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The problem of handwritten Chinese character recognition is solved by matching character
stroke segments using an iteration scheme. Length and orientation similarity properties, and
coordinate overlapping ratios are used to define a measure of similarity between any two
stroke segments. The initial measures of similarity between the stroke segments of the input
and template characters are used to set up a match network which includes all the match
relationships between the input and template stroke segments. Based on the concept of
at-most-one to one mapping, an iteration scheme is employed to adjust the match rela-
tionships, using the contextual information implicitly contained in the match network, so that
the match relationships can get into a stable state. From the final match relationships,
matched stroke-segment pairs are determined by a mutually-best match strategy and the
degree of similarity between the input and each template character is evaluated accordingly.
Certain structure information of Chinese characters is also used in the evaluation process. The
experimental results show that the proposed approach is effective. For recognition of Chinese
characters written by a specific person, the recognition rate is about 96%. If the characters of
the first three ranks are checked in counting the recognition rate, the rate rises to 99.6%.

Keywords: Chinese character recognition; Handwritten Chinese characters; Stroke segment;
Stable matching; Match network; Iteration; Similarity measure.

1. INTRODUCTION

Machine recognition of handwritten Chinese characters (HCC) has been becoming
more and more important recently, as the volume of information in daily life increases
rapidly. It i1s more effective to input Chinese characters by recognition than by
keyboards. Unfortunately, machine recognition of handwritten Chinese characters is a
very difficult problem. The difficulty comes from several aspects, and the most
important one may be the very large vocabulary set of Chinese characters. There are
more than 40 000 Chinese characters and about a tenth of them are used frequently in
daily life.' The complex structures of many Chinese characters form another barrier.
To conquer these problems, some researchers tried to segment Chinese characters into
smaller primitives, called radicals, and recognize them accordingly. Each Chinese
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character 1s made up of a few of the 350 distinct radicals available. Although it is
argued that the recognition problem can be simplified if recognition is done according
to the radicals,”> segmentation of Chinese characters into radicals is not easy because
of the characteristics of the high levels of connectedness and cursiveness of
handwritten Chinese characters. For handwritten character recognition, great variations
in writing style form the third major source of recognition difficulty. Variations exist
not only among characters written by different writers but also among the same
characters written at different times by one person. Normalization is a way to
compensate for certain variations; however, its effect is usually limited.

Another way to recognize Chinese characters is to segment each Chinese character
Into certain line or curve segments, called strokes, and solve the problem by using the
features extracted from strokes. A survey of some works on the recognition of
handwritten Chinese characters using strokes can be found in Ref. 4. One way to solve
the problem based on the use of the stroke is to match the strokes of an input character
with those of each template character in a database and then take the best match as the
recognized one. Relaxation is a well-known matching technique which has been
successfully used in many applications.”® It has also been employed for the
recognition of Chinese characters.”~'* Yamamoto and Rosenfeld first applied the
relaxation technique to the HCC recognition problem’ and Yamamoto et al. improved
the work later.®>” In their work, Chinese characters were approximated by polygons
and the line segments of the polygon of an input character were matched with those of
the template characters by the relaxation method. Good recognition results were
obtained. Another application of relaxation to HCC recognition was reported by Xie
and Suk.'” Distinctive structure information, such as hook, T-shape, and cross,
representing the structural information of characters was used as the major features,
and matching between the features of input characters and the templates was obtained
by relaxation. The technique was shown to be powerful in distinguishing similarly
shaped characters within a cluster produced by preclassification. Because relaxation is
a time-consuming process, Leung, Cheung, and Wang'' proposed an idea to
incorporate specific knowledge such as the positional relations between the strokes of a
character into a training system so that the relaxation matching process can be greatly
speeded up. Rather than using the relaxation method to match input strokes with those
of templates, Cheng, Hsu, and Chen'’ transformed the matching problem into a stroke
assignment problem to find the optimal combination of matches between the input and
template strokes. The location and orientation similarity values were used to define a
measure of similarity between two strokes, and a function of fuzzy entropy was used
in the measure. By slightly modifying the problem, such as adding some dummy
strokes, the Hungarian method was then applied to solve the stroke assignment
problem.

