the
axes defined should be rotationally invariant. That
is, if S is rotated around the centroid of S through
an angle of S, then the axes should also be rotated
through an angle of f. Based on Proposition 2,
we define the fold principal axes of S to be the
two half lines through the origin, i.e., through the
centroid of S, with direction angles J, and &,
specified by

_N

n

dy (%)
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and

P NP 6)
n n

(with respect to the X-axis) where ¢, and ¢,=
¢,+ n are the two direction angles of the line re-
presenting the principal axis of the fold-expanded
shape E. If we use the convention that both ¢,
and ¢, are in the range [0,27), then J, and J, will
be in the range [0,27/n).

The traditional principal axis gives two direc-
tions (differing from each other by n) for a shape
which is not rotationally symmetric; similarly, our
definition of the fold principal axes gives two
directions (differing from each other by n/n) for a
shape which is rotationally symmetric. It is also
observed that if we treat a shape which is not rota-
tionally symmetric as a 1-fold shape, i.e., n=1,
then E is identical to S and the two angles

G O 0y m

n n n

and

in fact are the direction angles of the traditional
principal axis of S. We may thus regard the tradi-
tional principal axis as a special case of the fold
principal axes with n=1.

The property of the invariance to translation
and scaling of the fold principal axes is guaranteed
by the proposition below.

Proposition 3. Fold principal axes are invariant
under translation and scaling.

Proof. Assume that a shape S is translated. Since
E is constructed using polar coordinates with the
pole located at the centroid of S, we know that the
position, including the distance and direction, of
every point of E is not changed with respect to S.
Therefore, the relative position of the principal
axis of E, and hence the relative position of the
fold principal axes, are not changed with respect to
S.

On the other hand, if a shape S is scaled for a
factor of A, then the polar coordinate representa-
tions (r,0) and (r,n0) of S and E (see eqgs. (1) and
(3)) become (Ar,0) and (Ar,nf), respectively.
Therefore, E is scaled for a factor of A, too.
However, the fact that the traditional principal
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(a) (b)

Figure 4. The fold principal axes of a shape with different

phases. Notice that the definition of fold-principal axes implies

that the direction angles of both axes are in range [0, 27/n). The

axis / in (c) is in fact equivalent to the dashed axis /| in the
sense of modulo 27/n.

axis is in general invariant under scaling implies
that the two direction angles ¢, and ¢, + n of the
principal axis of E are unchanged. As a result, the
fold principal axes of S are invariant by egs. (5)
and (6). [

As for the rotational invariance property of the
fold principal axes, we have Proposition 4 below.

Proposition 4. If an n-RSS S is rotated through an
angle of [, then the two direction angles
¢ ) 75

51—_ and 62:_:61+_
n n n

of the fold principal axes are replaced by

(51 + :B)mod 2n/n and (52 + ﬁ)mod 2n/n>»

respectively.

Proof. If S is rotated through an angle of £,
resulting in a new shape S’, then Proposition 2 im-
plies that E is rotated through an angle of np,
resulting in a new fold-expanded shape E’. As the
traditional principal axis is rotationally invariant,
the difference between the direction angles of the
principal axes for £ and E’ is nf3. That is, the prin-
cipal axis of E’ has directions specified by ¢;=

Figure 5. Fold principal axes of several shapes.
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Figure 6. High-order generalized principal axes (see (Tsai and
Chou, 1990)) do not necessarily coincide with the two fold prin-
cipal axes (compare the high-order generalized principal axes in

this figure with the fold principal axes of the star shape in
Figure 4 and those of the triangle in Figure 5).

(¢;+ 1B)mod 2 for both i=1 and 2. Therefore, the
fold principal axes of S’ have directions specified
by

_ g/’ . (¢i+nﬁ)m0d 2n

n n

i

¢).
= <_l+ﬂ> = (5i+ﬁ)mod 2n/n
n mod 27/n
for both i=1 and 2. [J

Notice that the shape S is angularly periodic with
period 27/n in the sense that the relation

2n
<r,0+—>eS
n

holds if and only if a point (r,8) is in S. Therefore,
Proposition 4 has implicitly implied that fold prin-
cipal axes are invariant under rotation. The idea is
illustrated in Figure 4.

In Figure 5, we give the fold principal axes of
several rotationally symmetric shapes. Notice that
the fold principal axes do not necessarily coincide
with any of the n high-order generalized principal
axes defined in (Tsai and Chou, 1990). Some ex-
amples are given in Figure 6. In that figure, we can
see that none of the high-order generalized princi-
pal axes agrees with either of the fold principal
axes of the star shape shown in Figure 4 or of the
triangle shown in Figure 5.

The traditional principal axis is a line, and
therefore, has two directions opposite to each
other. When such axes are applied to the issue of
shape matching, in general a ‘double-matching’
between an input shape and a reference shape is re-
quired, i.e., matching using one of the two direc-
tion angles of the principal axes, followed by
another matching using the other, should be per-
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formed. The same technique may be applied to
match rotationally symmetric shapes with the help
of the two orientations defined by the fold prin-
cipal axes.

3. Uniqueness and existence of fold principal axes

The uniqueness of the fold principal axes is
assured by Proposition 5 below.

Proposition 5. Let S be a given n-RSS. Then the
two fold principal axes of S are unique.

