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shows the switching configuration corresponding to Fig. 3(b). Tables I 
and I1 summarize the simulation results, where the average number of 
iteration steps required for the convergence and the convergence fre- 
quency, and the average number of demands in the local minimum so- 
lutions are compared in seven models. Note that for each model, 100 
simulation runs were performed from different initial values of Ut,. 

We conclude the simulation results as follows: 
1) The comparisons of cases #1-#4 show that the decay term 

disturbs the convergence of the neural network to solutions. Although 
cases #2 and #3 are superior in the average number of iteration steps 
for the convergence to case #4, they are inferior in the frequency of 
the local minimum convergence and the solution quality to case #4. 
The decay term seems to make the local minimum deeper, so some 
initial states of Ut, can be quickly converged to the global minima. 

2) The comparisons of cases #4 and #5 show that the McCul- 
loch-Pitts neuron model and the sigmoid neuron model have similar 
performance in terms of the average number of iteration steps for the 
convergence and the convergence frequency. However, because of the 
exponential calculation in the sigmoid neuron model, it requires much 
longer computation time than the McCulloch-Pitts neuron model on 
a digital computer. The simple McCulloch-Pitts neuron model is 
superior to the sigmoid neuron model for practical uses. 

3) The comparisons of cases #4-6 show that the hysteresis 
McCulloch-Pitts neuron model is superior to the McCulloch-Pitts 
neuron model and the sigmoid neuron model in terms of the frequency 
of the global minimum convergence. 

4) The comparisons of cases #6-7  show that the two heuristics 
increase the frequency of the global minimum convergence, reduce 
the number of iteration steps for the convergence, and improve 
the solution quality. The hysteresis McCulloch-Pitts neuron model 
without the decay term and with the two heuristics provides the best 
performance among the seven models. We have observed similar 
behavior in other instances. 

V. CONCLUSION 

This paper presents performance comparisons of seven neural net- 
work models on traffic control problems in multistage interconnection 
networks. The simulation results show that 1) the decay term in the 
motion equation disturbs the convergence, 2) with less computation 
time on a digital computer, the McCulloch-Pitts neuron model 
achieves the same performance as the sigmoid neuron model, and 3) 
the hysteresis McCulloch-Pitts neuron model and the two heuristics 
greatly improve the performance of the neural network computation. 
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A Neural Network Implementation of the Moment- 
Preserving Technique and Its Application to Thresholding 

Shyi-Chyi Cheng and Wen-Hsiang Tsai 

Abstmct-A neural-network implementation of the moment-preserving 
technique which is widely used for image processing is proposed. The 
moment-preserving technique can be thought of as an information trans- 
formation method which groups the pixels of an image into classes. The 
variables in the so-called moment-preserving equations are determined 
iteratively by a recurrent neural network and a connectionist neural 
network which work cooperatively. Both of the networks are designed 
in such a way that the sum of square ermrs between the moments of the 
input image and those of the output version is minimized. The proposed 
neural network system is applied to automatic threshold selection. The ex- 
perimental results show that the system can threshold images successfully. 
The performance of the proposed method is also compared with those of 
four other histogram-based multilevel threshold selection methods. The 
simulation results show that the proposed technique is at least as good 
as the other methods. 

Index Terms-Connectionist neural networks, gradient descent, image 
thresholding, moment-preserving principle, recurrent neural networks. 

I. INTRODUCTION 

Recently, a new image processing technique called moment preser- 
vation has been successfully applied to many image processing 
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tasks, such as thresholding, image compression, feature detection, 
image sharpening [1]-[9]. The moments of an image inherit the 
important characteristic information of the image. Thus, the difference 
between the moments of an image and those of a processed version 
of the image can he used as a goodness criterion for an image 
operation. Furthermore, certain important parameters of an image can 
be extracted from the image by preserving the moments of the input 
image in the output version. Unfortunately, the moment-preserving 
technique involves solving a set of nonlinear equations which is 
especially computationally intensive for the higher-order moment- 
preserving case. The moment-preserving equations can be solved by a 
sequence of deterministic computing steps 113. It is possible to derive 
analytic solutions for the cases of preserving lower-order moments; 
however, some iterative numerical methods must be used to compute 
the solutions for the cases of preserving higher-order moments. The 
high computational complexity of the moment-preserving technique 
limits its applicability to many image processing tasks. 

Most of the previous use of the moment-preserving techniques in 
image processing are based on the lower-order moment-preserving 
principle [3]-[7]. This does not imply the higher-order moment- 
preserving principle is not needed. In fact, the higher-order moment- 
preserving techniques are useful in several important applications. For 
example, in [15] Delp and Mitchell develops a moment-preserving 
quantization method based on the higher-order moment-preserving 
principle. The higher-order moment-preserving principle is also pow- 
erful in multilevel threshold selection. 