In this paper, we try to solve the HCC recognition problem by matching input and
template characters using an iteration scheme proposed by Chou and Tsai.'* A
character to be recognized is first thinned to be of one pixel width. The result is then
traced and approximated by line segments. Such line segments, when connected and



STROKE-SEGMENT MATCHING 177

smoothed appropriately, form the strokes of the characters, but they are not the strokes
themselves. They will be called stroke segments here. After the stroke segments are
extracted, the character is normalized to be of a fixed size. Length and orientation
similarity properties, and the overlapping ratios in the x and y directions, of every two
stroke segments are used to define a measure of similarity between the two stroke
segments. The similarity measures of all possible matched stroke-segment pairs
computed accordingly are used to set up a match network, which is then updated
iteratively by Chou and Tsai’s iteration scheme under the premise of at-most-one to
one mapping. Each stroke segment competes with some other stroke segments during
the iterations in order to get its best match in the final result. Through the iterations,
the inherent ambiguity in the initial stroke-segment similarity measures can be greatly
reduced and the match relationships between the input and template stroke segments

can reach a more stable state. Final matched stroke-segment pairs are then determined
from the stable match relationships according to a mutually-best match strategy. After

the stroke-segment matching process, the degree of similarity between the input and
each template character is evaluated according to the similarity measures of all the
matched stroke-segment pairs as well as the structure information contained in the
composing stroke segments of the characters. Decision making for character recogni-

tion 1s finally made.
The remainder of this paper is organized as follows. Section 2 includes the defi-

nition of the similarity measure for a stroke-segment pair. Chou and Tsai’s iteration
scheme is reviewed in Sec. 3, and the degree of similarity between two characters is
defined in Sec. 4. Section 5 includes the experimental results and Sec. 6 gives some
concluding remarks.

2. SIMILARITY MEASURE FOR STROKE-SEGMENT MATCHING

2.1. Length and Orientation Similarity Measures

To measure the degree of similarity between two stroke segments, three types of
measures based on the length similarity, the orientation similarity, and the coordinate
overlapping ratio are defined. For stroke segments /, and /,, the length similarty,
denoted as len(l,, [,), 1s defined to be

shorter(l,, [5)

len(l,, 12) — (1)

longer(l,, l5) ’

where shorter(l,, l;) and longer(l,, [,) represent the shorter and longer lengths of /,
and [, respectively.

To define the orientation similarity, the angle difference between two stroke
segments is utilized. Because the position of a line segment may shift along the

direction of the line containing the stroke segment due to writing variations, the angle
difference between two stroke segments /; and /,, denoted by 0,,, is taken to be the
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smaller angle made by the lines containing /, and /,. For example, the angle
difference between the stroke segments /; and /, shown in Fig. 1 is taken to be «
rather than 8 because there is no way to know where the correct positions of /;, and /,
are. The orientation similarity between [/, and [,, denoted as ori(l,, [;), 1s then

defined to be

cos(k6 if kBi» < mw/2 ,
witie. I ={ (k6,2) 2 < m/ )

— 00 otherwise,

where kK = 2 if longer(l,, ;) <75 and k = 3 for other cases, assuming that all
characters are normalized to be of the size of 150 X 150 pixels. It was pointed out’
that the direction of short stroke segments is not stable, so the tolerance of the angle
difference between two short stroke segments should be set larger. In Eq. (2), the
tolerance of the angle difference between two stroke segments is set to 45° when both
of the lengths of the two stroke segments are less than 75 pixels, and to 30° for other
cases. When the angle difference between two stroke segments exceeds the tolerance,
the possibility for the two stroke segments to form a match pair is pruned by setting
the similarity measure value to —o.

2.2. Coordinate Overlapping Ratio

The need of measuring coordinate overlapping ratios for stroke segments originates
from the requirement that the positions of the same stroke segment in the written
variants of a character should not differ greatly. This requirement of location
invariance can be reflected by the measurement of the coordinate overlapping ratios in
the x and y directions. The x-overlapping ratio of two stroke segments is defined as
the overlapping length of the two stroke segments over the sum of the lengths of the
two stroke segments, after they are projected onto the x-axis. The y-overlapping ratio
1s defined similarly. However, the overlapping length in the x-axis (or y-axis) becomes
zero when one or both of the two stroke segments become vertical (or horizontal). In
this case the measure of the overlapping ratio becomes meaningless. In addition, when

(b)

Fig. 1. Angle difference of two stroke segments.
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both of the stroke segments are too short, a small variation in the stroke-segment
position may induce a great change in the values of the x- and y-overlapping ratios.
To handle such cases, a rectangular variation window is defined for use in computing
the value of the coordinate overlapping ratio. The variation window of a stroke
segment is defined as the smallest rectangle circumscribing the stroke segment if the
length of each side of the resulting window is no less than a constant w. If the length
of either side of the circumscribing rectangle is smaller than w, then it is equally
extended along both directions of the line containing the side until the length of the
extended side reaches w. The minimum side length for the variation window w 1s set
to 40 for the character size of 150 X 150 pixels. Figure 2 shows the variation
windows of three different stroke segments. Suppose that the variation window of
stroke segment /; is specified by its two diagonal corner points, (X, yi;1) and
(Xi2, Vi2), where X; > X;; and y;» > ¥;;. Then the x- and y-overlapping ratios can be
defined in more detail as

e o (2[min(flzs X27) — max(Xy;, X21)] 0) (3)
E (X2 — X11) + (X2 — X21) ’
and
2 In(y ’ y o y - y
y-oviap = max( [min(¥12, ¥z2) — max(Gu, 201 0) @)
Fi2 —V11) + 021 — Y21)

respectively, and the (overall) coordinate overlapping ratio for stroke segments /, and
l,, denoted by ovlap(l,, l,), is defined to be

ovlap(l,, l,) = \/x—ovlap - y-ovlap . (5)

One reason for defining the coordinate overlapping ratio as above is to reflect the fact
that two stroke segments will in general overlap more in both directions if they are
stroke segments of two variants of a character.

