Robotics
and
Computer Integrated
Manufacturing

PERGAMON Robotics and Computer Integrated Manufacturing 15 (1999) 353-364

www.elsevier.com/locate/rcim

A new approach to vision-based unsupervised learning of unexplored
indoor environment for autonomous land vehicle navigation™

Guan-Yu Chen, Wen-Hsiang Tsai*

Department of Computer and Information Science, National Chiao Tung University, 1001 Ta-Hsuch Road, Hsinchu, Taiwan 300, Republic of China

Abstract

A vision-based approach to unsupervised learning of the indoor environment for autonomous land vehicle (ALV) navigation is
proposed. The ALV may, without human’s involvement, self-navigate systematically in an unexplored closed environment, collect the
information of the environment features, and then build a top-view map of the environment for later planned navigation or other
applications. The learning system consists of three subsystems: a feature location subsystem, a model management subsystem, and an
environment exploration subsystem. The feature location subsystem processes input images, and calculates the locations of the local
features and the ALV by model matching techniques. To facilitate feature collection, two laser markers are mounted on the vehicle
which project laser light on the corridor walls to form easily detectable line and corner features. The model management subsystem
attaches the local model into a global one by merging matched corner pairs as well as line segment pairs. The environment exploration
subsystem guides the ALV to explore the entire navigation environment by using the information of the learned model and the current
ALV location. The guidance scheme is based on the use of a pushdown transducer derived from automata theory. A prototype
learning system was implemented on a real vehicle, and simulations and experimental results in real environments show the feasibility
of the proposed approach. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Unsupervised learning; Autonomous land vehicle navigation; Computer vision; Model matching; Pushdown transducer; Environment

exploration

1. Introduction

Applications of vision-based autonomous land ve-
hicles (ALV’s) were intensively studied in recent years.
In many ALV applications, model-based guidance ap-
proaches are often employed for ALV navigation. How-
ever, the traditional method of establishing environment
models — manual measurement of the navigation envi-
ronment — is a time-consuming work. It is thus desired
to design a system for automatic learning of navigation
environments. Several environment learning systems
were developed in the recent years [1-9] to meet this
requirement. Many other mobile robot Ilearning
systems were also constructed [11-14] for use in applica-
tions other than navigation environment modeling, such
as navigation, goal reaching, obstacle avoidance, etc.

“This paper is supported under the project NSC-87-2213-E-009-114
of National Science Council, the Republic of China.

* Corresponding author. Tel: + 886(3)-571-2121 ext 56621; fax:
886(3)-572-1490.

E-mail address: whtsai@cis.nctu.edu.tw (W.H. Tsai)

For environment learning, Lebégue and Aggarwal
[1,2] developed an integrated system to generate archi-
tectural CAD models using a mobile robot. The system
consists of a segment detector, a tracker, and a CAD
modeler. A basic assumption of their study is that the
navigation environment is with prominent 3D orienta-
tions. Such an assumption stands in most building corri-
dors. Nashashibi et al. [3] proposed an approach to
building a rough geometric model for a 3D terrain using
a laser range finder. They also gave algorithms to build
snapshot models with planar faces from range data. By
performing 3D data fusion between the snapshot models,
the proposed approach can build a reliable 3D model
incrementally [4]. Ishiguro et al. [5] presented a strategy
for establishing the model of an unknown environment
by a mobile robot. Panoramic sensing was used to per-
ceive the structure of the environment in their implemen-
tation. Kurz [6] introduced an approach to generating
environmental maps based on ultrasonic range data.
Free-space can be partitioned into situation areas by
means of a learning classifier. Then the situation areas
can be attached to graph nodes by dead-reckoning and
finally a map of the free-space in the form of a graph

0736-5845/99/$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved.

PII: S0736-5845(99)00033-2

354 G.-Y. Chen, W.-H. Tsai | Robotics and Computer Integrated Manufacturing 15 (1999) 353-364

representation is generated. Dean et al. [7] formulated
map learning as a problem of inferring the structure of
a reduced deterministic finite automaton from noisy ob-
servations and also provided an exploration algorithm to
learn the correct structure of the automaton. Pan and
Tsai [8] proposed an integrated approach to automatic
model learning and path generation for vision-based
ALV guidance in building corridors. In Chen and Tsai
[9], an incremental environment learning system
for ALV navigation was proposed. Rough initial envi-
ronment models are first constructed, and after each
navigation session, the proposed system can update the
environment model according to the information col-
lected in the previous navigation.

In most of the above-mentioned environment learning
systems, certain involvement from human operators is
required in the learning process. For example, in our
previous work [9], the ALV should be driven manually
by a human operator around the environment for initial
learning. However, for some applications, it is impracti-
cal to get human’s involvement. A typical example of
such applications is the use of an autonomous mobile
robot to work in a nuclear plant or other dangerous
regions. For these applications, all operations, including
the learning process, should be fully automatic. As a re-
sult, the capability to explore an unknown navigation
environment automatically is required. An unsupervised
environment learning system for this purpose is proposed
in this study.

A major problem in unsupervised learning of navi-
gation environments is systematic traverse of an environ-
ment. It is desired that once an ALV is started for
self-navigation, the ALV will visit every spot in the envi-
ronment systematically and return to the start location.
The ALV should not be stuck in any dead-end, nor
should it fall into navigation loops. It needs certain
theory to design a guidance engine to achieve this goal. It
is found in this study that automata theory provides
a good solution. A pushdown transducer, called navi-
gation transducer, was designed in this study to guide the
ALV to explore unknown environments with no super-
vision. The sensed local environment features are en-
coded into symbols for use as input to the navigation
transducer by a preprocessing unit. And output symbols,
which represent ALV actions, are generated by the navi-
gation transducer to guide the ALV to traverse the envi-
ronment systematically.

