
Vision-Based Autonomous
Land Vehicle Guidance

in Outdoor Road
Environments Using

Combined Line and Road
Following Techniques

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Kuang-Hsiung Chen
Wen-Hsiang Tsai*
Department of Computer and Information Science
National Chiao Tung University
Hsinchu, Taiwan 300, R.O.C.

Received January 18, 1996; accepted May 13, 1997

An intelligent approach to autonomous land vehicle (ALV) guidance in outdoor road
environments using combined line and road following and color information clustering
techniques is proposed. Path lines and road boundaries are selected as reference models,
called the line-model and the road-model, respectively. They are used to perform line-
model matching (LMM) and road-model matching (RMM) to locate the ALV for line
and road following, respectively. If there are path lines in the road, the LMM process
is used to locate the ALV because it is faster than the RMM process. On the other hand,
if no line can be found in the road, the RMM process is used. To detect path lines in
a road image, the Hough transform is employed, which does not take much computing
time because bright pixels in the road are very few. Various color information on
roads is used for extracting path lines and road surfaces. And the ISODATA clustering
algorithm based on an initial-center-choosing technique is employed to solve the prob-
lem caused by great changes of intensity in navigations. The double model matching
procedure combined with the color information clustering process enables the ALV to
navigate smoothly in roads even if there are shadows, cars, people, or degraded regions
on roadsides. Some intelligent methods to speed up the model matching processes and
the Hough transform based on the feedback of the previous image information are also
presented. Successful navigations show that the proposed approach is effective for ALV
guidance in common roads.  1997 John Wiley & Sons, Inc.
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1. INTRODUCTION unsupervised clustering technique.20 A shrink and ex-
pand algorithm21 was used to remove small regions.

Autonomous land vehicles (ALVs) are useful for A minimum distance criterion based on a Grassfire
many automation applications. Successful ALV navi- transformation22 is used to obtain the most reasonable
gation requires integration of techniques of environ- interpretation. EDDIE7 was a software architecture
ment sensing, ALV location, path planning, wheel that combined separate functional parts like sensing,
control, etc. This study is mainly concerned with ALV planning, and control into an intelligible system. Ad-
guidance in outdoor road environments using com- ditionally, Kluge and Thorpe3 split the assumptions
puter vision techniques. Many techniques have been made in road modeling into three loose classes: sub-
proposed for ALV guidance in outdoor roads1–15 and conscious, implicit, and explicit models. Moreover, a
indoor environments.16–19 In outdoor environments, new road tracking system called FERMI was designed

to explain explicit models and their purposes.because of the great variety of road conditions like
VITS9 and Navlab2 both used color informationshadows, degraded regions, moving objects, changes

in RGB planes for road following. Turk et al.9 showedof illumination, and even rain, we need to combine
that the G-component is redundant in their road anal-different problem-solving algorithms and perhaps
ysis. Navlab2 deduced both color and texture segmen-equip multiple sensors to solve the complex problem
tation results using a pattern classification methodof ALV guidance in roads.
involving the mean and the covariance matrix. LinThe CMU Navlab1–8 is a system with several
and Chen10 divided roads into three clusters: sunnyfunction-oriented categories such as SCARF, YARF,
road, shadow road, and nonroad. Their classificationALVINN, UNSCARF, and EDDIE. SCARF6,8 handled
is based on the Karhunen-Loève transform in the HSIunstructured roads. It recognized roads having de-
color space. The Germanic vision system11–13 used agraded surfaces and edges with no lane markings high-speed vision algorithm to detect road border

in shadow conditions. It also recognized intersec- lines. The system has carried out both road following
tions automatically with no supervised information. and vehicle following in real time. Kuan, Phipps, and
YARF6 dealt with structured roads. It guided individ- Hsueh14 proposed a technique with transformation
ual trackers using an explicit model of features. It and classifier parameters being updated continuously
could drive the vehicle on urban roads at speeds up and cyclically with respect to the slow change of color
to 96 kph, which is much higher than the speed of and intensity. Hughes Research Laboratories15 de-
SCARF. ALVINN4,6 preprocessed input images, put signed a planning method using digital maps to route
them to a neural net, and instantly obtained the wheel a desired path. When the vehicle went through the
angles from the network. UNSCARF5 separated un- path, sensors were used to provide environmental de-

scriptions.structured roads into homogeneous regions using an
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In this article, we propose an intelligent approach
to ALV guidance in outdoor road environments using
combined line and road following and color informa-
tion clustering techniques. Although a road scene is
often uncertain and noisy in an outdoor environment,
there are still stable features that can be extracted
from a road image for use as reference models. Hence,
model matching is a quite reasonable approach for
ALV guidance in outdoor environments. We use path
lines and road boundaries, which are apparent in
common roads, to construct reference models, called
the line-model and the road-model. Line-model
matching (LMM) and road-model matching (RMM)
are then used to locate the ALV for line and road
following, respectively. Because the LMM process is
much faster than the RMM process, the system al-
ways uses the LMM process to locate the ALV if any Figure 1. The prototype ALV used in this study.
path line is detected. Only when no path line exists
does the system use the RMM to guide the ALV. By
combining the two matching processes in this way,