Proof. There is a unique E corresponding to the
given S. The principal axis of £ is a unique line.
Let ¢, and ¢, = ¢, + n be the two direction angles
of this unique line. Then the two distinct half lines
through the centroid of S and with direction angles
¢,/n and ¢,/n are unique. That is, the two fold
principal axes of S are unique by definition. [

As for the existence of the fold principal axes,
we first have the following analysis. By the defini-
tions (1) and (4), and also by the definition of fold-
expanded shape E, the centroid of E is

(X, 9)

m m
= <i Y r cos(rzG,-l),i Y r sin(n9,1)>. (7
mi=i mi=1

The definition of the fold principal axes implies
that if we want to obtain the direction angles ¢,/n
and ¢,/n of the fold principal axes of S, we must
find the direction angles ¢, and ¢,=¢, +  of the
principal axis of E, i.e., we have to (see Rosenfeld
and Kak, 1982) find the angle ¢ which minimizes
the function 7 defined by

- %

x, ) eE

[(x—%£) sin ¢ — (y— ) cos g]°.

This 7 value is minimal when
ol 0’1
E BT
are both satisfied, i.e., we have to solve the equa-
tion set

>0

tan 2¢ = 2M,, /(M — M),
(Myy— Myy) cos 2¢ +2M,, sin 2¢ > 0
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to get ¢ where M,,, M,, and My, are the centralized
second-order moments of the fold-expanded shape
E. The principal axis of E, and hence, the fold
principal axes of S, are well-defined if and only if
there exists in the range [0,27) a unique couple ¢,
and ¢,= ¢, + n satisfying this equation set. There-
fore, a necessary and sucifficient condition for the
existence of the fold principal axes of S is that at
least one of the two values M, and My,— M, is
not zero. In eq. (1), for every i=1,2,...,m let X;
and J; be defined as

£; = r;cos(nb;;) (8)
and
Vi = r;isin(nb;), )

respectively. Let Y/, be denoted as Y} . By the
definitions (1) and (4) again, the centralized
moments M,y, M,,, and M, are in fact

My =Y (£—%)°
=(X#H-28(L £)+ ¥ £
= (Y #7)—2%(m%) + m#?

= (X #H-m#?

=iy ﬁf)—%(z £r, (10)

M, =Y &=2)(F—)
= (X £7,)—2(mPp)—j(mR)+ ¥, £
= (X £9;)—mxy

1
=(Y )?,-y”,-)—;(Z )X 5, (11)

My =Y (9;-9)

= (L9 -20(L s)+ L 7

= (X 7)) —25(mp)+ my*

= (¥ 9 - my*
1

= (X 7H-—(X ) (12)
m

Therefore, we have the proposition below.
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Proposition 6. A necessary and sufficient condi-
tion for the existence of the fold principal axes of
a given n-RSS S is that at least one of the following
two statements is true:

Z()?if’i)#: foi_ 2)71’

m m m

(@): (13)

i.e., the average of {X;}/L, times the average of
{9;}iL, is not equal to the average of {X;7;}/",,
or equivalently, the average operator and the

multiplication operator do not commute,

B2 5. \2 02 g2
(i): <Zx,> _<Emy,> - E(xr,n %) 14)

m

i.e., the square of the average of {X;}/., minus

m

the square of the average of {y;}/L, is not equal
to the average of {%} — 7)., or equivalently, the
average operator and the square-difference opera-

tor do not commute.

Proof. We have shown that a necessary and suffi-
cient condition for the existence of the fold princi-
pal axes of S is that at least one of the two values
M,, and M,,— M, is not zero. If we divide both
sides of eq. (11) by m, we find that the condition
M,,#0 occurs if and only if inequality (13) is
satisfied. On the other hand, egs. (10) and (12) im-
ply that M,,— My, #0 occurs if and only if the ine-
quality

1 1
— (L) —— (L 9+ L - Y 77
m m

is satisfied. If we divide both sides by m, we get in-
equality (14). [

According to our experiments, the fold principal
axes of most commonly-seen rotationally sym-
metric shapes do exist. This means that the propos-
ed fold principal axes are useful for defining the
orientations of rotationally symmetric shapes in
most applications. In the special case that the fold-
expanded shape E'=E of a given n-RSS S is still a
rotationally symmetric shape, the principal axis of
E; will no more be well-defined. This in turn
means that S has no fold principal axis. Should this
very unusual case happen, the procedure can still
be modified in the following way. First perform
one more transformation on E; to obtain the fold-
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expanded shape of E, denoted as Ep. Next,
compute the traditional principal axis of Ef, and
then convert it back onto E; to obtain the fold
principal axes of E,. Finally obtain the orientation
of S by another backward transformation from the
direction angles of the fold principal axes of E;.

4. Concluding remarks

In this paper we have modified the definition of
the traditional principal axis and define a new type
of axis, called fold principal axis, so that the orien-
tations of rotationally symmetric shapes can be
detected using this new type of axis. We first
described how to transform the n-fold rotationally
symmetric shape S to a new shape E of which the
traditional principal axis is well-defined. We then
converted the traditional principal axis of E back
to S and obtained the fold principal axes of S.
Several properties of the fold principal axes have
also been studied. A brief discussion about how to
apply these axes to the issue of matching rota-
tionally symmetric shapes was given. It is also
observed in this study that the uniqueness of the
fold principal axes is guaranteed. As for the ex-
istence problem of the fold principal axes, a
necessary and sufficient condition is provided. The
fold principal axes of most common rotationally
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symmetric shapes were found to be existent. This
means that the proposed fold principal axes are
useful for applications in which detection of rota-
tionally symmetric shape orientations is necessary.
It is noted finally that the computation time re-
quired for computing the fold principal axes of an
n-RSS S is generally less than that required for
computing the nth-order generalized principal axes
of S when n is large because only second-order
moments are involved in computing the fold prin-
cipal axes while higher-order moments need be
computed to obtain the generalized principal axes.
This is an advantage of the proposed approach
over (Tsai and Chou, 1990). The detailed analysis
to illustrate this fact is too tedious to be included
here.
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