Furthermore, the proposed system is aimed for use in
real environments. Accordingly, many practical prob-
lems need be solved, e.g., how to locate the environment
feature, how to deal with the uncertainty caused by noise
in feature detection, how to encode the local environment
features into symbols for use as input to the navigation
transducer, etc. All these questions are answered in this
study. Simulations and convincing experimental results
show the feasibility of the proposed approach.

In short, major contributions of this study include the
design of the navigation transducer, which is based on
automata theory and serves as an ALV guidance engine
for unsupervised and systematic environment explora-
tion, as well as the provision of effective algorithms for
solving practical problems encountered in real environ-
ment applications.

The remainder of this paper is organized as follows.
The principles of the proposed learning system are de-
scribed in Section 2. In Section 3, the detailed procedures
for feature location and model updating are described. In
Section 4, the detailed procedures for automatic environ-
ment exploration based on the use of the proposed navi-
gation transducer are described. In Section 5, several
simulation and experimental results are presented.
Finally, some conclusions and a few suggestions for
further works are given in Section 6.

2. Principles of proposed learning system

In the proposed system, computer vision techniques
are employed to locate indoor environment features. The
selected environment features are the obstacles detected
in the sensed images. In indoor corridor environments,
obstacles are usually the walls and the doors in buildings.
In the proposed system, two laser markers are employed
to help identifying the locations of obstacles. The laser
markers are properly installed so that their projection
marks on the obstacles in the environment are all at the
same height. In a typical scene of the experimental envi-
ronment, as shown in Fig. 1, the laser markers project
bright laser light onto the obstacles in the environment,
which forms line segments and corners in sensed images.

Fig. 1. A typical scene of the experimental environment.

G.-Y. Chen, W.-H. Tsai | Robotics and Computer Integrated Manufacturing 15 (1999) 353-364 355

Encode extracted local
features and send encoded

symbol to navigation
. transducer

A

Get inputs from sensors

A

l Guide ALV according to
output of navigation
transducer

Extract environment
features

|

Match local features to
learned model

|

Calculate accurate positiong
of local features

l End

Attach local model to
global model

Is entire region
explored

Fig. 2. Flowchart of proposed learning system.

The line segments are first found by image processing.
Then by computer vision techniques, the location of the
line segment features are calculated. The corresponding
features of these obstacles appear to be line segments in
the top view. A line-segment model matching algorithm
is used to find the correspondence between the sensed
local model and the learned global model. The matching
result then are used to locate the ALV and construct
environment models. Furthermore, for automatic envi-
ronment exploration, a navigation transducer is em-
ployed to guide the ALV in the proposed learning
system, and a preprocessing unit is used to encode local
environment features into symbols for use as input to the
navigation transducer. Each output symbol of the navi-
gation transducer corresponds to a certain ALV opera-
tion. A path planning unit then interprets the output
symbol and generates a series of low-level ALV control
commands to guide the ALV to explore the entire navi-
gation environment. The entire learning system thus can
be divided into three subsystems: a feature location sub-
system, a model management subsystem and an environ-
ment exploration subsystem. A flowchart of the proposed
learning procedure is shown in Fig. 2. A detailed descrip-
tion of the learning algorithm is described as follows.

Algorithm 1. Unsupervised learning of unexplored
environment for ALV navigation

Perform camera and laser marker calibration.
Drive the ALV manually to an initial location
and start the ALV.

Set the initial global model as empty.

Step 1.
Step 2.

Step 3.

Step 4.
Step 5.

Capture an image from the camera.

Extract environment features from the cap-
tured image.

Calculate the location of the extracted environ-
ment features and set up a local model by
collecting the extracted local features (see Sec-
tion 3.1 for the detail).

If the global model is non-empty, then match
the local model with the global model and
recalculate the accurate position of the local
features by the matching result (see Sections 3.1
and 3.2 for the detail).

Attach the local model to the global model (see
Section 3.3 for the detail).

Encode the extracted local features and
send the encoded symbol to the navigation
transducer as input (see Section 4 for the
detail).

Step 10. If the output of the navigation transducer is
‘stop’, then stop the ALV; otherwise, perform
the ALV operation corresponding to the trans-
ducer output, and go to Step 4 to start another
cycle.

Step 6.

Step 7.

Step 8.

Step 9.

The proposed ALV learning system consists of three
subsystems, a feature location subsystem, a model man-
agement subsystem, and an environment exploration
subsystem. The feature location subsystem is designed to
extract and locate the environment features. The model
management subsystem builds and keeps track of the
learned global model. The environment exploration sub-
system consists of a navigation transducer, a preprocess-
ing unit and a path-planning unit. The preprocessing unit
encodes the extracted local environment features into
symbols for use as input to the navigation transducer.
The navigation transducer serves as the guidance kernel,
which leads the ALV to explore the entire navigation
environment automatically and systematically. The path
planning unit interprets the output symbols of the navi-
gation transducer and generates a series of low-level ALV
commands. The interaction of these subsystems are
shown in Fig. 3.

There is a basic assumption for the experimental envi-
ronment: the obstacles, namely, the walls and doors, in
the environment are all in two orthogonal directions.
With this assumption, the environment features can be
treated as a set of orthogonal line segments. In compari-
son with the matching algorithms for arbitrary line seg-
ment patterns, the matching algorithms for orthogonal
line segment patterns are simpler and faster. In this study,
an orthogonal-line-segment- pattern matching algorithm
for locating the ALV and environment features is de-
veloped. Furthermore, with this assumption, the design
of the preprocessing unit and the navigation transducer
could also be simplified. In real building, this assumption
is true in most indoor space.