A new prototype ALV (whose dimensions arefaster and more flexible navigations in general roads
118.5 by 58.5 cm) with smart, compact, and ridablecan be achieved.
characteristics, as shown in Figure 1, is constructedFurthermore, various color information on roads
as a testbed for this study. It has four wheels in whichis used in this study to extract path lines and road
the front two are the turning wheels and the rear twosurfaces. For this, the ISODATA algorithm20 based on
the driving wheels. Above the front wheels is a cross-an initial-center-choosing (ICC) technique is em-
shaped rack on which some CCD cameras areployed, which can solve the problem caused by great
mounted, and above the rack is a platform on whichchanges of intensity in navigations. Proper initial cen-
two monitors, one being the computer monitor andters are chosen as the clustering algorithm begins to
the other the image display, are placed. Above therun. To detect path lines in a road image, the Hough
platform is a vertical bar on which another cameratransform23 is used, which can find the path lines in
used for line and road following in this study isthe image even though they are dotted or noisy. The
mounted. The central processor is an IBM PC/ATtransform does not take much computing time be-

cause bright pixels in the road are very few. compatible personal computer (PC486) with a color
image frame grabber that takes 512 3 486 RGB im-The above double model matching procedure

combined with the color information clustering pro- ages, with eight bits of intensity per image pixel.
The ALV is computer-controlled with a modularcess enables the ALV to navigate on the road

smoothly even though there are shadows, cars, peo- architecture, as shown in Figure 2, including four
components, namely, a vision system, a central proc-ple, or degraded regions on the roadsides. Besides,

some intelligent methods to speed up the model essor PC486, a motor control system, and a DC power
system. The vision system consists of a camera, a TVmatching processes and the Hough transform, based

on the feedback of the previous image information, monitor, and a Targa Plus color image frame grabber.
The central processor PC486 has an RAM with twoare also presented. The proposed approach is proved

effective after many practical navigation tests. mega bytes, one floppy disk, a 120-mega-byte hard
disk, a 300-mega-byte hard disk, and an EL slim dis-The main difference of our approach from ex-

isting methodologies is that the proposed system can play. The motor control system includes a main con-
trol board with an Intel 8085 controller, a motorswitch visual features dynamically at the appropriate

time during navigation for improving the system’s driver, and two motors. The power of the system is
supplied by a battery set including two 12-volt powerefficiency. And different visual features can be ex-

tracted directly from the clustering result. Also, new sources, each being divided into various voltages us-
ing a DC-to-DC converter set to provide power toand effective model matching methods are used to

locate the ALV accurately. the ALV components.
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Figure 2. System structure of prototype ALV.

The remainder of this article is organized as fol- termine the ALV location. If any path line is detected
in the road, the LMM process is used to guide thelows. In section 2, the details of the proposed model-

based ALV navigation method is described. In section ALV because it is faster than the RMM process. On
the other hand, if no line can be found in the road,3, the details of the proposed ALV location method

is introduced. The description of the used image pro- the RMM is used.
In the following, we first describe the steps ofcessing techniques is included in section 4. In section

5, the results of some experiments are described. Fi- model creation, which involve several coordinate sys-
tems and coordinate transformations. Then, the line-nally, some conclusions are made in section 6.
model matching process for line following and the
road-model matching process for road following are
introduced, followed by a description of the com-2. PROPOSED MODEL-BASED ALV
bined line and road following technique.NAVIGATION METHOD

The proposed navigation scheme is performed in a
2.1. Model Creationcycle by cycle manner. An overview of the proposed

approach is shown in Figure 3. To finish each naviga- Several coordinate systems and coordinate transfor-
mations are used in this approach. The coordinatetion cycle, the system identifies some stable features

in the road environment to locate the ALV, and plan systems are shown in Figure 4. The image coordinate
system (ICS), denoted as u-w, is attached to the imagea smooth path from the current position of the ALV

to the goal (or to a given navigation path). After the plane. The camera coordinate system (CCS), denoted
as u-v-w, is attached to the camera lens center. Thetwo reference models are created, the system per-

forms individual matchings with these models to de- vehicle coordinate system (VCS), denoted as x-y-z, is
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attached to the middle point of the line segment with the interval of 28. So, the line-model contains
23 3 17 5 391 line-templates, and each line-templatewhich connects the two contact points of the two

front wheels with the ground. The x-axis and y-axis represents one specific ALV location.
We use the same method to create the road-are on the ground and parallel to the short side and

the long side of the vehicle body, respectively. The model. The road-model also contains 23 3 17 5 391
road-templates, and each road-template ROADij [al,z-axis is vertical to the ground. The transformation

between the CCS and the VCS can be written in terms bl, ar, br] also represents an ALV location (di , uj ). The
transformation is shown in Fig. 5(b). Thus, each ALVof homogeneous coordinates18–19, 26 as
location T 5 (di , uj ) can be represented by a line-

(u v w 1) 5 template LINEij [al, bl, am, bm, ar, br] or a road-template
ROADij [al, bl, ar, br], and vice versa. We say that line-
template (or road-template) Ti 5 (di , ui ) is similar to
line-template (or road-template) Tj 5 (dj , uj ) (denoted(x y z 1)3

1 0 0 0

0 1 0 0

0 0 1 0

2xd 2yd 2zd 1
43

r11 r12 r13 0

r21 r22 r23 0

r31 r32 r33 0

0 0 0 1
4 , (1)

by Ti > Tj ) if and only if

udi 2 dj u # 25 (cm) and uui 2 uj u # 2 (degree). (3)

where Because the line-templates and the road-templates are
represented in the ICS, the model matching processes

r11 5 cos u cos w 1 sin u sin f sin w, described in the following are also operated in the
ICS.r12 5 2sin u cos f,

r13 5 sin u sin f cos w 2 cos u sin w, 2.2. Line-Model Matching for Line Following
r21 5 sin u cos w 2 cos u sin f sin w, When path lines exist in the road image, they are

extracted and matched with a few candidate line-r22 5 cos u cos f,
templates in the line-model, i.e., the LMM is per-

r23 5 2cos u sin f cos w 2 sin u sin w, formed. Without loss of generality, we first take the
extracted left path line to perform the matching if ther31 5 cos f sin w,
path line exists. We want to find the line-template TL