In this correspondence, a neural-network system consisting of 
a recurrent network and a connectionist network is proposed to 
implement the moment-preserving technique. Its application to image 
thresholding is also demonstrated. The thresholding results can be 
used to check the correctness of the proposed neural network system. 
The system accomplishes the estimation of the threshold values by 
minimizing an energy function defined as the square errors between 
the moments of an input image and those of its thresholded version. 
An iterative algorithm is developed for the system to minimize 
its energy function. The proposed neural network approach can be 
thought as a generalization of Tsai's method [l]. 

The remainder of this correspondence is organized as follows. 
The moment-preserving principle is reviewed first in Section 11. 
The flowchart of the proposed neural network system to solve the 
moment-preserving equations is described in Section 111. Section 
IV includes detailed descriptions of the neural network system and 
its theoretical foundation. Some experimental results are presented 
in Section V to support the validity of the proposed approach for 
multilevel thresholding. Finally, in Section VI some conclusions are 
drawn. 

11. REVIEW OF MOMENT-PRESERVING PRINCIPLE 

Given an image f with n pixels whose gray value at pixel (z, y) 
is denoted by f(z, y), the ith moment m; of f is defined as 

1 
m, = -xxf(z,y)', i = O , 1 , 2 , 3 ,  

. C Y  

Moments can also be computed from the histogram of f in the 
following way: 

where n3 is the total number of the pixels in f with gray values 2, 
and P3 = n 3 / n .  It follows from (1) that mo = 1. The moment- 
preserving principle for image processing is to transform an image 
into another form by preserving the moments of the original image. 

Without loss of generality, it can be said that the moment preserving 
transformation aims to group the gray values of the pixels in an image 
into a number of classes and represent all the gray values of the pixels 
in each class with a single gray value. 

Let g be the result of applying the N-class moment-preserving 
transformation to an image f. Assume that 2, denotes the represen- 
tative gray value of the ith pixel class and that Pi denotes the fraction 
of the pixels in the ith class. By preserving the first 2 N  - 1 moments 
of f and using the fact that the sum of all the values of Pi is equal 
to 1, the following set of 2 N  equations can be obtained [l]: 

PlZ,2N-1 + PzZ,2N-1 + P 3 Z y 1  + . . . + PNZ&"-l =m2N-l; 

(3) 

which can then be solved to get all P, and Z;, i = 1,2,3,  . . . , N. The 
neural network system proposed to solve (3) above will be described 
in the next two sections. Once all P; and Z',  i = 1 , 2 , 3 , .  . . , N ,  
are determined, the desired analysis for various applications can be 
performed. For convenience, the equations described by (3) will 
be called the moment-preserving equations. For N 5 4, analytic 
solutions to (3) can be derived [l]. Unfortunately, for N > 4, 
no closed-form solution to (3) exists. As one applies the moment- 
preserving principle to the segmentation of a complicated image, N 
less than 5 may not be enough. For N no less than 5, an iterative 
numerical method may be used to solve the moment-preserving 
equations, but the computation time would be long. The neural 
network approach described in Section I11 can be used to solve 
the moment-preserving equations for abitrary values of N with no 
additional effort. Thus, the idea behind the proposed system can 
be regarded as a generalization of Tsai's method. The massive- 
parallelism characteristic of the proposed neural network system is 
suitable for solving the equations quickly. So, the long computation 
time problem may also be avoided. 

111. PROPOSED MOMENT-PRESERVING NEURAL NETWORK SYSTEM 

The neural network system proposed to implement the moment- 
preserving technique is shown in Fig. l(a). The goal of the system 
is to solve the moment-preserving equations. An input image is first 
preprocessed to compute its moments. Next, recall that the effect 
of performing the moment-preserving operation is just to group the 
gray values of the pixels of the image into several classes and replace 
all the gray values in each class with an identical gray value. This 
problem can be thought as a clustering problem when a suitable 
distance function or similarity measure is defined. The concept of k- 
means clustering [l l] ,  well known in the area of pattern recognition, 
can be used here. Fig. 2 illustrates this concept more concisely, where 
2, is the representative gray value of the ith pixel class and the 
fraction value P, defines a border of that class. Accordingly, given a 
new representative value 2, for the ith class, the moment-preserving 
equations can be used to define a criterion function to compute the 
new border P, of that class. Furthermore, a new set of values of P, 
can be used to refine the class representative gray values Z,, and then 
to redistribute the pixels of the image into new pixel classes. In this 
successive steps of estimating the values of P, and Z,, it is proposed 
to minimize the value of the following criterion function: 

ZN-1 

E = ( m k  - mk)' (4) 
k=O 
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Fig. 1. Proposed moment-preserving neural network system. (a) Block 
diagram of the system; @) neural network processor for solving 
moment-preserving equations. 