356 G.-Y. Chen, W.-H. Tsai | Robotics and Computer Integrated Manufacturing 15 (1999) 353-364

Feature Sensed
Location —Environment
Subsystem Features
New ALV
Position

Model
Management
Subsystem

Global Model

Environment
Exploration
Subsystem

ALV Action

Control | ALYV Control
Command Unit

ALV Hardware

Fig. 3. Interaction between three environment learning subsystems.

3. Strategies for feature location and model updating
3.1. Ideas of locating environment features

With no depth information, a single image is insuffi-
cient for locating any line segment with no heuristic.
However, if an end point of a line segment is located on
a known plane with known height, the location of the end
point may be uniquely decided. In this study, the laser
markers are first calibrated in such a way that all their
projection marks appear at the same height, say, hy. As
a result, all line segments are known to be on the plane
z' = hy. The equations for calculating the location of
a point located on a known plane in the vehicle coordi-
nate system can be found in [15].

If the vehicle location is known, the location of a line in
the global coordinate system can also be obtained (as
shown in Appendix A). In our approach, a rough estima-
tion of the vehicle location is first obtained by the use of
an odometer equipped in the ALV, which provides the
navigation distance during a cycle, as well as the use of
a photo-encoder, which tells the turn angle of the front
wheels. Then by the use of the result of matching the
collected line segment features with those in the learned
global model, the error in the rough estimation of the
vehicle location can be corrected, and so safe ALV guid-
ance is feasible. Then the accurate location of the local
features can be recalculated according to the corrected
ALYV location.

The estimated position and orientation of the ALV are
calculated as follows in our approach. When the ALV
moves away from a known position, the new position of
the ALV can be estimated by using the moving distance
S and the turn angle of the front wheels. The derivations
of the equations to calculate the estimated ALV location
can be found in [8] and are reviewed in the following. As
shown in Fig. 4, assume that the vehicle is located at A.
After moving a distance S forward, the vehicle will be at
a new location B, which is the desired estimated ALV
location. Let the relative location of B with respect to

Fig. 4. The vehicle location before and after the ALV moves a distance
S forward.

A be denoted by a vector T. The rotation radius R can be
written as:

R = d/sin 6, (1)
where d is the distance between the front wheels and the

rear wheels, and ¢ is the turn angle of the front wheels.
And the angle y can be determined as

7y =S/R. 2
So, the length of vector T can be solved to be
IT| = Ry/2(1 — cos y), 3)

and the direction of vector T is

n v
=——0—=. 4
u=3 5 (4)
The coordinates of location B in the vehicle coordinate
system with respect to location A can thus be comp-
uted by

xp = |Tlcosu, yp=[T]sinu. (5)

After the front wheel location of the ALV is determined,
the rear wheel location (Xp, yp) of the ALV can also be
determined to be

Xp=Xxp+dsiny, yp=yp—dcosy. (6)

G.-Y. Chen, W.-H. Tsai | Robotics and Computer Integrated Manufacturing 15 (1999) 353-364 357

Since the global coordinates of location 4 are known,
and since the vehicle coordinates of location B with
respect to location A can be obtained from Eq. (5), the
global coordinates of location B can be calculated by
coordinate system transformations. Thus the desired esti-
mated ALV location is obtained.

After performing the line segments matching algo-
rithm, the displacement (x,, y;, 7) from the local model to
the learned global model can be obtained. Note that this
displacement is also the displacement from the estimated
vehicle location to the actual one. As a result, the actual
vehicle location (x},, y,, @) can be obtained by:

p+xls y;):j}p—f—yl) (U:Cb*“/a (7)

where (%,, y,, ®) is the estimated ALV location, and
(x¢, vs» 7)is the displacement vector obtained from the
matching result.

3.2. Algorithm for model matching

There are several algorithms for line segment pattern
matching. For example, the Generalized Hough Trans-
form [16] (GHT) is a popular approach to arbitrary
pattern matching. It also works for line segment pattern
matching, which is desired in this study. However, if the
dimension of the counting space for the GHT is large due
to the large sizes of the matched patterns, a lot of memory
space and a significant computing time will be required
to perform the algorithm. Thus it is desired to develop
a faster and simpler matching method for real-time ap-
plications. Another problem arises when computer vision
inaccuracy and image processing errors are involved.
This makes perfect matching impossible, and a “fuzzy”
matching algorithm is required. Furthermore, sometimes
a newly detected line segment feature in the local model
may not exist in the learned global model, and so the
algorithm should also be capable of partial matching.

In this study, a new line segment matching algorithm is
proposed to meet the above three requirements. Since all
line segment features in both the local model and the
extracted global model are parallel to the x'-axis or
the y’-axis, there is no rotation between the two models.
The proposed matching algorithm is designed to find
only the translation from the local model to the extracted
global model.

The proposed matching algorithm is based on the
following idea. A line segment L, parallel to the x'-axis
can be described with a three-tuple (y., x1, x,), where
¥y’ = y. is the line equation of L., and (x, y.) and (x5, y.)
are the two end points of L. Similarly, a line segment
L, parallel to the y’-axis can be described with a three-
tuple (x., y1, y2), where x” = x, is the line equation of L,,
and (x,., y;) and (x,, y,) are the two end points of L,. Such
descriptions may be interpreted to be obtained through
the following operations: for a line segment L parallel to

the x’-axis, mark a symbol on the y’-axis (at y' =y,)
to indicate where the line is located and mark two
symbols on the x'-axis (at x’ = x; and x’ = x,, respective-
ly) to indicate where the two end points are located.
For line segments parallel to the y’-axis, similar
operations can be performed. For each line segment in
a pattern (or a model), the above operations are
performed. In this way, a set of symbols on the x'-axis
and another set on the y’-axis are obtained. The locations
of the marked symbols can be used to describe the loca-
tions of the line segments in the pattern. Therefore, by
matching the locations of the marked symbols of two
patterns, the displacements between the two patterns can
be found.