--------------

--------------

Fig. 2. Variation windows of three different stroke segments. The vertical side and both sides of the
rectangles circumscribing the stroke segments in (b) and (c), respectively, are less than w and so are
extended to be of the length of w.
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2.3. Stroke-Segment Similarity Measure

The similarity measure for a stroke-segment pair (/,, /;), denoted by P(l,, [,), is
defined by combining the measures of len, ori, and ovlap as follows:

P([la 12) — [a . len(l,, [2) -+ (l e a) Or.’:(ll, Zz)] OVlap(ll, [2) . (6)

where a 1s a constant for adjusting the weights of the measures len and ori. Because
the values of ori and oviap may be less than or equal to zero, the value of P(l,, [,)
may be non-positive, too. When P(l,, [,) is less than or equal to zero, (I, [5) is
treated as an impossible match pair and is pruned at the beginning of matching. Note
that the measure of oviap is included in the stroke-segment similarity measure P by
multiplication rather than addition. One reason is that if the locations of two stroke
segments differ greatly, then the measures len and ori become meaningless; and the
more the variation windows of the two stroke segments overlap, the more effective the
measures len and ori are. For example, when two vertical stroke segments are
identical in length and orientation but are located at the left and right boundaries of
two characters respectively, the similarity measure of these two stroke segments should
be zero; however, if the similarity is defined by adding up len, ori, and ovilap with
weighting factors a, b, and (1 — a — b) respectively, then the resulting measure will
be (a + b) rather than 0, which obviously is undesirable.

2.4. Match Network

A graph, called a match network, is used to represent the match relationships
between input and template stroke segments. The match network is bipartite and each
node on the left or right sides of the network represents a stroke segment of the input
and template respectively. All possible match pairs of input and template stroke
segments are connected by links, and each link is associated with a value, called
match link strength, to reflect the degree of the match between the stroke segments.
The strength of the link connecting nodes i and j is denoted by P; and 1s always kept
positive. If the value of P, becomes non-positive in the iteration process, stroke-
segment pair (i, j) is treated as an impossible match pair, and the link connecting
them is removed from the graph. The initial link strengths of the match network are
calculated from Eq. (6) by pruning the non-positive measures. They are then
iteratively updated by Chou and Tsai’s iteration scheme.

In the match network, each node connected to a certain node, say node i, 1s called a
possible match of i and the set containing all the possible matches of node i is denoted
as PM(i). Node j is called the best match of i if j € PM(i) and P; = Py for all
k € PM(i). The possibility that node i matches node j, denoted by poss(i — j), is
defined to be

P
EkEPM(:‘) Pix

(7)

poss(i — j) =
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Note that poss(i — j) is not necessarily equal to poss(j — i). Because the stroke
segments in input and template characters are treated identically, the possibility that
nodes i and j form a match pair, denoted by poss(i <> j), is defined by combining the
values of poss(i — j) and poss(j — i) in the following way:

poss(i <> j) = poss(i — j) - poss(j — i) . (8)

A pair of stroke segments, (i, j), is called a mutually-best match pair if the following
conditions are satisfied'>:

poss(i — j) = max poss(i — k),
ke PM (1)
9)
poss(j— i) = max poss(j— h) .
ke PM(J)

This mutually-best match strategy is used to determine the desired matches of stroke
segments in Chou and Tsai’s iteration scheme reviewed next.

3. ITERATION SCHEME

After the similarity measures are calculated from Eq. (6), we can match input stroke
segments with those of each template and evaluate the degree of similarity between the
input character and each template accordingly. The simplest way to get desired
matches between input and template stroke segments is to make decisions directly
from the stroke-segment similarity measures. In general, it is difficult to get good
matching results this way because a very good similarity measure is hard to define. An
improvement is to employ an iteration scheme to refine the stroke-segment similarity
measures using contextual information support. By iteratively updating the measures,
global consistency, in general, can be achieved and better matching results obtained.
In this section, we apply Chou and Tsai’s iteration scheme to stroke-segment matching
using the stroke-segment similarity measures calculated from Eq. (6). Chou and Tsat’s
iteration scheme was proposed in Ref. 14 to solve the stereo line segment matching
problem.

