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ABSTRACT

The problem of detecting step edge points which fall on curves (called
curved edge points) is solved. Based on the moment-preserving principle,
the solution can be used to estimate curved edge locations to subpixel ac-
curacy. The locations are approximated by parabolic equations. Experimen-
tal results, which show that the proposed detector is more effective for detec-
ting curved edges and boundary corners than conventional line-type edge
detectors, are included.
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INTRODUCTION

Edge detection plays an important role in image pro-
cessing. Many edge detectors with “‘pixel’’ accuracy
have been developed. For a survey of these techniques,
see [11]. The gradient and the Laplacian operators are
two basic edge detectors for noiseless pictures. They are
difference operators that respond to changes in gray levels
[11]. To reduce the effect of noise on the response of
a difference operator, some operators that compute dif-
ferences of local averages were proposed [3,11]. In ad-
dition, many approaches to modifying the gradient and
the Laplacian operators have also been provided. Frei
and Chen [4] developed a set of orthogonal functions
which were closely related to distinct image features and

*Correspondence addressee

allowed efficient extraction of object boundary elements.
Schachter and Rosenfeld [12] also provided three
operators for edge detection. The first used the maximum
of the x and y second-order differences. The second us-
ed the difference between the mean and the median gray
levels in a neighborhood. The third used the distance be-
tween the center and the centroid of a neighborhood as
an edge value.

Jacobus and Chien [10] introduced two edge detec-
tion algorithms, one difference-based and the other
adaptive-threshold-based. With these operators, edge
positions may be computed to greater precision than the
basic pixel size. Shipman et al. [13] presented a diffuse
edge detection and a fitting procedure. In the approach,
a straight line is used to estimate edge locations. The
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line may be fitied by choosing its direction as normal to
the weighted average gradient direction in a square do-
main and passing through the weighted center of mass of
the gradient points.

Suk and Hong [14] described an edge extraction
technique specifically developed for noisy images which
eliminated the necessity of noise removal preprocessing
or postprocessing. The algorithm was based on parallel
statistical tests for which indeterminate decisions were
allowed. Haralick [6] defined an edge to occur at a pixel
if and only if there exists a certain point in the pixel area
having a negatively-sloped zero crossing of the second
directional derivative taken in the direction of a nonzero
gradient at the pixel center. To determine whether or not
a pixel is a step edge pixel, a linear function of tensor
products of discrete orthogonal polynomials of up to
degree three was used to estimate the underlying gray tone
intensity surface. Then, the appropriate directional
derivatives were easily computed from the function.

In the real world, the gray value of a step edge point
always lies between those of the two neighboring regions,
each with nearly constant gray values. Based on this fact
and the moment-preserving principle, Chen and Wang [2]
presented a deterministic method to locate all of the edge
points.

Some problems, such as calibration, remotely-
sensed imagery edge detection, image-to-image and
image-to-map registration, etc., need accurate measure-
ment. To solve such problems, several investigators have
tried to develop methods to get edge locations with *‘sub-
pixel’” accuracy. Hueckel [8] first presented a local edge
detector of this type for two-dimensional images. The
operator used a line equation to approximate a given em-
pirical edge in a disk neighborhood of a point, so that the
measure of the square of the Hilbert distance of the gray
values between the input data and the output data was
minimized. The line equation can then be used to
calculate the edge location to subpixel accuracy. Hartley
[7] presented a Hueckel-like edge detector in which
Hueckel’s weighting function over a bounded disk was
replaced by the Gaussian function over the entire plane.
The edge detector is a generalization of both the Gaussian-
weighted gradient edge detector and the zero-crossing
edge detector.

By preserving the first three gray moment function
values in a pixel neighborhood, Tabatabai and Mitchell
[16] presented a subpixel edge detector, which also deriv-
ed a line equation to calculate a local edge location. By
the assumption that the edges are locally straight, Hyde
and Davis [9] provided another subpixel line edge detec-
tor which best predicts the intensities of the pixels along
the edge.