whose left path line is the most similar to the extractedr32 5 sin f,
left path line. We define the following similarity

r33 5 cos f cos w, (2) measure

where u is the pan angle, f the tilt angle, and w the S 5 1/[a ? uat 2 ae u 1 b ? ubt 2 be u] (4)
swing angle, of the camera with respect to the VCS;

where a and b are two weighting coefficiencies, andand (xd , yd , zd ) is the translation vector from the origin
ae and at are the slopes, and be and bt are the intercepts,of the CCS to the origin of the VCS.
of the extracted left path line and the left path lineAn ALV location can be represented by two pa-
of the candidate line-template, respectively. Then, therameters (d, u), where d is the distance of the ALV to
desired line-template TL 5 (dL , uL ) is the one that hasthe central path line in the road and u is the pan angle
the maximum S value. If the extracted path linesof the ALV relative to the road direction (positive to
include the middle or the right path line, we use thethe left). The equations of the three path lines on the
same criterion to obtain their corresponding most-road in the VCS are assumed to be known. Then, we
similar line-templates TM 5 (dM , uM ) and TR 5 (dR ,transform them into the ICS, which is displayed on
uR ), respectively. After TL , TM and TR are computed,the TV monitor. For each ALV location (di , uj ), we
the most meaningful ALV location T is derived bycan create the corresponding line-templates LINEij [al,
the following majority-vote rule.bl, am, bm, ar, br], where al, am, and ar are the slopes,

and bl, bm, and br are the intercepts of the equations Case I (TL , TM , and TR are all similar):
of the left, middle, and right path lines in the ICS,
respectively. The transformation is shown in Figure if TL > TM > TR ,
5(a). We sample the road width at 23 positions with

then set T 5 (TL 1 TM 1 TR )/3the interval of 25 cm. At each position, we sample
the vehicle direction from 2168 to 1168 at 17 angles 5 ((dL 1 dM 1 dR )/3, (uL 1 uM 1 uR )/3);
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Figure 3. An overview of the proposed approach.

Case II (only two of TL , TM , and TR are similar): the ALV. Similarly, we can locate the ALV using the
right and the middle lines if noise appears on the left

if only Ti > Tj (i ? j, i, j 5 L, M, R), roadside. Moreover, if noise exists on both sides, the
middle line, which is seldom affected by shadows orthen set T 5 (Ti 1 Tj )/2 5 ((di 1 dj )/2, (ui 1 uj )/2);
other noise, can also be used to locate the ALV. Fi-
nally, when no line can be found on the road, we canCase III (TL , TM , and TR are not similar to each other):
perform the road-model matching process (described

if TK is the most similar to the reference line-tem- later) to locate the ALV. Hence, we can locate the
plate (i.e., with the maximum S value) where K 5 ALV even when there are shadows, people, cars, or
L, M, or R, then set T 5 TK . degraded regions on the roadsides. This flexible guid-

ance process makes the ALV navigation steady. The
The reference line-template mentioned above is LMM algorithm is described below.

the one at the reference ALV location estimated by
the system at the beginning of each navigation cycle.
The estimation of the reference ALV location will be

LMM Algorithmdescribed later. If no noise exists on the road, we can
derive a very accurate ALV location because three Input: A set E of extracted path lines and a set U of

candidate line-templates.lines can be used. If noise appears on the right road-
side, we can use the left and the middle lines to locate Output: The most meaningful ALV location T.
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derive the most meaningful ALV location T ac-
cording to the majority-vote rule described
above.

It is not necessary to use the entire line-model to
perform the matching with the extracted path lines.
We only use the neighboring ones in the model
around the reference line-template to save computing
time. To analyze the time requirement of the LMM
algorithm, let

1. the number of the candidate line-templates to
perform the matching be k1;

2. the time to compute the similarity value be k2 ;
3. the time to run the algorithm of the majority-

vote rule be k3 ,Figure 4. The three coordinate systems ICS, CCS, and VCS.

where k1 is constant, and k2 and k3 can be easily shown
Step 1. For each extracted path line y 5 aE x 1 bE in E: to be constants by observing Eq. (2) and the majority-

(a) for each candidate line-template LINEij [aL , bL , vote rule, respectively. The time to process Step 1(b)
aM , bM , aR , bR ] in U: in the LMM algorithm using the sequential search
compute Sij 5 1/[a ? uaE 2 aK u 1 b ? ubE 2 bK u], algorithm can easily be shown to be k1 .27 Then, for
where K 5 L, M, or R; each extracted path line, the time to calculate the

(b) for all of the computed Sij values: similarities of all the candidate line-templates plus
use the sequential search algorithm to find the time to find the best line-template having the
the best-matched line-template TK having the maximum Sij value can be calculated by
largest Sij value, where K 5 L, M, or R.

Step 2. From all of the obtained best-matched line-
templates (with the number at most three): TL1 5 k1 3 k2 1 k1 . (5)

Figure 5. The transformation between the VCS and the ICS. (a) Path line transformation.
(b) Road boundary transformation.
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Because there are at most three path lines that can
be extracted and Step 2 takes k3 time, the total time
used by the LMM algorithm can be calculated by

TL 5 3 3 TL1 1 k3

5 3 3 k1 3 k2 1 3 3 k1 1 k3 (6)

which is a constant. Consequently, the time complex- Figure 6. The matched road-template represented by the
ity of the LMM algorithm is of the order O(1), which two black lines based on the MBPNM criterion.
does not depend on the image size.