3.1. Basic Concept

In Chou and Tsai’s iteration scheme, the match relationship between an input and
template stroke-segment pair must be a one-to-one Or none-to-one mapping. For
convenience, this type of match relationship will be called at-most-one to one mapping
subsequently. Since the input and template stroke segments are treated symmetrically,
at-most-one to one mappings can also be interpreted as one to at-most-one mappings.
For the stroke segments of two variants of a character, the match relationship between
them is usually an at-most-one to one mapping although this cannot be guaranteed. As
an illustration, Fig. 3 shows the stroke-segment correspondences in two Wwriting
variants of the Chinese character ‘chou’ (pronunciation), where stroke-segment u maps
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U

Fig. 3. Stroke variations of the Chinese character ‘chou’ (pronunciation) in different writings. Stroke
segments a and b correspond to ¢, stroke segment ¥ maps to nothing, and all other stroke segments satisfy
one-to-one mappings.

to nothing, stroke segments a and b correspond to an identical stroke segment 7, and
the remaining stroke segments satisfy one-to-one mappings. To handle the one-to-
many mapping, such that ¢ can map to both a and b in Fig. 3, it is treated as a
combination of a one-to-one and several none-to-one mappings in the iteration scheme;
and after the iterations stop, the one-to-many mapping is recovered by postprocessing.

Under the premise of at-most-one to one mapping, it is natural for each stroke
segment to correspond to its best match. However, since the similarity measure may
not be well defined and the writings usually vary so much, matching ambiguity will
always exist in the corresponding match network. Nevertheless, the contextual
information contained implicitly in the measures is usually helpful in reducing the
ambiguity contained explicitly in the measures. In Chou and Tsai’s iteration scheme,
such contextual information can be utilized to reduce matching ambiguity. In the
iteration process, each stroke segment competes with others for its best match. When
iterations go on, the ambiguity among the measures is reduced gradually and the
match network becomes more stable. As the match network reaches a stable state
finally, matched stroke-segment pairs can be determined accordingly.

3.2. Ilustrative Example

Consider the stroke segments shown in Fig. 4(a). Suppose that /,, /,, and /5 are
three stroke segments of a character and that /;, /5, and /3 are the corresponding
stroke segments of a variant of the character. Suppose that after the stroke-segment
similarity measures are computed by Eq. (6), the corresponding match network looks
like that shown in Fig. 4(b). The values associated with the links in Fig. 4(b) are
assumed to be the computed stroke-segment similarity measures. The darkness of the
links in the match network reflects the magnitudes of the match link strengths, and an
arrow pointing from node a to node b indicates that the best match of a is b. The
figure shows that /; and /; are a match pair, denoted by (/; <> [}), under the
mutually-best match strategy. Stroke segments /, and /3 are also a mutually-best match
pair initially. Match (/, <> [}) is stable because it is a mutually-best match pair and
there i1s no other stroke segment to interfere with it, but match (/, <> [3) is not stable
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(a)

(W= (De—=()

O\aaO.
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(b) (c) (d)

Fig. 4. An illustration of the steps of Chou and Tsai’s iteration scheme for stroke-segment matching. (a) Input
and template stroke segments. (b) Initial match network. (¢) An intermediate step of Chou and Tsai’s iteration
process. (d) Final matching results after the iterations.

because it is interfered with by stroke segments /3 and /5. As [, is the only possible
match of /5, and it can be matched by only one stroke segment under the premise of
at-most-one to one mapping, /5 will surely compete with /3 for the chance to match /.
To compare the competence, the difference between the best and the second-best
matches of the competitors is checked.'* Because the difference between the strengths
of the best and the second-best matches of /3 is much less than that of /5, the
competence of /5 is much stronger than that of /3. This means that it makes little
difference for /3 to match with />, or /5, while /5 will lose more when i1t loses the
match with /,. A similar case occurs for stroke segments /3 and /, in competing for
the correspondence to /3. Therefore the match link strengths of (/,, [5) and (l3, [3)
will increase by a larger amount than that of (/,, /3) as iterations go on. After some
iterations, the match network will appear as the one shown in Fig. 4(c), where the best
match of /, is changed to /5 and (/,, [3) becomes a mutually-best match pair.
Figure 4(d) shows a possible result of the match network after some more iterations, in
which another match pair (/3 <> [3) is obtained. In summary, through Chou and Tsai’s
iteration scheme, the originally incorrect match (/, <> [3) will be removed and two
new correct matches, (/, <> [5) and (/5 <> [3), will be finally obtained.
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3.3. Formal Description

In updating the match link strength P;;, the supports for both of the one-way
matches (i — j) and (j — i) must be considered. First, the support for the one-way
match (i — j), that is, the match of stroke segment i to stroke segment j, 1S
considered. According to the premise of at-most-one to one mapping, at most one
node among the possible matches of node i can be the correspondence of i. So, all
nodes in PM(i) are directly related to the event (i — j). Each node in PM(i),
especially those nodes which take i as the best match, will compete with one another
for the chance to be the match of i, with their competence values proportional to the
strengths of the match links connected to i.