The above methods all have a common disadvan-
tage, i.e., they used line equations to approximate edge
locations. This is not appropriate when the edge is
curved or there exist corners in the detection area. In

this paper, a method is proposed to estimate curved step
edge locations locally using a parabolic equation. The
method is also based on the moment-preserving princi-
ple, and curved edge points can be detected to subpixel
accuracy. Since a line equation is a degeneration case of
a parabolic equation, the method works as well as the
Tabatabai-Mitchell’s detector for line-type edges.

In the remainder of this paper, we first describe the
curved edge operator. The parabolic equation is then
derived and the equation coefficients solved. Finally,
some experimental results are presented to show the
superiority of the proposed method over conventional line-
type edge detectors in the capability of curved edge
detection.

PROPOSED CURVED EDGE DETECTOR

The proposed curved edge detector approximates
a step edge location by a parabolic equation with three
parameters which will be calculated according to certain
criteria as discussed in the following sections. Similar
to the Tabatabai-Mitchell edge detector, the proposed
detector accepts as input a set of 69 pixels arranged in
such a way to best approximate the area of a cricle with
4.5 units in radius (see Fig. la for an illustration). The
detector generates as output a parabolic equation as well
as two intensity values A, and h, (assume h, > h;). The
parabola separates the circle into two regions 4; and A4,
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251 255 253 254 253 3 8 1 3
245 252 249 246 249 7 9 6 1
254 251 245 252 249 3 3 2 2
3 1 4 5 5 1 8 7 3
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5 9 7 9 10 6 6
5 4 7 5 10

(a) Input data in a 4.5-unit circle.

(b) Output data with h; = 4.88 and h, = 250.

Fig. 1. Curved edge detection on a 4.5-unit circle.
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with h; and h, as the representative intensity values for
Ay and A,, respectively, as is illustrated in Fig. 1b.

In this approach, we assume that the symmetrical
axis of the parabola passes the center of the circle and
the axis direction is defined to be toward the A4, area (see
Fig. 2a). This is reasonable because the circle size is
small. Note that if the symmetrical axis does not pass
through the center of the circle, a certain technique has
been proposed to solve the problem, which will be discuss-
ed later in Section V. If the angle between the sym-
metrical axis and the X-axis is ¢, we can rotate the circle
counterclockwise with respect to the origin through an
angle of 7/2-q so that the symmetrical axis of the rotated
parabola coincides with the Y-axis (see Fig. 2b). Then,
the new coordinates (x’, y’) of the rotated parabola can
be expressed by the coordinates (x,y) of the original
parabola as

’

x' = xsinqg — ycosq

’

y

I

xcosq + ysing (D)

and the equation for the rotated parabola can be express-
ed as
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¥ . .
P svmmetricsl axi=
T H‘E A
//.4" 7}-._‘“)/
J P -
i ; c
¢ W R alxsina—yoo=ss ) +h
) 5 h.:) i =vrAasatyr=1ins
| P HCQERTYWYSLNA
Jl 0L5

(a) Parabolic edge equation as a function of q. a, and b.
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(b) Parabolic edge equation as a function of a and b after rotating counter-
clockwise with respect to the origin through an angle of 7/2—q.

Fig. 2. The parabola before and after rotation.

Combining (1) and (2), we get the original parabolic equa-
tion as

a(xsing — ycosq)? + b = xcosq + ysing . (3)

Hence, the three parameters a, b, and g determine the
parabola. In the next two sections, we will derive some
equations for computing a, b, and gq.

DERIVATIONS OF THE EQUATIONS FOR
COMPUTING THE ¢ PARAMETER

In this section, we prove several theorems which
lead to the equations for computing the g parameter.
Assume that the curved edge operator has been applied
to a 4.5-unit circle, resulting in a parabola described by
Eq. (3), which separates the circle into two regions, A,
and A,, with intensity values h; and h,, respectively.
Define

h §A1§ xdxdy + h, §A2§ xdxdy
I S dedy + by 0, dedy

(4)

hy §, § ydxdy + hy |, ] ydxdy

y = , S
V= i T, fdxdy + By, dudy ©

as the coordinates of the center of gravity of the inten-
sities of the output data inside the circle [16].