2.3. Road-Model Matching for Road Following

If the best-matched road-template is not similarIf no high peak is found in the r 2 u Hough counting
to the reference road-template at the reference ALVspace, or if the extracted line-templates are not similar
location, we assume that the visual features are miss-to each other and none of them is similar to the refer-
ing in the present navigation cycle and drive the ALVence line-template, we conclude that no path line
blindly, i.e., using only the vehicle control informa-exists on the road. We then perform the more time-
tion. If such a case happens for several continuousconsuming road-model matching (RMM) based on a
navigation cycles, we assume that the vision systemcriterion proposed in this study, called the maximum-
has lost its function and the vehicle is stopped. Asbounded-pixel-number matching (MBPNM) de-
an example, a binary image showing the cluster-1scribed as follows. Basically, a road can be divided
pixels and the best-matched road-template repre-into three clusters: (1) cluster-0: dark area, like shad-

ows and trees; (2) cluster-1: gray area, coming from sented by the two black lines obtained with the
the main body of road; (3) cluster-2: bright area, like MBPNM criterion is shown in Figure 6. It can be seen
the sky and the white or yellow lines on the road. that the shadow area is included in the bounded-
We define the bounded-area for each navigation cycle area, i.e., it is regarded as part of the road. So, we
as that bounded by the two lines of the road-template, can say that the adopted MBPNM criterion is not
and the bounded-pixels as those belonging to cluster- sensitive to shadows. Also, we do not use the entire
1 (most likely to be the road area) in the bounded- road-model to do the matching because it wastes too
area. If a road-template includes within its bounded- much time. We only use the neighboring ones in the
area the largest number of bounded-pixels, it can be model around the reference road-template (forming
regarded as the one most likely to be the road bound- the set W in the above RMM algorithm) to perform
ary shape, i.e., as the best-matched road-template. the matching. To analyze the time requirement of the
The RMM algorithm based on MBPNM is de- RMM algorithm, let
scribed below.

1. the image size be I 5 m 3 n pixels;
2. the number of the candidate road-templatesRMM Algorithm

be k1 ;
Input: A set V of pixels belonging to cluster-1 and a 3. the number of the pixels in the bounded-area

set W of candidate road-templates. of the road-template Ti be Bi 5 ci 3 I with
Output: The most meaningful ALV location T. ci , 1;
Step 1. For each candidate road-template Ti in W: 4. the number of the bounded-pixels of the road-

(a) initialize the number of bounded-pixels template Ti be Ni 5 di 3 Bi with di , 1;
Ni 5 0; 5. the time to check whether one pixel belongs

(b) for each pixel pj in the bounded-area of Ti : to cluster-1 or not be k2 ; and
if pj is also in V, then set Ni 5 Ni 1 1.

6. the time to increment a variable be k3 ,
Step 2. For all of the computed Ni values:

use the sequential search algorithm to find the
best-matched road-template T having the largest where k1 , k2 , k3 , ci , and di are constants. Then, the time

to calculate all the numbers of bounded-pixels of allNi value and take T as the desired output.
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the candidate road-templates (Step 1 in the RMM Output: The ALV location T.
algorithm) can be expressed as

Step 1. Initialization:
(a) Initialize Error-flag 5 0.
(b) Check in I the surrounding area A of theTR1 5 Ok1

i51
OBi

j51
[k2 1 (Ni/Bi ) 3 k3 ]

three lines of the reference line-template.
(c) If pixels belonging to cluster-2 in the sur-

rounding area A are insufficient (i.e., if area5 Ok1

i51
Oci3m3n

j51
[k2 1 di 3 k3 ]

A > V2 is too small), then go to Step 3.
Step 2. LMM:

(a) Extract a set L of path lines from V2 by the5 Ok1

i51
((k2 1 di 3 k3 ) 3 ci 3 m 3 n) (7)

Hough transform.
(b) Use L and U as the inputs to run the LMM

which is of the order O(mn). Also, the time to perform algorithm to find the candidate ALV loca-
Step 2 can be expressed as tion Tc .

(c) If Tc is similar to the reference line-template,
TR2 5 k1 (8) then go to Step 4.

Step 3. RMM:
(a) Use V1 and W as the inputs to run the RMMwhich is of the order O(1). Hence, the total time of

algorithm to find the candidate ALV loca-the RMM algorithm can be calculated by
tion Tc .

(b) If Tc is not similar to the reference road-tem-TR 5 TR1 1 TR2 (9)
plate, then set Error-flag 5 1.

Step 4. End of cycle:which is of the order O(mn) 1 O(1) or simply O(mn).
If Error-flag 5 0, then set T 5 Tc ; otherwise setConsequently, the time complexity of the RMM algo-
T 5 reference ALV location and print ‘‘all visualrithm depends on the image size.
features are missing.’’

The purpose of including Steps 1(b) and 1(c) is2.4. Combination of Line and Road Following
to save computing time. If pixels belonging to cluster-

If only path lines or only road surfaces are selected as 2 in the surrounding area are insufficient, we con-
visual features, navigation may still be accomplished. clude that no path line exists on the road and ignore
But because we have shown that the LMM algorithm line extraction, and perform the RMM algorithm im-
is much faster than the RMM algorithm, we prefer mediately. On the other hand, if there are enough
line following to road following if there are path lines pixels in the area, line extraction and the LMM algo-
on the road, to accomplish faster navigation. On the rithm are performed to derive a candidate ALV loca-
other hand, if only path lines are used, the vehicle tion Tc . If Tc is not similar to the reference line-tem-
cannot navigate on roads without path lines. Hence, plate, the LMM algorithm becomes unreliable and the
we employ a combined technique to achieve faster RMM algorithm is then used. Finally, if the candidate
and more flexible navigations. The details are de- ALV location resulting from the RMM algorithm is
scribed by the following combined line and road not similar to the reference road-template, the RMM
model matching (CLRMM) algorithm. algorithm becomes unreliable, too. At this moment,

all of the desired visual features are missed and the
ALV is guided blindly.CLRMM Algorithm

Input:
(a) A road image I.