More specifically, consider the one-way match (i — j) in the match network shown
in Fig. 5. Suppose that node k, k # j, is in PM(i) and its best match is i. Given the
one-way match (i — j), node k can at best match its second-best match because i 1s
already matched to j. Therefore node k can be regarded as encountering a penalty due
to the match (i — j). The penalty for k can be characterized by the difference
between the match link strengths of its best and second-best matches because there 1s a
very high possibility for k to match its second-best match after it loses its best one.
Since node i is only one of the possible matches of k, the penalty for node k incurred
from losing the chance to match i should be weighted by poss(k — i), resulting in the
following definition of the penalty:

h+#i

P — max (P;,k)] poss(k — i) . (10)

—

On the other hand, if the best match of node k is not i, then the possibility for node k

) | pma

Fig. 5. An example of a match network for computing the support for the one-way match (i — j).
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to match its best match increases relatively under the event (i — j) because the
number of competitors of k decreases by one. Therefore node k gets a benefit from the
match (i — j). The benefit can be defined similarly to the penalty (except for the
sign) as

[max (Paui) — P,-k] poss(k — i) . (11)
h+i

The benefit or penalty of k for (i — j) can be seen as a positive or negative support
of node k for the one-way match (i — j). Because each distinct k in PM(i) owns a
different match link strength P,;, the supports obtained from different nodes must be
weighted proportionally to the strengths of the match links connected to i from the
viewpoint of i. The weighting factor is exactly the value of poss(i — k). Therefore the
support of node k for the match (i — j) can be defined as

max (Pj,) — P,—;{I poss(k — i) poss(i — k)
 h#i

(12)
-

max (P) — P,-k] poss(i <> k) .
 h#i

For match (i — j), nodes j and k are in exactly the opposite positions if j, k € PM(i)
and j # k. In other words, for the one-way match (i — j), the penalty and benefit of
node k become the benefit and penalty of node j respectively.

By summing up the supports of all nodes in PM(i), the (overall) support for the
one-way match (i — j), denoted by supt(i — j), is defined as

supt(i — j) = | P;; — max (P;,»}-)] poss(i <> j)

| h'#i
+ > | max (Pw) — Pu | poss(i < k). (13)
kePM(i) | h#i )
k#j

The first term in Eq. (13) is the support of node j and the second term includes the
supports from all other nodes in PM(i) for (i — j) . Equation (13) considers only the
support resulting from the one-way match (i — j). To get the support for the two-way
match (i <> j), the support for the other-way match (j — i) must also be calculated.
By symmetry, supt(j — i) can be defined similarly. The support for (i <> j), denoted
by supt(i <> j), can now be defined by combining the supports supt(i — j) and
supt(j — i) as

supt(i <> j) = [supt(i — j) + supt(j — i)]/2 . (14)
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With the support function defined as above, we are ready to define the procedure to
update the match link strengths in the match network. Suppose that P;; denotes the
strength of the match link connecting nodes i and j in the match network after ¢
iterations. The updating formula for P}' is defined to be

P = (1 — B)(P; + B) supt(i © j) , (15)

where B, within the range [0, 1], is a parameter used to adjust the weights of P;; and
support supt(i <> j). If B is set close to 1, the similarity measure of a stroke-segment
pair (i, j) will be determined mostly by the status of the nearby stroke segments
included in PM(i) and PM(j). On the other hand, if 8 is set close to 0, then the effect
of the neighboring support is limited, especially when the iteration process stops after
only a few iterations.

3.4. Stop Criterion

The principle of the mutually-best match strategy defined by Eq. (9) i1s used to
decide the stroke-segment matches from the match network during the iteration
process. A match pair is determined as a correspondence if it becomes a mutually-best
match pair. But a correspondence may be removed in later iterations if the condition
of mutual best matching is no longer satisfied.

The iteration scheme stops when the number of mutually-best match pairs does not
increase for a certain number of consecutive iterations. As with most iterative
matching techniques, it is hard to prove the convergence of this iteration scheme. But
our experiments show that the convergence is always obtained by the above stop
criterion.

3.5. Postprocessing

Due to image processing or writing variations, certain one-to-many mappings may
exist between the input and template stroke segments; however, only one stroke
segment among the multiple ones corresponding to a particular stroke segment can get
the final correspondence. For the remaining non-matched stroke segments, it is very
possible that their final best matches are still correct. For example, as shown in Fig. 3,
both stroke segments @ and b correspond to stroke segment 7 but only a can get the
match after the iterations because a is more similar to 7 than b. Stroke segment b may
still take 7 as its best match after the iterations but will get no correspondence.