If we rotate the circle counterclockwise with respect

to the origin through an angle of w/2-q (see Fig. 2), then
the symmetrical axis of the rotated parabola will coincide
with the Y-axis. Let (x”,y’) be the coordinates of the
center of gravity of the intensities inside the rotated cir-
cle, in which the rotated parabola separates the circle in-
to two regions, A1 and 45 (see Fig. 2b). Then it can be
shown [15] that (x’, y’) are related to (¥,y) through (1).
Furthermore, we have the following theorem.
THEOREM 1 X =0,y > 0.
Proof Since the rotated parabola is symmetric to the Y-
axis, it is easily seen that X’ = 0. To show that y* >
0, we see first that the rotated parabola intersects the cir-
cle in twelve distinct ways as shown in Fig. 3. Next, we
redraw Fig. 3 as shown in Fig. 4.

In Fig. 4, we have divided each circle into three
or four parts B, D, Cp,, and C, - A{ is composed of B and
Cp, and A3 is composed of D and C,. It follows that

hy 8y de'dy” + hy§, [ y'd'dy’
YT Sy + k[ dxdy ©)

’
2

By (Tl yidx'dy + [ y'dv'dy’)
I §, Jdxdy’ + by, ddy’
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Fig. 3. The rotated parabola intersects the 4.5-unit circle in twelve distinct ways.
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Fig. 4. The circle in each case of fig. 3 is divided into three or four parts B, D, C,, and Cy. B is symmetric of D about the X-axis, and C,

and C, both are symmetric to themselves about the X-axis.
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hy (§pf y'dx’dy’ + [ [y'dx'dy’)
hy § 8 derdy” + [, § dx’dy’

—

Since both C; and C,, are symmetric to themselves about
the X-axis, the integration values over C, or C, in the
above equation is zero. So, the above equation can be
simplified to be

i flyandy oy [y ddy’
VT U [ Sy + by 1T dxdy’

which can further be reduced to be

(hy — hy) §p§ y'ax’dy’
VT S dedy 4 by dxdy

2

because B is symmetric to D about the X-axis. Since A,
> h; and the area of D is not zero, we gety’ > 0 and
the theorem is proved.

By Theorem 1, we know that the point with coor-
dinates (¥’,y’) is on the Y-axis which is the symmetrical
axis of the rotated parabola. Hence, (x,y) is on the sym-
metrical axis. By this result, we have the following cor-
ollary whose proof is easy and is omitted.

COROLLARY The angle g between the symmetrical
axis of the original parabola and the X-axis satisfies the
equations

cosq = N — s (7)
V2 + Y
sing = Y . (8)

Let the grids of the 4.5-unit circle be indexed as
shown in Fig. 5. Then (x,y) used in Egs. (7) and (8)
above can be calculated as follows:

k
I bW
X =— , (9)
pRA
k
e bl
B — ) (10)
E LW,
where
I; = the intensity associated with the jth grid,
W; = the weight associated with the jth grid,
(x;,y;) = the coordinates of the center of the jth gird,
and
k = 69.

1 2 3 4 5
6 7 8 910 11 12
1314 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56 57
58 59 60 61 62 63 64
65 66 67 68 69

Fig. 5. Indexing associated with each square grid.

Following Tabatabai and Mitchell [16], we take W to be
the fraction of the intersection area of the jth grid and the
disk enclosed by the circle. This leads to the following
W; values:

W; = .0084670539, Jj = 1,5,13,21,49,57,65,69,
= .013782918, J = 2,4,22,30,40,48,66,68;
= .013068037, Jj = 6,12,58,64;
= .01557318963, j = 3,31,39,67;
= .015719006, otherwise.

Now, we have completed the derivation of Egs. (7)
and (8) for calculating the g parameter. It remains to solve
the other two parameters a and b.

DERIVATIONS OF THE EQUATIONS FOR
COMPUTING THE a AND b PARAMETERS

Let D denote the set of the grids enclosed in the
4.5-unit circle C defined previously. Define the first three
sample moments of the empirically obtained data in cir-
cle C as '

k .
m= L Wil  i=123.