3. PROPOSED ALV LOCATION METHOD(b) The reference line-template and the reference
road-template.

3.1. Reference ALV Location Estimation(c) Two sets V1 and V2 of pixels belonging to
cluster-1 (road area) and cluster-2 (path lines) The ALV keeps moving forward after an image is

taken at the beginning of each navigation cycle. Whenin I, and two sets W and U of candidate road-
templates and candidate line-templates, re- the image has been processed and the LMM or RMM

algorithm has been performed, the actual ALV loca-spectively.
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tion at the time instant of image taking can be found.
At this moment, however, the ALV has already trav-
elled a distance S. Hence, the ALV never knows its
actual current position unless the cycle time is zero.
To overcome this difficulty, we use the following
information to estimate the current ALV location ac-
cording to a method proposed by Cheng and Tsai:16

1. The obtained actual location (di , uj ) at the time
instant of image taking.

2. The travelled distance S.
3. The pan angle d of the front wheels relative

to the y-axis of the VCS.
4. The distance d between the front wheels and

the rear wheels.

Figure 7(a) illustrates the navigation process,
where Bi and Ei are the beginning and the ending
times of cycle i , respectively. At time Bi , an image is
taken and the current ALV location is assumed to be
Pi . At time Ei , Pi is found but the current ALV location
Pi11 is unknown. At this moment, we use the control
information given above to estimate the current ALV
location called Pi11 . As shown in Figure 7(b), the vehi-
cle is located at Pi . What we desire to know is the
relative location of Pi11 with respect to Pi , denoted
by a vector T. By the basic kinematics of the ALV,
the rotation radius R can be found to be

R 5 d/sin d. (10)

And angle c can be determined by

c 5 S/R, (11)

where S can be obtained from the counter of the
system odometer. So, the length of vector T can be
solved to be

lT 5 RÏ2(1 2 cos c), (12)

Figure 7. Illustration of reference ALV location estimation.
and the direction of T is determined by the angle (a) The navigation process in a cycle by cycle manner. (b)

The vehicle location before and after the ALV moves a
distance S forward.

eT 5
f
2

2 d 2
c
2

. (13)

So, in cycle i, Pi and P9i11 can be determined at timeUsing the vector T, the VCS coordinates of location
Ei . And the estimated ALV locations at time Bi11 canP9i11 with respect to Pi can thus be computed by
be set to P9i11 . We then define

x 5 lT cos eT , Reference ALV location of cycle i
5 the estimated ALV location at time Bi . (15)y 5 lT sin eT . (14)
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Hence, P9i11 is used as the reference ALV location of Next, it should be mentioned that allowing the
ALV a larger angle to turn in a session of turn drivecycle i 11. The reference ALV location can be used

for the following purposes: does not mean that better navigation can be achieved.
It may cause serious twist. On the other hand, a
smaller range of turn angles may cause only a slight

1. Speeding up the algorithms of line checking closeness to the given path. Hence, the largest angle
and extraction. allowing the ALV to turn is a tradeoff between

2. Speeding up the LMM and the RMM algo- smoothness of navigation and closeness to the given
rithms. path. In our experiment, we found through many

3. Driving the ALV to the given path. iterative navigations that a turn from 258 to 158 is
a good compromise.

Finally, we discuss the problem of ALV speed
adjustment on varying road situations. When the3.2. Path Planning
ALV meets ascending or descending roads, its speed

To guide the ALV to following a given path, we have will become slower or faster, respectively. To keep
to plan a smooth trajectory for the ALV from the the speed steady, we propose a solution as follows.
current estimated ALV location to the given path in As we guide the ALV in navigation cycle i, we can
each navigation cycle. For this, a closeness distance find its travelled distance Si , the elapsed time Ti , and
measure from the ALV to the given path proposed its driving power Pi by checking the system encoder,
by Cheng and Tsai16 is employed, which is defined as the system clock, and the motor controller provided

by the control system, respectively. Then, the speed
of the ALV in cycle i can be calculated by

Lp (d) 5
1

1 1 [DF
P (d)]2 1 [DB

P (d)]2 (16)
Vi 5 Si/Ti . (17)

Assume that we want to drive the ALV at a constantwhere DF
P and DB

P are the corresponding distances
speed V. Then, if Vi . V, it is decided that the ALVfrom the front and the rear wheels of the ALV to the
is on a descending road. One way to derive a newgiven path after the ALV traverses a distance S with
driving power Pi11 for the ALV is:the turn angle d as shown in Figure 8. A larger value

of Lp means that the ALV is closer to the path. It is
easy to verify that 0 , LP # 1, and that LP 5 1 if and

Pi11 5 SV
Vi
D Pi . (18)only if both of the front wheels and the rear wheels

of the ALV are located just right on the path.
To find the turn angle of the front wheel to drive

the ALV as close to the path as possible, a range of
possible turn angles are searched. An angle is hypoth-
esized each time, and the value of LP is calculated
accordingly. The angle that produces the maximal
value of LP is then used as the turn angle for safe navi-
gation.