To overcome this problem, we can do the following additional processing after the
correspondences are determined. For a non-matched stroke segment i, its best match,

say J, 1s checked first to see whether it gets matched or not. If ; gets no
correspondence, nothing is done. If it does, stroke segment i is checked with the

matched stroke segment of j, say i’, for the following two conditions:

connectedness: ¢ and i’ are connected within a distance threshold;
(16)
collinearity: the angle difference between i and i’ is within a threshold.
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If both conditions are satisfied, i and i’ are considered to belong to an identical
stroke segment which is broken due to image processing, and are merged to form a
single stroke segment, which is then taken to be the final match of stroke segment ;.

4. MEASURE OF SIMILARITY BETWEEN CHARACTERS

Consider the case in which we evaluate the similarity between an input character c;
and a template character ¢,. Suppose that ¢; and ¢, are represented respectively by
stroke segments /;,, i= 1,2, ... ,mand [,, t=1,2,...,n, where m and n are
the numbers of stroke segments of ¢; and c, respectively. Let L; and L, be the lengths
of stroke segments /; and /,, and M be the set containing all the tuples (i, 7), each
meaning that stroke segments /; and /, are a matched stroke-segment pair.

4.1. Simple Measurement

A measure of similarity between characters c¢; and ¢,, denoted by S(c¢;, ¢;), can be
defined as

S(ci, ¢;) = m(c;, ¢;) s(M) , (17)

where m(c;, ¢,) 1s defined to be the total length of the matched stroke segment over
the total length of all the stroke segments of c¢; and c,:

E(E,I)EM(LE + L,)
i=y Ly + 2?=1 Ly

m(c;, ¢;) = (18)

and s(M) 1s defined as

E(E,I)EM P(l;, 1)
N(M) ’

s(M) = (19)

where N(M) is the size of set M and P(/;, [,) is defined by Eq. (6).

The character similarity measure defined by Eq. (17) 1s simple and is not used in
this study. It is refined by utilizing the structure information contained in Chinese
characters.

4.2. Utilizing Character Structure Information

The structural relationships among the stroke segments which compose a character
provide very useful information for recognizing Chinese characters. In Refs. 10, 11,
16, and 17, the character structure information is used as the main feature for
recognizing handwritten Chinese characters. Three types of relationships between two
stroke segments are examined in this study: cross, T-shape, and corner. Figure 6
shows their structures. They can be detected automatically. Although these features
may not be stable in handwritten characters, especially the T-shape and the corner,
they are still helpful for HCC recognition.
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(a) (b) (c)

Fig. 6. Three types of structures between stroke segments. (a) Cross, (b) T-shape, and (c) corner.

To incorporate structure information into the character similarity measure, one way
is to check if the structural relationships contained in the matched Input stroke
segments also exist in the corresponding template stroke segments. An input stroke
segment may have structural relationships with several nearby stroke segments, and
most of these relationships will be kept in the corresponding template stroke-segment
pairs if the input and template characters belong to an identical class. Suppose that /;,
and /;, are two stroke segments of the input character and they are matched to the
template stroke segments /,; and /,, respectively. If the relationship between /;; and /;,
1s of one of the three types, cross, T-shape, or corner, and is different from that
between /,; and [/,,, then the match (/;; < [,,) is said to be incompatible with
(lip > 1), If (l;; < 1,;) and (I, < 1,,) are incompatible, then there is a high
possibility that at least one match is erroneous. Since there is no way to know which
match is incorrect, it is proposed that the penalty incurred by the incompatibility be
distributed to both of the two matches. Let str _num(l) and cmpt _str _num(l) denote
respectively the number of structural relationships and that of the compatible ones
between stroke segment / and the other stroke segments. Then, the stroke-segment
similarity measure for a matched stroke-segment pair, say (/;, /,), after Incorporation
of the structure information is defined by modifying the original measure (as in

Eq. (6)) as follows:

P(l;, L) if str _num(l;) =0 ,

P, 1) = {P(l,;, [) (1 — v+ vy) SC()) otherwise , (20)

where the value SC(l;) = cmpt_str _num(l;)/str _num(l;) defines the structure com-
patibility of /; with its neighboring stroke segments, and the parameter y defines the
portion of the original similarity value P(/;, /,) of a stroke-segment pair (/;, /,), which
1s supported by the value of SC(/;). If the structural relationships of an input stroke
segment /; with its neighboring stroke segments are all found in those of the
corresponding template stroke segments, then SC(/;) = 1, and P'(l;, I,) = P(l;, 1,). It
is noted that the instability of the structural relationships must be taken into account in
setting y. In our study, vy is set to 0.4. The value of s(M), defined by Eq. (19), is
also re-defined accordingly to incorporate the structure information:
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> i.nem 'y 1)

s(M) = NG

(21)

5. EXPERIMENTAL RESULTS

5.1. Inputs and Templates

Experiments were done to examine the effectiveness of the proposed approach to
HCC recognition. In total, 465 Chinese character classes were selected as the testing
vocabulary set. The templates were created interactively by the use of a tablet so that
the stroke-segment representations for each template character could be reliable and
thinning could be avoided. Figure 7 shows the stroke-segment representations of some
template characters.