The proposed matching algorithm is based on the
above idea. In the proposed matching algorithm, the
marked symbols are quantified, so a set of the marked
symbols can be regarded as the range of a function either
on x'-axis or on y’-axis. These functions are defined to be
the signatures of a line-segment pattern. In this repres-
entation, the matching work is performed in the follow-
ing strategy. The signatures of both the input and the
reference patterns are obtained first. Then, a set of cor-
relation values is calculated in terms of the signatures by
correlating the two patterns with different displacements.
Since higher correlation implies higher similarity, the
displacement corresponding to the maximum correlation
value is therefore the exact displacement between the two
patterns. In this way, the translations between the two
patterns along both the x'-axis and the y’-axis can be
obtained separately. In the discrete case, the domains of
the signature functions may be taken to be cells which are
said to form signature spaces. The steps of the matching
algorithm are formalized as follows.

Algorithm 2. Matching orthogonal line segment patterns

Input: An input line segment pattern N and a refer-
ence line segment pattern L.
Output: The displacement vector (x,, y,) which trans-
forms N to L through translation.

Steps:
Step 1. Set up the x'-signature and y’-signature spaces
for N and L and set the values in the cells of the
signature spaces to be zero. Denote the x'-
signature and the y’-signature of N to be
SY and S}, respectively, and the x'-signature
and the y-signature of L to be St and S%,
respectively.
For a line segment n; in N,

if n; is parallel to the x'-axis and described

with three-tuple (y., x1, X»),
set SY(x;) = S¥(x1) + ¢, SX(x2) = S¥(x,) + ¢
and

Sy = SY(ve) + L

Step 2.

358 G.-Y. Chen, W.-H. Tsai | Robotics and Computer Integrated Manufacturing 15 (1999) 353-364

where (x4, y.) and (x,, y.) are the two end points
of n;, [; is the length of n;, and ¢ is a constant;

if n; is parallel to the y’-axis and described
with three-tuple (x., y1, ¥2),

set SY(y1) = SY(n1) + ¢ Sy(v2) = S)(v2) + ¢,
and
Sg(xc) = Sg(xc) + lia

where (x,, y;) and (x,, y,) are the two end points
of n;, [; is the length of n;, and ¢ is a constant.
Apply Step 2 to all line segments in N, and
apply similar operations to line segments in L.
Adjust the signature value at each x with fuzzy
tolerance within a neighborhood of x, i.e., set

& k2 N . 1
S¥x) = i/=k/2<Sx(x +1i) <1 n i/d))’

where k is the size of the neighborhood and d is
a constant. Apply similar operations to S)(y),
S%(x), and S¥(y), respectively.

Calculate the following correlation values:

Step 3.

Step 4.

Step 5.

Culxa) = Y (S¥(x) S(x + x,), and

X

Cyva) = Y., (SY(»)- Sy + va))

y

Step 6. Find the maximum of the correlation values,
and set the desired values of x; and y, to be the
corresponding displacements, i.e., find x, and
y: such that C(x;) = max,C,x) and that

Cy(y)) = max, Cy(y).

By observing the formula of the correlation, a higher
value of the signature function will play a relatively more
important role in the correlation. It is thus desired to
obtain a relatively more reliable feature with a higher
value of the signature function. Since errors in image
processing may result in some short line segments, longer
line segments are generally more reliable. As a result, in
the proposed matching algorithm, the value correspond-
ing to a certain ‘marked symbol’ is set to be the length of
the corresponding line segment. Furthermore, in the im-
plementation of our learning system, the constant ¢ is
replaced with a value that is proportional to the times of
occurrence of the corresponding end point. This implies
that, like a longer line segment, a multi-occurrence end
point is also relatively more important in the matching
processes. These two ways of ‘weighting’ in matching
make the proposed algorithm more effective.

An example can be used to illustrate this algorithm, as
shown in Fig. 5. In the left-upper corner of Fig. 5, a refer-
ence model pattern and an input model pattern are
represented as black and gray line segments, respectively.
In the right-upper corner of Fig. 5, the result y'-axis

Bl

Fig. 5. Illustration of the proposed line segment algorithm.

signature of the reference model and that of the input
model are represented by black and gray graphs, respec-
tively. In the left-bottom corner of Fig. 5, the x'-axis
signature of the reference model and that of the input
model are represented by black and gray graphs, respec-
tively. Note that every higher peak in the signature cor-
responds to a longer line segment, while the lower peaks
correspond to shorter line segments or end points.

3.3. Model updating

In the proposed learning system, the environment
model was established by attaching the local model sen-
sed in each learning cycle into the learned global model
incrementally. Since all line segments are all in two or-
thogonal directions, there is no rotation between the
local model and the learned global model. The transla-
tion between the local model and the learned global
model can be found by the above proposed line-segment
matching algorithm. Then the local model is translated in
accordance with the result of the matching algorithm,
and attached into the global model. If one line segment
feature in the local model is nearly coincident with one in
the global learned model, these two features are regarded
as an identical one. If one line segment feature in the local
model overlaps partially with one in the global learned
model, these two features are merged into a larger one.
This simplifies the learned global model and keeps the
number of line segment features within a reasonable
range. Furthermore, the model-updating algorithm also
checks multi-occurrences of end points. An end point
with multi-occurrences, i.c., appears more than once, is
more reliable and plays a more important role in the

G.-Y. Chen, W.-H. Tsai | Robotics and Computer Integrated Manufacturing 15 (1999) 353-364 359

matching algorithm. The detailed algorithm for model
updating is described as follows.