3.3. ALV Control Issues

There is always unavoidable mechanical inaccuracy
within the ALV control system. If we only use the
control information to drive the ALV, the ALV may
be far away from the goal when the navigation ends.
Hence, we employ computer vision techniques to ex-
tract stable visual features as auxiliary tools to avoid
gradual accumulation of control error. Of course, con- Figure 8. Illustration of closeness distance measure
trol error still exists in each navigation cycle. LP (d) 5 1/h1 1 [DF

P (d)]2 1 [DB
P (d)]2j.
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Similarly, if Vi , V, the ALV is on an ascending road. of the same size as shown in Figure 9, i.e., for all
k 5 0, 1, and 2, we haveAnd Pi11 can be calculated by

Pi11 5 SVi

VD Pi . (19) Or9k

s5rk

[pixel no. of g.l.(s)] 5 Ork11

t5r9k

[pixel no. of g.l.(t)]. (20)

We then use Pi11 as the new driving power for cycle
i 1 1. where g.l. means gray level. Then, r9k is taken to be

the R-component of the candidate center of cluster k.
Using the same criterion on the G-plane and B-plane,
we can find the G-component g9k and B-component4. IMAGE PROCESSING TECHNIQUES
b9k . We then use [r9k , g9k , b9k ] as the initial center of

The general purpose of image processing is to extract cluster k to run the unsupervised clustering algo-
useful features from input images. Some forms like rithm, where k 5 0, 1, 2.
region-based or edge-based descriptions can be se- When navigation begins, it is not a good policy
lected for use as representations of such features. We to run the unsupervised clustering algorithm again
use a clustering algorithm and a line extraction because it needs about 10 to 20 iterations, which take
method as the main image processing techniques to too much computing time, to finish its convergence
find such descriptions in our study. Moreover, color and is unsuitable for real-time ALV navigation.
is a powerful descriptor that often simplifies object Hence, we simply run the clustering algorithm for
extraction and identification from a scene, so we use only three iterations, which is enough to gain ideal
color features in the clustering algorithm. To solve clusters if we can choose proper initial centers. Intu-
the problem caused by great changes of intensity, we itively, we can select the resulting centers in the pre-
also propose a technique to acquire better clustering vious navigation cycle as the initial centers in the
results by choosing suitable initial cluster centers for current navigation cycle to run the supervised clus-
the clustering algorithm. The proposed color informa- tering algorithm.
tion clustering algorithm and the line extraction tech- The selection may be unsuitable, producing unac-
nique are described as follows. ceptable clusters, because some difference may exist

between two continuous images. One kind of the
difference comes from the change of intensity. If the

4.1. Color Information Clustering change of intensity between two continuous images
is great (resulting from clouds covering the sun unex-The original image size is 512 3 486. To speed up

our algorithms, we have to reduce the image size. pectedly, for example), the candidate initial centers
chosen from the resulting centers in the previousThe upper portion in the road image is discarded

because it does not contain any road area, and pixels cycle may be far away from their real centers. In
this situation, three iterations are not enough for theare sampled from the remaining image with the inter-

val of five pixels in both the horizontal and vertical ISODATA algorithm to move the candidate initial
centers close to their real centers, and erroneous clus-directions to form a reduced 103 3 45 image. We

then use the ISODATA algorithm,20 based on an ini- ters may be produced.
Furthermore, the number of clusters may de-tial-center-choosing (ICC) technique that can solve

the problem caused by great changes of intensity in crease and an even more serious problem happens.
Figure 10 illustrates this situation. Figure 10(a) showsnavigations, to divide the road image into three clus-

ters. Because the clustering result is sensitive to the the distribution of the three clusters and their re-
sulting centers (represented by the big black dots) inchoice of initial centers, it is necessary to choose suit-

able initial centers as the algorithm begins to run. the previous cycle. Figure 10(b) shows the greatly-
translated distribution of the pixels caused by greatThe ICC technique is described below.

Before ALV navigation, we run an unsupervised changes of intensity in the present cycle, where black
big dots represent the candidate initial centers inher-clustering algorithm that is guaranteed to converge

after several iterations by choosing proper initial cen- ited from the resulting centers in the previous cycle.
After we run the supervised clustering algorithm forters. The choice of appropriate initial centers is de-

scribed as follows. We first observe the histogram of three iterations in the present cycle, we obtain the
clustering result shown in Figure 10(c), which is erro-the R-plane, and divide all the pixels into six pieces
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Figure 9. The histogram of the R-plane where r 9k is the R-component of the center of
cluster k.

neous because one cluster becomes null and only two 11. Figure 11(a) shows the input image with high
intensity in the previous cycle and Figure 11(b) showsclusters contain samples.

To solve this problem, we perform a translation the input image with low intensity in the present
cycle. Figure 11(c) shows the poor clustering resulton the resulting centers in the previous cycle to form

more representative points that are then selected for when the above translation process is not employed.
One cluster becomes null in the result. A nice cluster-use as the actual candidate initial centers in the pres-

ent cycle. The translation is described as follows. As- ing result obtained from the translation process is
shown in Figure 11(d), in which we see that cluster-sume that R9ave , G9ave , and B9ave are the averages of the

R-components, the G-components, and the B-compo- 1 is the road area and cluster-2 the path lines. This
observation again justifies our use of a combined linenents of all the pixels in the previous input image,

respectively, and Rave , Gave , and Bave are the averages and road following technique.
of the R-components, the G-components, and the
B-components of all the pixels in the present input
image, respectively. A translation vector is defined by 4.2. Path Line Extraction Using Hough Transform

Generally, two effective methods can be used for line
[Dr , Dg , Db ] 5 [Rave 2 R9ave , Gave 2 G9ave , Bave 2 B9ave ]. (21) extraction. One is the Least-Square (LS) line approxi-

mation24,25 and the other is the Hough transform.23 The
If the resulting center of cluster k in the previous cycle Hough transform can extract lines in any direction
is [R9ki , G9ki , B9ki ] , k 5 0, 1, 2, then, the translated candi- automatically even though they are dotted, whereas
date initial center of cluster k is taken to be the LS line approximation has to select proper pixels

before approximating lines and hence complicate
[Rki , Gki , Bki ] 5 [R9ki , G9ki , B9ki ] 1 [Dr , Dg , Db ]. (22) coding and debugging. But if many candidate pixels

in the XY plane are sent to the Hough counting space,
it will take too much computing time. Hence, time isFigure 10(d) shows the translation process, where the
the vulnerability of the Hough transform. From anblack big dots represent the new translated initial
observation of Figure 11, we find in the binary imagecenters. We then use the new translated centers as
that cluster-2 pixels are few and discontinuity existsthe new candidate initial centers to run the supervised
between pixels, so the Hough transform is a properclustering algorithm, and a much better clustering
line extraction method.result is shown in Figure 10(e).