Two different files of input characters were tested in our experiments. One file
consists of the characters selected from the Computer and Communication Laboratories
handwritten Chinese character image database, version 1 (CCL-HCI1), which contains
5401 character classes, each class having 100 variants arranged according to writing
qualities. Two of the best variants of the 465 character classes from the CCL-HCI1 are
selected as the first testing data set. The other file consists of the same 465 characters,
each with two variants written by a specific person. The characters of the second file
were written with care and their qualities are much better than those of the characters
selected from the CCL-HCI1, on the average. Figure 8 shows the stroke-segment
representations of some input characters.

5.2. Stroke-Segment Extraction

Stroke-segment extraction for Chinese characters is an important step in recognizing
handwritten Chinese characters and much work on this topic has been done.'®~?' In
this study, stroke-segment extraction is not our main concern, so a simple procedure
was used. Our procedure to extract stroke segments from input characters is divided
into the following steps: thinning, tracing, line approximation, and linking.

T EBEREEMSFE
BE L ASEAAMY
R MR AR T K6 X B
P ARBN F Z W FE D
& P9 Fe o Fﬁ%"”‘fﬁ'ﬁ
EmeiEEAYR R

Fig. 7. Some template characters used in the study (in stroke-segment representation).
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% Y& a3l & &£ M 97 EL & ZIR F5 00 & 2 M M 2 2
A G 4 /e T & w B Ay W2 58 40 [F AT £ 3K B 55
ARERhiFEETE R %o K2 E K| AR
% RIVE 2 th QIR E KB ER th R E W R E
sk PR i T B B R P1S 2 B F AR I 5 11 SR HiE T4
W AR AR & 1T TR £ = He 2 soa & HF 5 1R A9 2
B OAIR & 2 & [ 752 +F R AR AR S EN S
EY I E R FEHERLE L ihEEitEsifssmg
¥ R R IA K i A% &S 4 #%@é’%ﬁxﬁm Z M RE A
H i CROASER I H L E TR ERIEH I E

(a) (b)

Fig. 8. Some input characters selected from the CCL-HCI1 (shown in (a)) and those written by a person
(shown in (b)) (in stroke-segment representation).

Thinning plays an important role in the stroke-segment extraction procedure and
consequently affects the recognition results. The thinning method proposed by Zhang
and Suen”” was adopted in this study to thin input characters to be one pixel in width.
Since concern was focused on the effectiveness of the matching technique and the
similarity measures, no comparison was made of different thinning methods in this
study. In fact, several thinning methods, such as the ones proposed by Wang and
Zhang® and Lu and Wang,>* have been shown to be generally better than that of
Ref. 22. In particular, Lu and Wang’s method is an improved version of that in
Ref. 22. It is interesting to study how the recognition result of the proposed approach
1s affected by using different thinning methods in the stroke-segment extraction
procedure.

After thinning, the resulting connecting segments are traced and segmented. The
tracing is forwarded in the direction of producing a smaller angle change when a cross
point is encountered so that a stroke segment can be extended as long as possible in
the line approximation phase. For example, the thinning result like that shown in
Fig. 9(a) will be segmented into that shown in Fig. 9(b) rather than into that shown in
Fig. 9(c). Each segment / obtained in the tracing phase is then approximated?® by line
segments in the following way. First, connect the two end points of / to form an initial
approximation line segment /’. Next, check the distances from each segment point of /
and /'. If the maximum distance exceeds a certain threshold, then the segment / is
broken into two at the point with the maximum distance. If the distances from all the
segment points to / and /" are within a threshold, then the line approximation is done.
Due to the inberent limitation of the thinning technique and tracing, a stroke segment
may be broken into several pieces. To solve this problem, the conditions of
connectedness and collinearity described by Eq. (16) are checked for every two stroke
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L

segment 2

a2 Y S memee p—

segment 2 ‘!

segment | segment |

(a) (b) (c)

Fig. 9. Segment tracing results in stroke-segment extraction. (a) Thinning result. (b) Traced segments.
(c) Undesired tracing results.

segments after the line approximation. Two stroke segments are merged into one if the
two conditions are satisfied. Figure 10 shows the stroke-segment extraction results of
some 1nput characters.