Algorithm 3. Model updating

Input: A local model N and a learned global model L.
Output: A new learned global model M, which is a com-
bination of N and L.
Steps:
Step 1. Extract features from L within a certain win-
dow and form a new model L.
Add all line segments in L but not in L' to M.
For a line segment n; in N:
If n; is parallel to the x"-axis and described with
(Ver X1, X2), then
(1) for every line segment 1;in L’ parallel to the
x'-axis and described with (y,, x}, x',):
Case 1 (Fully overlapping line segments): if
lve — ¥ < ey, X1 — x1| < ¢z, and |x5 — x5 <
3, add a line segment with two end points at
(1 +x1)/2, (e + y9/2) and ((x2 + x3)/2,
(ye + y2)/2) to L" and remove I; from L’;
Case 2 (Partially overlapping line segments): if
lye — ye < cq, X, > x| and x5, > xq, add a line
segment with two end points at (min(xy, x';),
(e + ¥)/2) and (max(x,, x3), (ye + yo)/2) to L
and remove 1; from L’;
(2) if there is no line segment which fully or
partially overlaps with n; in L', add n; to L,
where (x4, y.) and (x,, y.) are the two end points
of my, x, > xq, (x1, yi) and (x5, y,) are the two
end points of I;, x5, > X, and cy, c,, c; are three
predefined constants.
If n; is parallel to the y'-axis, similar operations
are performed.
Add all line segments in L’ to M.
Set the initial occurrence counts of the end
points of every new line segment (i.e., line seg-
ments in L') to be zero.
For an end point p; of the line segments in M,
check if there exists any end point in a certain
neighborhood of p; in N. For each point in the
neighborhood, increase the occurrence count
of p; by one. The occurrence counts of end
points are used to adjust the weighting value in
the proposed matching algorithm (see Section
3.2 for the details).

Step 2.
Step 3.

Step 4:
Step 5:

Step 6:

4. Strategies for automatic exploration
without supervision

For automatic environment exploration, a learning
system should be able to plan the exploration path auto-
matically and systematically with the information of
surrounding environment. In the proposed learning
system, this work is mainly solved by the proposed

navigation transducer. The navigation transducer takes
encoded symbols corresponding to surrounding environ-
ment as inputs. According to the information of input
symbols, internal states and stack status, the transducer
generates output symbols corresponding to special ALV
actions. To encode sensed environment features into in-
put symbols for the navigation transducer, a preprocess-
ing unit is proposed to do the translation works. To
perform the actions corresponding to the outputs of the
transducer, a path planning unit is proposed to interpret
the output symbols into a series of low-level ALV control
commands and control the ALV to move along the
planned paths.

4.1. Proposed navigation transducer

A transducer in automata theory [17] is an automa-
ton, whose model consists of a control unit, a stack, an
input unit and an output unit. It has the function of
transforming input symbols into output symbols accord-
ing to its state transition rules. The stack is a memory for
storing symbols used in intermediate transitions.

In our previous work [10], a navigation transducer
working in the simulated grid environment was pro-
posed. Some modifications were made for working in the
real environment. The proposed navigation transducer is
designed to simulate the human’s behavior to walk sys-
tematically and thoroughly in a maze building. Some
common rules used in this situation are described as
follows. Firstly, walk along a corridor if no crossing is
encountered. Secondly, when a crossing is encountered,
i.e., when more than two candidate paths can be chosen,
select one of them and put a mark on the chosen path to
distinguish it from the unexplored ones, and then go
along the chosen path. Thirdly, when an end of the
current path is encountered, go backward along the
current path to the previous crossing, pick another unex-
plored path, put a mark on the selected path, and go.
Finally, if all available paths for a crossing are explored,
go backward furthermore to another crossing until an
unexplored path is found. In this way, one may either
find the exit of the building or explore the entire building
and find there is no exit.

According to the rules, the navigation transducer was
designed to have four categories of input symbols, one-
way corridor, unexplored crossing, explored crossing, and
end of corridor, which correspond to four different sur-
rounding environment conditions. Detailed descriptions
of the process for translating the sensed surrounding
environment into the input symbol is included in Section
4.2. On the other hand, it is observed in this study that
seven output symbols are sufficient for modeling the
ALYV navigation actions in building explorations: straight
forward, forward right turn, forward left turn, straight back-
ward, backward right turn, backward left turn, and stop
the ALV. They are taken as the possible outputs of the

360 G.-Y. Chen, W.-H. Tsai | Robotics and Computer Integrated Manufacturing 15 (1999) 353-364

navigation transducer. The strategy to perform the ALV
actions corresponding to the output symbols is illus-
trated in Section 4.3.

The stack of the navigation transducer is used to keep
track of the marks, each of which indicates whether
a certain path is explored or not. When one crossing is
encountered, the symbols representing all unexplored
paths from this crossing are pushed down to the stack of
the transducer except the selected one. The navigation
transducer then guides the ALV to move along the se-
lected path. When the ALV encounters an end of the
corridor, according to the third rule, the navigation
transducer guides the ALV to retreat backward to the
previous crossing; when arriving the previous crossing,
a new path is popped out of the stack, and the navigation
transducer guides the ALV to follow this new path.
Besides, when all paths from the crossing have been
explored, a similar retreating procedure is performed
again to guide the ALV to the previous crossing.
Unfortunately, if no further information is provided,
the navigation transducer will not be able to know
from which path the ALV comes to this crossing, and
the retreating work is so infeasible. To solve this
problem, the retreating path should be pushed before
other unexplored paths are pushed. By the nature of
stack operations, namely, first in last out, the retreating
path will be popped out only after all unexplored paths
are popped out. That is, the ALV retreats from one
crossing only if all paths from the crossing have been
explored. This ensures the ALV to explore the entire
region systematically.