Before line extraction, the surrounding area ofAn example of obvious improvement obtained
the three lines of the reference line-template isfrom using the above initial cluster center translation

technique in a real road scene is shown in Figure checked. As described previously, if pixels belonging
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Figure 10. The influence of great changes of intensity and its solution. (a) The distribution
of the three clusters and their converged centers in the previous cycle. (b) A greatly-
translated distribution of the pixels caused by great change of intensity in the present
cycle, where black big dots represent the candidate initial centers inherited from the
resulting centers in the previous cycle. (c) The distribution of the three clusters after running
the supervised clustering algorithm for three iterations in the present cycle, with one cluster
becoming null, causing a serious problem. (d) The translation process, where new translated
initial centers are selected according to Eqs. (21) and (22). (e) A much better clustering
result with three ideal clusters is obtained after using the new translated initial centers to
run the clustering algorithm.

to cluster-2 in the surrounding area are insufficient, there are three path lines on the road. But because
of some unsteady road conditions such as shadows,we conclude that no path line exists on the road and

line extraction is ignored. If there are enough pixels degraded regions, or cars on the roadsides, we may
only find one or two high peaks corresponding toin the area, we decide that there are path lines on the

road and send the candidate pixels to the Hough one or two lines with which we still can locate the
ALV by using the majority-vote rule described pre-counting space to extract path lines. Normally, three

high peaks are found in the counting space because viously.
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5. EXPERIMENTAL RESULTS time is about 2.1 s, and the average speed is 90 cm/s
or 3.3 km/h, which is reasonable for the small-scaled

The prototype ALV constructed in this study was and PC-based ALV. The ALV can navigate steadily
used for testing the proposed approach, and could in spite of the fact that there were shades, vehicles,
navigate smoothly along part of the campus road in people, or degraded regions on the roadsides.
National Chiao Tung University for about 150 m. Figure 12 shows some images and their clustering
Besides, it is not sensitive to sudden changes of inten- results in several complex road environments. Figure
sity because of the effective ICC technique used in 12(a) shows a road image that includes some small
the clustering algorithm. The width of the road is shadows caused by trees on the left roadside and
6.8 m, and there are three yellow path lines on the some degraded regions on the left lane. All of the
road with the central line dotted. The average cycle three path lines (represented by the three white lines)

in the image were successfully extracted, which were
then used as the visual features. Figure 12(b) shows
an image including some large shadows caused by
trees on the right roadside and one degraded region
on the left lane. Only the left and the middle path
lines were extracted (represented by the two white
lines). A moving car and its shadow on the left lane
and one strip of degraded region on the right lane
are seen in Figure 12(c), from which no path lines
were extracted and the road surface was used as the
visual feature, and the best-matched road-template
resulting from the RMM process is represented by
the two white lines. In all of the three cases, our ALV
moved forward successfully.

6. CONCLUSIONS

A model-based approach to ALV guidance in outdoor
road environments by computer vision has been pro-
posed. Several techniques have been integrated in this

Figure 11. An obvious improvement to use the translation process in a real road scene.
(a) The input image with high intensity in the previous cycle. (b) The input image with
low intensity in the present cycle. (c) Poor clustering result including one null cluster
when we ignore the translation process. (d) Nice clustering result when we adopt the
translation process.



Figure 12. Several representative images, their clustering results, and the used visual
features in complex road environments.

726



Chen and Tsai: Vision-Based Vehicle Guidance • 727

Roads,’’ Proc. IEEE Int. Conf. Robotics Automat., Sacra-study to provide a combined line and road following
mento, CA, 1991, pp. 2496–2501.scheme for ALV navigation. The CLRMM algorithm

6. C. Thorpe, M. Hebert, T. Kanade, and S. Shafer, ‘‘To-has been used to achieve faster and more flexible ward Autonomous Driving: The CMU Navlab, Part
navigations in real time. The ISODATA clustering I—Perception,’’ IEEE Expert, 6(3), 31–42, 1991.
algorithm based on the ICC technique has been em- 7. C. Thorpe, M. Hebert, T. Kanade, and S. Shafer, ‘‘To-

ward Autonomous Driving: The CMU Navlab, Partployed to solve the problem caused by great changes
II—Architecture and Systems,’’ IEEE Expert, 6(3), 44–of intensity in navigations. The process of the refer-
52, 1991.ence ALV location estimation by basic vehicle kine-

8. J. D. Crisman and C. E. Thorpe, ‘‘SCARF: A Color Vision
matics has been implemented to save computing time System that Tracks Roads and Intersections,’’ IEEE
when the CLRMM algorithm is run. Smooth, safe, Trans. Robotics Automat., 9(1), 49–58, 1993.
and steady-speed navigation has been achieved by 9. M. A. Turk, D. G. Morgenthaler, K. D. Germban, and

M. Marra, ‘‘VITS—a vision system for autonomousthe use of a reasonable path planning method and
land vehicle navigation,’’ IEEE Trans. on Pattern Analysissome realistic vehicle control schemes. Successful
and Machine Intelligence, 10(3), 342–361, 1988.navigation tests in general roads confirm the effec- 10. X. Lin and S. Chen, ‘‘Color Image Segmentation Using

tiveness of the proposed approach. Modified HSI System for Road Following,’’ Proc. IEEE
One factor influencing our model-based ap- Int. Conf. Robotics Automat., Sacramento, CA 1991, pp.