Fig. 2. Illustration of the concept to cluster the pixels of an image into N 
classes from the histogram of the image based on the moment-preserving 
principle. 

where m k  = PtZ! denotes the estimated moments and 
75Lk = E, p3 2," represents the moments of the original input image, 
respectively. The value Pz specifi_es the fraction of the pixels in the 
original image with gray values 2,. Note that E = 0 if and only if 
m k  = mk for all k. Thus, the goal to solve the moment-preserving 
equations can be achieved if the global minimum of E is obtained. 
Unfortunately, the above process is hard to implement by a single 
neural network because two types of variables, P, and Z,, exist in the 
moment-preserving equations and should be solved simultaneously. 
To overcome this difficulty, the proposed system is designed to solve 
P, and 2, successively using a neural network processor shown in 
Fig. l(b), which includes two subnetworks, one, called Z-network, 
performing the refinement of the representative gray values 2, for 
each pixel class, and the other, called P-network, performing the 
moment-preserving operation to redistribute the pixels of the image 
into pixel classes with the new values of 2,. A computation algorithm 
for the system is as follows. 

Algorithm: moment-preserving neural network system flow. 
Input: histogram of an input image. 
Output: K pixel classes. 
Method 
1. Choose K initial representative gray values Z ~ , Z Z ,  . . . , ZK 

and set up the configurations of both the P-network and the 
Z-network. The initial values for 2, can be chosen arbitrarily, 
but are suggested to be uniformly distributed in the gray level 

range. 
2. Activate the P-network to estimate the values of P, according 

to the gradient of the defined criterion function E. 
3. Activate the Z-network to refine the representative gray values 

2, for all pixel classes. The resulting values of 2, not only 
depend on the values of P,, which are obtained in the previous 
step, but also reduce the value of the criterion function E. 

4. If both of the P-network and Z-network are stable or if the 
iteration count reaches a preselected limit, then the process is 
terminated. Otherwise, reset the weights as well as the inputs 
for both networks and go to Step 2. 

Because both of the P-network and Z-network try to reduce the 
value of the criterion function E, the convergence of the neural 
network system can be expected. The question about how to design 
the two networks such that the criterion function value gradually 
decreases monotonically is discussed next. 

IV. PROPOSED MOMENT-PRESERVING NEURAL NETWORK PROCESSOR 
The P-network in the proposed moment-preserving neural network 

processor is a recurrent network used to extract the parameters 
PI, j = 1,2 , .  . . , N, in the moment-preserving equations, while the 
Z-network has a connectionist architecture and is used to modify the 
representative gray values 2,. The criterion function E defined in (4) 
is used as the energy function and seeking the minimum value of E 
is the common goal of both networks. 

The design of the P-network is discussed first. Taking the partial 
derivatives of E in (4) with respective to P, (with mk and mk defined 
in Section III), for all i = 1,2,. , N, we get a family of equations: 

where I, = -2 X I  x",B,' ( Z I Z , ) ~ ,  and wtJ = 2 E",;' ( Z , Z , ) k .  
By regarding P3 as the values of the neurons of the P-network, wE3 
can be considered as the weights of the network and It as the external 
inputs to the neurons. To minimize E, a gradient descent method is 
used here. Let 

where X is a positive variable (not a constant). The initial values 
of the neurons can be chosen arbitrarily. The undefined parameter 
X above is called the gradient descent gain. The larger the value of 
A, the higher the convergence rate. However, the energy function E 
will not always decrease at each iteration and so make the dynamic 
characteristic of the system unstable, if an unsuitable value of X is 
chosen. The range of X selected in this study [20] to assure monotonic 
decrease of the energy function is 0 < X < Z V > V p / V > W V p ,  
where W = {wt3} i , j  = 1,2,3, . . . ,N,  is a matrix and V p  = 
[a E l 8  P I ,  d E l 8  Pz,. . . , d Eld PN]  is a vector. 