The stack operations of the navigation transducer are
summarized as follows.

o In the exploring mode indicating that the ALV is navi-
gating in an unexplored region, if a crossing is encoun-
tered, choose a path to go, push the retreating path
into the stack first and then those unexplored paths
except the chosen one, and finally guide the ALV to
move along the chosen path.

o In the retreating mode indicating that the ALV has
visited a path end and is retreating to the previous
crossing, if the ALV reaches the crossing, pop one path
from the stack, and then guide the ALV to go along the
popped path.

The state of the navigation transducer is used to check
whether the ALV is navigating in the exploring mode or
in the retreating mode. The state transition function of
the control unit maps the input, the current state, and the
current stack status into a new transducer state and
a new stack status. The output function maps the input,
the current state, and the current stack status into an
output symbol. For a complicated transducer, there may
be hundreds or thousands of transition rules and output
mapping rules, so it is unfeasible to list all the rules
here. Instead, only several principles for illustrating the

behavior of the transducer are listed as follows:

1. For a ‘one-way corridor’ input, neither the state nor the
stack content need be changed. Also, take as output
the symbol that guides the ALV to move along the
one-way corridor.

2. For an ‘end of corridor’ input:

2.1. If the navigation transducer is in the ‘exploring
state’, change the state of the navigation trans-
ducer to the ‘retreating state’ and keep the con-
tent of the stack unchanged. Also, take as output
the symbol that guides the ALV to move back-
ward along the corridor.

2.2. If the navigation transducer is in the ‘retreating
state’ and the stack is empty, change the state to
the “final state’. Also, take ‘stop the ALV as the
output symbol.

3. For an ‘unexplored crossing’ input, push first the sym-
bol which corresponds to the retreating path, i.e., the
direction to the previous grid, onto the stack; scan
next the candidate paths of the crossing in the se-
quence of forward, right-turn, left-turn; ignore the first
candidate path, which is chosen to be the navigation
direction; and push finally the symbols which corres-
pond to the other candidate paths onto the stack. In
this case, the state of the navigation transducer re-
mains in the exploring state. Also, take as output the
symbol that guides the ALV to go along the chosen
path.

4. For an ‘explored crossing’ input:

4.1. If the navigation transducer is in the ‘exploring
state’, change the state of the navigation trans-
ducer to the ‘retreating state’ and keep the con-
tent of the stack. Also, take as output the symbol
that guides the ALV to move backward along the
corridor.

4.2. If the navigation transducer is in the ‘retreating
state’, and if the stack is empty (i.e., if the popped
symbol is the start symbol of the stack), change
the state into the ‘final state’ and take ‘stop the
ALV as the output symbol. If the stack is
nonempty, pop a symbol from the top of the
stack, and if the popped symbol corresponds to
an unexplored path, switch the state to the ‘ex-
ploring state’ and take as output the symbol that
guides the ALV to go forward along the path, as
implied by the popped symbol. If the popped
symbol corresponds to a retreating path, keep the
state in the ‘retreating state’ and take as output
the symbol that guides the ALV to go backward
along the path, as implied by the popped symbol.

4.2. Preprocessing unit

The preprocessing unit is designed to encode the local
environment features into one of the four input symbols

G.-Y. Chen, W.-H. Tsai | Robotics and Computer Integrated Manufacturing 15 (1999) 353-364 361

of the navigation transducer. Since the major difference
among the four input symbols is the number of available
exploration paths from the current ALV position, the
major objective of the encoding work is to find out all
available paths from the current ALV location in the
learned environment model. A navigation path is said to
be available if the distance between two neighboring
obstacles is longer than a pre-selected threshold value,
which ensures safe navigation. In our approach, path-
available tests are performed to the environment features
in three certain (left, right and front) regions around the
current ALV location. If no available path is found, an
‘end of corridor’ symbol will be sent to the navigation
transducer. If there is only one navigation path available,
a ‘one-way corridor’ symbol will be sent to the navigation
transducer. A crossing is encountered when more than
one navigation paths are available. In such a case, the
location of the crossing area is first calculated. An explo-
ration test is then performed to check if the encountered
crossing is in the explored-crossing list, and either ‘unex-
plored crossing’ or ‘explored crossing’ would be sent to the
transducer according to the test result. The encountered
crossing will be added into the explored-crossing list after
it has been explored.

4.3. Path-planning unit

The path-planning unit interprets the output symbol
of the navigation transducer as a series of low-level ALV
control commands. For a ‘straight forward’ or a ‘straight
backward’ output, the path-planning unit generates
a path along the corridor, i.e., guides the ALV to move
along the middle line of the right-side wall and the
left-side wall. For a ‘forward right turn’, a ‘forward left
turn’, a ‘backward right turn’, or a ‘backward left turn’
output symbol, the path-planning unit generates a turn-
ing path using the information of the learned environ-
ment structure. For example, for a ‘forward right turn’,
the path-planning unit generates three subpaths, two
straight subpaths along the starting and ending direc-
tions of the turn and one circular subpath between the
two straight paths, to guide the ALV to make this turn.
The accurate position of the subpaths can be obtained by
observing the positions of walls in the learned environ-
ment model, based on the principle of ‘keeping the ALV
along the middle of the corridors’.