By preserving the first three moments in the output of the
detector, we get the following three equalities:

pihy + pohy = my,

pihi + pahs

my ,
3 3
pihi + pohy = my,
where the three left terms of the above equations are the

first three moments of the output data in disk C, and the
fractions p; and p, are
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)
a; / ™R",

Il

P1
pp=1-p =a/R
where R = 4.5. Note that a; and a, are the areas of A4;
and A,, respectively. Now, we can solve the above
equations to obtain py, p,, h, and h, as follows [16]:

hy=m —d~Np,/p ,

hy =m +d~Np /p ,

(172) [14sv 1/ (4 +sxs) ],

=
I

s = (my + 2m{ — 3mmy) / &,
& =m — mi.

Therefore, a, and a, can be computed by a; = p, 7R*
and a, = p,wR?, respectively.

Rotating circle C counterclockwise with respect to
the origin through an angle of w/2 — g, we can get the
rotated parabola as shown in Fig. 3. In the following,
we only investigate case (a) of Fig. 3; the other cases can
be similarly treated. Let the rotated parabola with equa-
tion ax’> + b = y intersect the circle at two points (x,
yo) and ( —xp, yo) as indicated in Fig. 6. The shaded
area, a,, of the pattern is given by

X B/
=10 foa,, dyd + (272 = BB = xo¥o

XoYo — 2ax3/3 — 2bxy + (w/2 — B)R%.

Since cos ™! (yo/R) = 7/2 — B,0 < cos~ ' (yo/R) <
7, it follows that

XoYo — 2ax3 /3 — 2bxy + R’cos ' (y/R) = a, ,
(11)

where (xg, yo) satisfies the following two equations:

Il

X+ =R, (12)

axg + b=y . (13)
THEOREM 2 The following equality is true:

7 = (14)

(hy—hy) (xoR2 —x3/3—aPx35 15 —2abx3 13— bxy)
h1a1+h2a2 !

Fig. 6. A rotated parabola intersecting the circle at two points (x,y,)
and (—xg,Y)-

where r = v ¥ + ¥ is the distance from the origin to
the original center of gravity.

Proof By Theorem 1,
r= NET Y
- Ty
=y . 15)
Combining Egs. (6) and (15), we have

ML dydedy’ + kY detdy
hl §Ai§ dx,dy, 7" h2 jAés dx,dyl

]

r =

which can be simplified, according to Fig. 3a, to be

r =
e ARE

(G
. SR S\/R2—x2

X - JR-Z

a’+b
N

Vs
al+b

ydydx + §° yeydx

ydydx) + hy [ | ydydx |

/ (ha+hay)

(hy—hy) (xoR2—x3 /3 —a*x3 15 —2abxg /3 — bx,)
h1a1+h2a2 ’

And the theorem is proved.

Now, solving Egs. (12) and (13) to obtain x, and
Yo in terms of a and b and substituting the results into
Egs. (11) and (14), we can obtain two nonlinear equa-
tions with two unknown parameters a and . A numerical
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method must be used to get the solutions. For this,
Newton’s method [5] is used.

For the method to result in accurate solutions, we
must start with good initial values (ag, by) that are near
the desired solutions. Since a curved edge in a 4.5-unit
circle is nearly linear, a is close to zero. For safety, we
enumerate a, from 0 to +3 with step increments of 0.2
or —0.2 alternatively (i.e., ¢y = 0, 0.2, —0.2, 0.4,
—0.4,...) until the solutions are found. Also, we know
that —4.5 < b < 4.5, so we enumerate by from —4 to
4 with step increments of 0.5 until the solutions are found.
Now, all three parameters a, b, and g have been solved,
by which we can compute curved edge locations to sub-
pixel values.