1998–2003.proach is the unflatness of some road segments,
11. E. D. Dickmans and A. Zapp, ‘‘A curvature-basedwhich causes larger twists in our tests. Hence, how

scheme for improving road vehicle guidance by com-to overcome road unflatness is a good topic for future
puter vision,’’ Proc. SPIE Mobile Robot Conf., Cambridge,study. In addition, the line-model and road-model MA, 1986, pp. 161–168.

are created based on the assumption that the path 12. K. Kuhnert, ‘‘A vision system for real time road and
lines and the road boundaries are straight and parallel object recognition for vehicle guidance,’’ Proc. SPIE

Mobile Robot Conf., Cambridge, MA, 1986, pp. 267–272.to each other. When the ALV meets curved roads,
13. B. Mysliwetz and E. D. Dickmanns, ‘‘A vision systemit cannot navigate regularly because it violates the

with active gaze control for real-time interpretation ofassumption. Guidance on the sharp-curved road
well structures dynamic scenes,’’ Proc. Intelligent Auton-based on the model matching technique is another omous Systems, Amsterdam, The Netherlands, 1986.

good topic for future study. Additionally, problems 14. D. Kuan, G. Phipps, and A. Hsueh, ‘‘Autonomous Ro-
caused by changes of sunshine directions, selections botic Vehicle Roading Following,’’ IEEE Trans. on Pat-

tern Analysis and Machine Intelligence, 10(4), 648–658,of different features on the road, and seeking effective
1988.algorithms to solve the encountered problems are

15. K. E. Olin and D. Y. Tseng, ‘‘Autonomous Cross-Coun-also interesting directions of future studies.
try Navigation: An Integrated Perception and Planning
System,’’ IEEE Expert, 6(4), 16–30, 1991.

16. S. D. Cheng and W. H. Tasi, ‘‘Model-based guidanceThis work was supported by National Science Council,
of autonomous land vehicle in indoor environments byRepublic of China under Grant NSC-83-0404-E009-036.
structured light using vertical line information,’’
J. Electrical Engineering, 34(6), 441–452, 1991.

17. P. S. Lee, Y. E. Shen, and L. L. Wang, ‘‘Model-based
location of automated guided vehicles in the navigation
sessions by 3D computer vision,’’ J. Robotic Systems,REFERENCES
11(3), 181–195, 1994.

18. L. L. Wang, P. Y. Ku, and W. H. Tsai, ‘‘Model-based1. Y. Goto and A. Stentz, ‘‘The CMU system for mobile
guidance by the longest common subsequence algo-robot navigation,’’ Proc. IEEE Int. Conf. Robotics Auto-
rithm for indoor autonomous vehicle navigation usingmat., Raleigh, NC, 1987, pp. 99–105.
computer vision,’’ Automation in Construction, 2, 123–2. C. Thorpe, M. H. Hebert, T. Kanade, and S. A. Shafer,
137, 1993.‘‘Vision and navigation for Carnegie-Mellon NAV-

19. Y. M. Su and W. H. Tsai, ‘‘Autonomous land vehicleLAB,’’ IEEE Trans. on Pattern Analysis and Machine Intel-
guidance for navigation in buildings by computerligence, 10(3), 362–373, 1988.
vision, radio, and photoelectric sensing techniques,’’3. K. Kluge and C. Thorpe, ‘‘Explicit Models for Robot
J. Chinese Institute of Engineers, 17(1), 63–73, 1994.Road Following,’’ Proc. IEEE Int. Conf. Robotics Auto-

20. R. Duda and P. Hart, Pattern Classification and Scenemat., Scottsdale, AZ, 1989, pp. 1148–1154.
Analysis, John Wiley and Sons, Inc., New York, 1973.4. D. Pomerleau, ‘‘Neural network based autonomous

21. D. Ballard and C. Brown, Computer Vision, Prentice-navigation,’’ Vision and Navigation: The Carnegie Mellon
Hall, Inc., Englewood Cliffs, NJ, 1982.Navlab, C. Thorpe, Ed. Kluwer, Norwell, MA, 83–92,

22. K. Castleman, Digit Image Processing, A. Oppenheim,1990.
Ed., Prentice-Hall, Inc., Englewood Cliffs, NJ, 1979.5. J. D. Crisman and C. E. Thorpe, ‘‘UNSCARF, A Color

Vision System for the Detection of Unstructured 23. R. C. Gonzalez and Richard E. Wood, Digit Image Pro-



728 • Journal of Robotic Systems—1997

cessing, Addison-Wesley Publishing Company, Inc., (MIST) Workshop, Hsinchu, Taiwan, R. O. C., 1986,
pp. 671–686.Reading, MA, 1992.

24. J. H. Mathews, Numerical Methods for Mathematics, Sci- 26. J. D. Foley and A. V. Dam, Fundamentals of Interactive
Computer Graphics, Addison-Wesley Publishing Com-ence, and Engineering, Prentice-Hall, Inc., Englewood

Cliffs, NJ, 1992. pany, Inc., Reading, MA, 1982.
27. E. Horowitz and S. Sahni, Fundamentals of Data struc-25. L. L. Wang and W. H. Tsai, ‘‘Safe highway driving

aided by 3-D image analysis techniques,’’ Proc. of 1986 tures in Pascal, Computer Science Press, An Imprint of
W. H. Freeman and Company, New York, 1990.Microelectronics and Information Science and Technology