Once the path is determined, the driving wheel direc-
tion ¢ can be calculated by a wheel adjustment strategy in
[8]. The basic idea is to search a turn angle of the front
wheels to drive the ALV as close to the desired path as
possible. As shown in Fig. 6, given a reasonable moving
distance S and a fixed turn angle of the front wheels, the
location of the ALV can be estimated, as discussed in
Section 3.1. Given a path P, cither a straight line or
a circular segment, define D5(9) as the distance from the
midpoint between the two ALV front wheels to the given

Fig. 6. Illustration of adjustment of the front wheels in a path 7.

path P after the ALV traverses a certain distance S with
the turn angle §, where S may be assigned to be the
average navigation distance during a cycle. Also, define
D3(9) as the distance from the midpoint between the two
ALV back wheels to the given path P. Finally, define
measure Lp to be

L(9) = D5(d) + Dz(9). &)

To find the turn angle of the front wheel to drive the
ALV as close to the path as possible, an exhaus-
tive search is performed to find the angle that produces
the minimal value of Lp. The obtained angle is used as the
turn angle for safe navigation.

5. Experimental results

An ALYV navigation simulation system was developed
to test the automatic exploration ability of the proposed
system. The inputs of the simulation system are the
locations of the obstacles in the navigation environment
and the start position of the ALV. The simulation system
generates a series of animations to show the movements
of the ALV in the navigation session. The trace of the
ALV in a simulated navigation session is shown in Fig. 7.

The external view of the prototype of the ALV is
shown in Fig. §(a). The ALV is computer-controlled with
a modular architecture, as shown in Fig. 8(b), including
four major components, namely, a vision system, a cen-
tral processing unit (an Intel Pentium 133 MHz PC),
a motor control system, and a DC power system. The
vision system consists of a camera, a TV monitor, and
a TARGA + image frame grabber. The motor control
system consists of a main control board with an Intel
8085 controller, a motor driver, and two motors.

The image processing works for extracting line seg-
ments and corners in sensed images are accomplished in
two phases. In the first phase, the pixels with higher
gradient values and higher gray level values are extracted
to form a candidate set. In the second phase, an algo-
rithm similar to the edge-linking algorithm is performed
to form a set of line segments and corners from the
candidate set. Two examples of image processing results
are shown in Fig. 9. The pixels in the candidate set are

362 G.-Y. Chen, W.-H. Tsai | Robotics and Computer Integrated Manufacturing 15 (1999) 353-364

TR
Paw - 1000 IRER

e

megmig

i = A A AT T AR

Tooil ' 1y |.||| 1y iy .; A

AL

Fig. 7. The trace of the ALV in a simulated navigation session.

shown as white spots, and the extracted environment
features are shown as gray line segments.

The ALV learning and navigation experiments were
performed in a building corridor in National Chiao Tung
University. By using the proposed approach, many
successful navigation sessions have been conducted.
The navigation speed of the vehicle is about 30 cm/s.
The computation time of a navigation cycle ranges
approximately from 1.5 to 3.5s for different images.
An example of the learned global models is shown in
Fig. 10.

6. Conclusion and future works

In this study, we have developed a system with the
capability of automatic exploration and unsupervised
learning of indoor corridor environment for ALV navi-
gation. For unsupervised learning, a scheme to locate the
environment features by computer vision techniques
with the aid of laser markers, a new fast algorithm for
orthogonal-line-segment-pattern matching and a system-
atical algorithm to construct the learned environment

(a)

Rear Wheels Front Wheels

Vision - M
System C(ﬁ (M Sensor

(TARGA+)
. Motor
Command gsgtt;%
e) Pentium 133MH. Status
Display 32MB RAM ometer
L) 850MB HD Interface Command
Card
2 Counter Odometer

(®)

Fig. 8. The prototype ALV used in the experiments. (a) External view.
(b) System structure.

model have been proposed. For automatic exploration,
a navigation transducer was proposed to serve as the
guidance kernel. An algorithm for encoding the sensed
environment structure into the input symbol to the trans-
ducer and a scheme for performing the ALV actions
according to the outputs of the transducer have also been
proposed. The proposed learning system has been imple-
mented on a prototype ALV and successful navigation
sessions in indoor corridor environments confirm the
feasibility of the approach.

G.-Y. Chen, W.-H. Tsai | Robotics and Computer Integrated Manufacturing 15 (1999) 353-364 363

Fig. 9. Two examples of image processing results. The pixels in candidate set are shown as white spots, and the extracted environment features are
shown as gray line segments.

|

Fig. 10. An example of learned global models.

Appendix A. Coordinate systems and transformation

In the proposed ALV environment learning system,
the following four coordinate systems are used to
describe the vehicle location and the navigation envir-
onment.

1. The vehicle coordinate system (VCS): denoted as
x—y-z. The origin V of the VCS is chosen to be at the
middle point of the line segment which connects the
two contact points of the two front wheels with the
ground. The x-axis and y-axis are on the ground and
parallel to the short and the long sides of the vehicle
body, respectively. The z-axis is vertical to the ground.

2. The camera coordinate system (CCS): denoted as
u-v-w. The camera is associated with the camera
coordinate system whose origin C is attached to the
camera lens center. The v-axis is coincident with the
optical axis and the u-w plane is parallel to the image
plane.

3. The image coordinate system (ICS): denoted as u—w.
The image plane of the image coordinate system is
coincident with the u-w plane of the CCS and its
origin I is the image plane center.