If we set a = 0, it can be shown that the curved
edge detector becomes the Tabatabai-Mitchell line edge
detector [16]. This means that the proposed detector can
detect line edges. Figs. 7, 8, and 9 show the results ob-
tained by applying the proposed detector to several em-
pirical input edge patterns. For the sake of comparison,
the Tabatabai-Mitchell edge detector is also applied to the
same input patterns. Fig. 7 shows that the proposed edge
detector has the similar capability as the Tabatabai-
Mitchell detector in line-type edge detection. Figs. 8 and
9 show that the proposed detector is better than the
Tabatabai-Mitchell detector when the edge occurs at a cor-
ner or on a curved boundary.

EXPERIMENTAL RESULTS

To apply the proposed detector, a digital image of
size 256 X 240 is first divided into a set of contiguous
overlapping 4.5-unit circles as shown in Fig. 10. The
distance between the centers of every two neighboring
circles in the horizontal (or vertical) direction is 5 pixels.

The curved edge detector is repeatedly applied to
each circle. A curved edge pattern is determined to ex-
ist in a circle if the computed /4, and h, values satisfy the
following inequality [1]:

hy — h = d. (16)

This means that if an edge pattern is considered to exist
between two neighboring regions in the circle, then one
region must be ‘‘dark’” enough with respect to the other.
The value of d can be determined experimentally, but a
more intelligent method is used here [1]. By consider-
ing the original image as a blurred noisy version of a
binary input picture, the moment-preserving bilevel
thresholding proposed by Tsai [17] is applied globally to
the whole image to get two representative gray levels z,
and z; (with z; > 7). The value d is selected to be
(zy—20)/2. If the original image cannot be regarded as
a binary version, we can divide the image into smaller,
nearly binary blocks and then locally apply the foregoing
method to each block to get a distinct d value.

— ——
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(a) Two-dimensional input edge pattern.

line edge x=.55
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T
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(b) Result of applying the proposed edge detector to (a) — a line equa-
tion x = .55.

line edge x=.51

— -
L251] 2481245 | 2 | "9

L

/2,55 2481247 | 254 5 7 2

251 | 255|253 |254 | 253] 3 8 1 3
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249 | 250 2531248 | 252 1 8
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'\-2_48 249(245| 247/ 10 | 6 | 6

[248]255| 248| 5 | 407

(c) Result of applying the Tabatabai-Mitchell edge detector to (a) —
a line equation x = .51.

Fig. 7. Result of applying the proposed detector to line-type edges is
similar to that of applying the Tabatabai-Mitchell detector.
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(b) Result of applying the proposed edge detector to (a) — a parabolic
equation 0.29 (0.7x+0.71y)*> — 0.14 = —0.71x+0.7y.
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(c) Result of applying the Tabatabai-Mitchell edge detector to (a) — . —
a line equation —0.71x+0.7y = 1.38. (c) Re§ult of applymg the Tabatabai-Mitchell edge detector to (a) —
a line equation x = —1.42.

Fig. 8. A better result of the proposed detector for corner finding than Fig. 9. A better result of the proposed detector for curved boundary

the Tabatabai-Mitchell detector. detection than the Tabatabai-Mitchell detector.
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image boundary

Fig. 10. The locations of the circles for the purpose of edge detection.

(a) Original input image.

(b) Output image with detected parabolas drawn in each detected circle
area.

If Inequality (16) is not satisfied, we conclude that
a curved edge pattern is not present. Otherwise, we test
further for the condition [1]:

hy — h'
hy, — hy

>4 ; (17)
where

hy = (1/ay) 5,,15 I(x,y) dxdy
is the mean of the observed intensity values in area A;;

h = (1/ay) [, § 1(x.y) dxdy
is the mean of the observed intensity values in area A,;
and /(x,y) is the observed intensity value at location (x,y)
which is constant over the grid centered at (x,y). This
step is employed to avoid considering as a parabolic pat-
tern a curved edge pattern which is not close to a parabola
or which is just noise existing in the detection circle. The
selection of the threshold value 6 depends on the require-
ment for the accuracy of the detected curved edges. In
our experiment we set 6 to be 0.87. If both (16) and (17)
are satisfied, then we conclude that a well-shaped
parabolic edge pattern is present in the input circles, and
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(c) Output image resulting from detection identical to that of (b) except
that the curved edge detection is additionally applied to some of 24
neighboring points of origin of each detection circle in (b) in which
curved edge pattern is not detected.