5.3. Recognition Results

Before matching, each input character is preclassified coarsely by comparing its
number of stroke segments with that of each template. Normally, the two numbers
should not differ greatly if the input and template are of the same character class, even
when writing variations exist. After preclassification, the input character is matched
with each candidate template individually and a similarity measure is evaluated
accordingly. In the matching, the measures of similarity between the input and
template stroke segments are calculated first from Eq. (6) and Chou and Tsai’s
iteration scheme is then applied. In the experiments, the parameter B included in the
updating formula, Eq. (15), was set to 0.25. The effect of Chou and Tsai’s iteration
scheme can be seen from the process of matching the character ‘li’ (pronunciation)
with its corresponding template, as shown in Fig. 11. The input and template of the
character class ‘li’ have nine and eight stroke segments respectively (Fig. 11(a)). The
initial match network set up by the stroke-segment similarity measures computed by
Eq. (6) 1s shown in Fig. 11(b). Each node is connected to its best match by a directed
link. It is seen that the stroke segments numbered 8, 9, and 8’ have no stroke segment
to match and so are pruned. Four matches, (2 < 4'), 3 < 3'), (6 & 6'), and
(7 <> 7"), are obtained at the initial stage, but (2 <> 4’) is wrong. All the matches
except the pair (7 <> 7') are interfered with more or less by some stroke segments. For
example, the match (2 <> 4’) encounters interferences from stroke segments 1, 4, 1’,
and 2'. So, the match relationships existing in the match network are not very stable.
The match network gets more and more stable as the iterations go on, and reaches its
final state as shown in Fig. 11(c) after seven iterations. All the stroke segments except
the ones numbered 8, 9, and 8’ are finally matched correctly.

Table 1 shows the recognition results for the two different input files. An input
character is said to be recognized as being within rank k& when the measure of
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(b)

Fig. 10. Stroke-segment extraction results of some input characters. (a) Input images. (b) Thinning results.
(c) Extracted stroke segments.

Table 1. Recognition results of the two different inputs.

CCL-HCII data Personal writing data

Rank Without iterations  With iterations Without iterations  With iterations

1 73.54% 90.75% 84.73% 95.69%
2 82.36% 94.19% 90.32% 98.28%
3 86.66% 96.34% 93.76% 99.57%
-+ 89.46% 98.06% 94.41% 99.78%
5 90.53% 98.71% 95.27% 99.78%
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1/ 9 | L

p A W
- 7 .\ 7'
6 6
2/ - \ | 7\
413 5 2|
8 8

(a)

© @
®
@ec?
® O

(b) (c)

Fig. 11. Steps of Chou and Tsai’s iteration scheme for matching the Chinese character ‘li’ (pronunciation)
with its corresponding template. (a) Input and template of the Chinese character ‘li’. (b) Initial match
network. (c) Final match results after seven iterations.

similarity between it and its corresponding template is the kth highest. The recognition
rates for the CCL-HCIl and the personal writing data are 90.75% and 95.69%
respectively. They increase to 96.34% and 99.57% respectively if input characters,
when recognized to be within rank 3, are considered to be correctly recognized.
Recognition results with stroke-segment matches directly determined from the initial
similarity measures without iterations are also shown in the table. It is seen that the
recognition rates are improved for about 17% for the CCL-HCI1 data and about 11%
for the personal writing data after Chou and Tsai’s iteration scheme is applied. The
experiments were performed on a Sun-4 workstation and the average speed of
recognition was about 3.5 seconds per character.
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5.4. Error Analysis

Many errors found in the recognition results were due to imperfect stroke-segment
extraction results. Figure 12 shows the stroke-segment representations of some charac-
ters, which are difficult to recognize even for human beings. Bad stroke-segment
extraction results may come from each step of the stroke-segment extraction process. It
1s believed that the recognition results can be improved by a more stable stroke-
segment extraction process. Another major type of misrecognition is due to the
structural similarity existing in the original or written Chinese character structures.

Some errors of this type are shown in Fig. 13.

6. CONCLUSION

A new approach to HCC recognition using an iteration scheme has been proposed.
Strokes are first extracted from input handwritten Chinese characters and then matched
with the stroke segments of each template. Length and orientation similarities, and the
overlapping ratios in the x and y directions are used to define a stroke-segment
similarity measure. After computation of the initial stroke-segment similarity measures
for the input and template stroke segments, Chou and Tsai’s iteration scheme is
applied to reduce the inherent ambiguity contained in the measures. The iterations stop
when the match relationships existing between the input and template stroke segments
become stable. Stroke-segment matches are then determined by the mutually-best
match strategy, and the similarity between the input character and each template
character is calculated by considering the similarity of each matched stroke-segment
pair, the ratio of non-matched stroke segments, and the structural compatibility of each
matched pair with other pairs.

Experiments on two different input files have been done to examine the effective-
ness of the proposed approach. The recognition rate is about 91% for a CCL-HCII
data file and about 96% for a personal writing data file. The improvement of the
recognition rate made by the iteration scheme is about 17% and about 13% for the
CCL-HCI1 and personal writing data respectively. This shows that the proposed
approach 1s feasible for HCC recognition.

VB 7 (B

X A

Fig. 12.  Some handwritten Chinese characters whose stroke-segment representations are not good enough.
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LTI L I I TR 1k

(a) (b)
=
R A I
(c) (d)

Fig. 13. Four misrecognized characters. In each of (a) through (d), the left is the input character, the

middle is the correct class for the input, and the right is the erroneous class of which the input is recognized
to be.
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