4. The global coordinate system (GCS): denoted as
x'-y’-z'. The origin G of the global coordinate system
is located at a certain fixed position. The x'-axis and
y'-axis are defined to lie on the ground. In this study,
the environment features, line segments on the top-
view map, are all assumed to be parallel to x'-axis or
y'-axis.

These four coordinate systems are shown in Fig. 11.
Since the origins of the ICS, CCS, and VCS are attached
to some points on the ALV, the ICS, CCS, and VCS are
moving with the vehicle during navigation. On the con-
trary, the GCS is fixed and is defined to be coincident
with the VCS when the ALV is at the starting position in
the initial model learning stage.

The transformations between these four coordinate
systems can be found in [18]. Note that since the ALV

364 G.-Y. Chen, W.-H. Tsai | Robotics and Computer Integrated Manufacturing 15 (1999) 353-364

image plane

w

lens center

“v T optical axis
front wheel

CS y'

CS y x'
x

Fig. 11. The four coordinate systems ICS, CCS, VCS and GCS.

Fig. 12. The relation between VCS and GCS.

always navigates on the ground, the relation between the
two 2D coordinate systems x-y and x'-y’ is sufficient to
determine the position and orientation of the vehicle. In
other words, the translation vector (x',,)’,) and the rota-
tion angle w of the ALV in the x'-)’ coordinate system as
shown in Fig. 12 determine the position and the direction
of the vehicle in the GCS, respectively. The transforma-
tion between the GCS and the VCS can be written as

cosw sinw O
x,y,)=(x,y,1)| —sinw cosw 0
0 0 1

References

[1] Lebegue X, Aggarwal JK. Extraction and interpretation of sem-
antically significant line segments for a mobile robot. Proceedings
of 1992 IEEE International Conference on Robotics and Automa-
tion, Nice, France, May 1992. p. 1778-85.

[2] Lebegue X, Aggarwal JK. Generation of architectural CAD mod-
els using a mobile robot. Proceedings of 1994 IEEE International
Conference on Robotics and Automation, San Diego, California,
USA, Vol. 1. May 199%4. p. 711-7.

[3] Nashashibi F, Devy M, Fillatreau P. Indoor scene terrain
modeling using multiple range images for autonomous mobile
robots. Proceedings of 1992 IEEE International Conference on
Robotics and Automation, Nice, France, Vol. 1. May 1992.
p. 40-6.

[4] Nashashibi F, Devy M. 3D incremental modeling and robot
localization in a structured environment using a laser range
finder. Proceedings of 1993 IEEE International Conference on
Robotics and Automation, Vol. 1. May 1993. p. 20-7.

[5] Ishiguro H, Maeda T, Miyashita T, Tsuji S. A strategy for acquir-
ing an environmental model with panoramic sensing by a mobile
robot. Proceedings of 1994 IEEE International Conference on
Robotics and Automation, San Diego, California, USA, Vol. 1.
May 1994. p. 724-9.

[6] Kurz A. Constructing maps for mobile robot navigation based on
ultrasonic range data. IEEE Trans System Man Cybernet — Part
B: Cybernet 1996;26(2):233-42.

[7] Dean T, Angluin D, Basye K, Engelson S, Kaelbling L, Kokkevis
E, Maron O. Inferring finite automata with stochastic output
functions and an application to map learning. Machine Learning
1995;18:81-108.

[8] Pan FM, Tsai WH. Automatic environment learning and path
generation for indoor autonomous land vehicle guidance using
computer vision techniques. Proceedings of 1993 National Com-
puter Symposium, Chia-Yi, Taiwan, Republic of China, 1993.
p. 311-21.

[9] Chen GY, Tsai WH. An incremental-learning-by-navigation ap-
proach to vision-based autonomous land vehicle guidance in
indoor environments using vertical line information and multi-
weighted generalized hough transform technique. Proceedings
of 1996 Conference on Computer Vision, Graphics, and Image
Processing, Taichung, Taiwan, Republic of China, August 1996.
p. 151-58.

[10] Chen GY, Tsai WH. Unsupervised learning of unexplored envi-
ronment by pushdown transducer for autonomous land vehicle
navigation. Proceedings of 1997 Conference on Computer Vision,
Graphics, and Image Processing, Taichung, Taiwan, Republic of
China, August 1997. p. 335-42.

[11] Dorigo M. Introduction to the special issue on learning auton-
omous robots. IEEE Trans System. Man Cybernet — Part B:
Cybernet 1996;26(3):361-4.

[12] Donnart JY, Meyer JA. Learning reactive and planning rules in
a motivationally autonomous animat. IEEE Trans System Man
Cybernet — Part B: Cybernet 1996;26(3):381-95.

[13] Yamauchi B, Beer R. Spatial learning for navigation in dynamic
environments. IEEE Trans System Man Cybernet — Part B:
Cybernet 1996;26(3):496-504.

[14] Qiao L, Sato M, Takeda H. Learning algorithm of environmental
recognition in driving vehicle. IEEE Trans System Man Cybernet
1995;25(6):917-25.

[15] Haralick RM, Shapiro LG. Computer and robot vision, Vol 2.
Reading, MA, USA: Addison-Wesley, 1993.

[16] Ballard DH. Generalizing the Hough transform to detect arbit-
rary shapes. Pattern Recognition 1981;13(2):111-22.

[17] Hopcroft JE, Ullman JD. Introduction to automata theory, lan-
guages, and computation. Reading, MA, USA: Addison-Wesley,
1979.

[18] Foley JD, Dam AV. Fundamentals of interactive computer
graphics. Reading, MA, USA: Addison-Wesley, 1982.