The proposed architecture for the P-network is shown in Fig. 3(a). 
There are two different types of neurons in the network, namely, P- 
type and Vp-type neurons. Each P-type neuron performs the update 
function defined by (6), while the output value of each of Vp-type 
neuron is the derivative of the energy function E defined by (5). 
According to (5), the external inputs I ,  work as seeds which indicate 
a way for the network to estimate P,, i = 1,2,  . . . , N, such that the 
moments of the input image are preserved. The information of the 
moments of the original image is included in each external input I,. 
It is possible for the outputs of the summation functions in the P- 
type neurons to exceed the feasible interval [0,1] which is the range 
of fraction values, so a suitable activation function should be chosen 
to clamp the outputs of the P-type neurons into the interval [0,1]. 
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Fig. 3. Neural network architecture for order-N moment preserving. (a) P-network design; (b) 2-network design (notes: w : ~  = 8 w ; j / a  Zi, 1; = 8 I ; / a  Zi). 

E 

Enaglr 

P-Vector 

Fig. 4. Minimal energy value search by cooperating the P-network with the 
2-network. The notations P-vector and 2-vector are parameters to be estimated 
by the moment-preserving equations. 

The activation function of the P-type neuron used in the simulation 
of this study is defined as follows: 

$+@+1)) = { g 1 )  i f O < z < l ,  

which can inhibit the values of Pi from crossing the boundary of its 
feasible interval [OJ]. 

When a stable state of the P-network is reached, the P-network 
stops working. The definition of a stable state is defined as IP,(k+l) - 
PJk’l < [ for all i in this study, where the value of [ is very small 

(7) otherwise, 

and positive. The Z-network performs the minimization of the energy 
function E after the P-network becomes stable. The design procedure 
for the Z-network is similar to that for the P-network. Taking partial 
derivatives of E with respective to Z;, we get a family of equations: 

N 

P, = I,’ = c w : 3 P 3  P, (8) 

where I: = a I , / d Z ,  and wl, = aw,,/dZ,. Once more, let 
A = -V a 2%. If A 2, is sufficiently small, that is, if 77 
is a very small positive constant, then 

( 3=1  ) 

The parameter 17 controls the refinement step of each new value of 
2,. Although the exact range of 7 is hard to determine theoretically, a 
feasible value for 9 can be chosen to be within [OJ]. Our experiments 
show that the resulting computing convergence speed is acceptable. 
The design of the Z-network architecture is based directly on the 
above equations. There are two external inputs to the Z-network, one 
being the values of P, which are obtained by the P-network, and the 
other the values of I,’ which include the information of the moments 
of the original image. The architecture of the Z-network is shown 
in Fig. 3(b). 

After the Z-network completes the job of updating the values of 
Z,, the P-network takes over the energy function minimization task 
again. Note that, the weights and external inputs of both networks 
are dependent on the values of 2,. So it is necessary to tune the 
weights and external inputs for both networks before a new energy 
minimization cycle starts again. In fact, the energy function value 
minimized by the P-network falls on a surface obtained by projecting 
the state space of the energy function E on a fixed Z-vector plane. 
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( 4  
Fig. 5. 12-level thresholding of a synthetic image RING. (a) Original image; (b) histogram of the image with computed threshold values marked by 

the symbols A appearing on the axis of gray levels; (c) thresholding result. 

The fact that the P-network becomes stable implies that the state of 
the P-network has been trapped in a local minimum of this surface. 
On the other hand, the action of the Z-network actually is to bring 
the state of the P-network to a new fixed state-space surface at a new 

fixed Z-vector. The P-network acts then to search a new stable state 
with a lower energy function value. Thus, an effect of the Z-network 
is to help the P-network to jump out of a local minimum of the energy 
function E. To tune the weights and external inputs of both networks 
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G r a y  leu-1 

@) 
Fig. 6. The 5-color tested image MICKEY MOUSE used to compare the performance of the proposed technique with four other multilevel thresholding 

selections methods. (a) Original image; (b) histogram of the original image. 

is equivalent to constructing a new state-space surface of the energy 
function E with a new fixed Z-vector. Fig. 4 is given for a more 
concise illustration. Because the energy function E is convex [20] 
for a fixed Z-vector, it is possible to exhaustively search the optimal 
Z-vector such that the P-network can be used to find the optimal 
P-vector. Then the global minimum of the energy function can be 
achieved. Unfortunately, this is an exponential-time algorithm and 
so impractical. The cooperation of the P-network and the Z-network 
in fact offers a fast search method such that the final solution of 
the moment-preserving neural network processor approximates the 
optimal solution. 

The number of neurons used in the proposed system is small. 
The order is O ( N )  where N is the number of pixel classes to be 
transformed. Thus, the system can be implemented by present VLSI 
fabrication technology. To complete the description of the neural 
network processor, both subnetworks work to decrease the energy 

function E at each updating iteration. Thus, the convergence of the 
processor can be assured. Because of the gradient descent method, it 
is possible for the energy function to be trapped on a local minimum. 
If a priori knowledge is given in advance to set up more suitable 
initial values for both subnetworks, good estimations of P, and 2; 
will be possible. This reduces the possibility of resulting in a local 
minimum. On the other hand, to jump out of the local minima of 
the energy function, some well-known optimization techniques, such 
as the simulated-annealing algorithm, can be used to improve the 
performance of the processor. 