(d) Result of Tabatabai-Mitchell edge detector.

Fig. 11. Results of applying various edge detectors to a character image.



L.H. Chen & W.H. Tsai: Location of Curved Edges to Subpixel Values 599

generate the parabolic pattern as the output.

Figure 11a includes a Chinese character with many
curved edges and sharp turns. Fig. 12a includes a toy
with smooth edges. Figs. 11b and 12b show the results
of the curved edge detector. In every circle of each out-
put image, the detected parabola is drawn according to
its equation. From the output images we see that certain
curved edges are missing. The reasons for this include
the following: (1) the missing curved edges are not close
to parabolas; (2) the symmetrical axis of the parabola does
not pass through the center of the detection circle. To
avoid these situations, a method proposed by Chen and

(a) Original input image.

(b) Output image with detected parabolas drawn in each detected circle

area.

Tsai [1] is employed here. In each of such detection
circles, a 5 x5 neighborhood of the origin is taken. Then
we order the pixels in the 5x5 neighborhood by their
Euclidean distances to the origin as follows.

22 15 10 14 21

16 6 2 S 13

11 3 0 1 9

17 7 4 8 20

23 18 12 19 24

(c) Output image resulting from detection identical to that of (b) except

that the curved edge detection is additionally applied to some of 24
neighboring points of origin of each detection circle in (b) in which
curved edge pattern is not detected.

\ "\\
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(d) Result of Tabatabai-Mitchell edge detector.

Fig. 12. Results of applying various edge detectors to a toy image.
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According to the order, pixels in the neighborhood are
taken in turn, and the proposed curved edge detection pro-
cedure is applied iteratively to the 4.5-unit circle with each
pixel as the center until an acceptable solution is found
or until all pixels have been processed. If an acceptable
parabolic pattern exists, then we take it as the output of
the original detection circle. Applying this method to
Figs. 11a and 12a, we have the results as shown in Figs.
I1c and 12¢c. All curved edges in each image have been
detected. It is seen that the proposed detector gives good
results for curvilinear edges, including line edges, smooth
curved edges, corner edges, and unsmooth curved edges.
Figs. 11d and 12d show the results of the Tabatabai-
Mitchell detector. Obviously, the line edge detector
flattens certain curved edges and does not give proper ap-
proximations at corner edges. On the contrary, the pro-
posed curved edge detector gives better results.

CONCLUSIONS

A new curved edge detector has been proposed,
which can locate a step edge to subpixel accuracy in two-
dimensional image data. Using parabolas to approximate
edge points, the method gives better results of curved edge
location than conventional line edge detectors. If a
parameter of the parabola equation is restricted to be 0,
the proposed detector becomes equivalent to the
Tabatabai-Mitchell detector.

If the curved edge in a detection area is not close
to a parabola, then the proposed detector is not applicable.
Therefore, using curved-type equations other than the
parabola to approximate curved edges is also worth trying.

NOMENCLATURE

(a,b,q) the three parameters of a parabola

a; the area of A,

a, the area of A,

Ay a region in a circle

Ay a region in a circle

A{ the rotation version of A4,

Ay the rotation version of A,

d a threshold value

hy the intensity value in region A4,

h, the intensity value in region A,

I the intensity associated with the jth grid

K the pixel number in a circle

m; the ith sample moment of the empirically ob-
tained data in a circle

)2 the fraction of A4, in a circle

D2 the fraction of A4, in a circle

R the radius of a circle

r the distance from the origin to the original
center of gravity

(x,y) the coordinates of a point in the original
parabola

the new coordinates of the point (x,y) in the

rotated parabola

x,y) the coordinates of the center of gravity of the
intensities of the output data inside a circle

(x",y’) the coordinates of the center of gravity of the
intensities inside the rotated circle

x5, 5) the coordinates of the center of the jth grid

=",y

W; the weight associated with the jth grid
Greek symbol
) a threshold value
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