V. EXPERIMENTAL RESULTS 
The proposed approach has been tried on a lot of images. Each 

image is of size 512 by 480. All the simulations were done on a 
SUN/4 SPARC station. One result is shown in Fig. 5, which is the 
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TABLE I 
COMPUTED RESULTS OF &PLYING THE FIVE MUL~LEVEL 

THRESHOLDING ALGORITHMS TO THE TEST IMAGE 

[2] E. J. Delp and 0. R. Mitchell, “Image compression using block trun- 
cation coding,” IEEE Trans. Commun., vol. COM-27, pp. 1335-1342, 
1979. 

[3] A. J. Tabatabai and 0. R. Mitchell, “Edge location to subpixel values 
in digital imagery,” IEEE Trans. Pattern Anal. Machine Intell., vol. 

[4] L. H. Chen and W. H. Tsai, “Moment-preserving sharpening: A new 
approach to digital picture deblurring,” Comput. &ion, Graphics, Image 
Processing, vol. 41, pp. 1-13, 1988. 

[SI -, “Moment-preserving line detection,” Pattern Recognition, vol. 

[6] - , “Moment-preserving curve-detection,” IEEE Trans. Syst., Man, 

[7] L. H. Chen and S. S. Wang, “A new approach for edge detection,” in 

PAMI-6, pp. 188-201, 1984. 
CPU 

Thresh o I d Time 
(second) Methods 

tl t z  t 3  t 4  

21, pp. 45-53, 1988. RANDC 42 79 104 146 1.1 
FLOYD 38 83 106 147 1.1 
MET 20 41 107 
ENTROPY 31 94 129 
MPNNP 65 92 122 160 18.1 Proc. IEEE Int. Conf Image Processing, Singapore, 1989. 

135 2733.3 
4100.3 

Cybern., vol. SMC-18, pp. 148-158, 1988. 

result of 12-level thresholding of a synthetic image RING with 12 
colors. A 5-color image MICKEY MOUSE, as shown in Fig. 6 is 
used to compare the performance of the proposed technique with 
those of four other histogram-based multilevel thresholding selections 
methods [16]-[19]. The algorithms compared are the following: 1) 
the Ridler and Calvard method [16] [RANDC]; 2) the Floyd method 
[17] [FLOYD]; 3) the Minimum error thresholding [18] [MET]; 4) 
the Entropy method [19] [ENTROPY]; 5) the proposed Moment- 
preserving neural network processor [MPNNP]. The final results are 
shown in Table I. It is difficult to define a good criterion to compare 
the performances of these methods. If such a criterion could be easily 
developed, one could design an algorithm to minimize (or maximize) 
the criterion. And then, the thresholding problem is completely 
solved. To compare the performances of these methods, the histogram 
of the original image might be useful. If the concavities of a histogram 
are the best suitable threshold candidates, it was observed from the 
experimental data that the performance of the method ENTROPY is 
the best, and the proposed MPNNP ranks second. However, if the 
computation time is considered, the MPNNP method is far superior 
to the entropy method. In order to compare the operation speeds 
of these methods, the programs written to simulate the MET and 
ENTROPY methods have been carefully optimized. All their floating 
point operations were precalculated and stored in the form of tables. 
The table look-up method speeds up greatly the performances of 
both the MET and the ENTROPY methods, otherwise the CPU time 
amounts for both methods would be far larger than the values listed 
in Table I. The CPU time listed in Table I for the proposed MPNNP 
method is the simulation time on a sequential machine. 

VI. CONCLUSIONS AND DISCUSSION 

In this correspondence, we have proposed a neural network ap- 
proach to implementing the moment-preserving technique which has 
been proved to be of wide use [1]-[9]. An application of the proposed 
approach to thresholding has also been presented. The proposed 
method has been shown feasible for solving the moment-preserving 
equations, and the solution can be thought as a generalization of that 
derived by Tsai 111. There is no difference between the effort required 
for solving lower-order moment-preserving equations using the pro- 
posed system and that for solving higher-order ones. Furthermore, the 
neural network development procedure and the theoretic derivations 
can also be applied to other image operations. The inherent paral- 
lelism of the proposed neural network system offers a possible way 
to achieve the goal of real-time image processing. Further studies 
can be directed to other applications of the proposed system in image 
processing, such as image segmentation and compression. 
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