Chapter 6
Pushdown Automata
(2015/11/23)

[image: image35.jpg]

Sagrada Familia, Barcelona, Spain
Outline
6.0 Introduction

6.1 Definition of PDA

6.2 The Language of a PDA

6.3 Equivalence of PDA’s and CFG’s

6.4 Deterministic PDA’s
6.0 Introduction
· Basic concepts:

· CFL’s may be accepted by pushdown automata (PDA’s).
· A PDA is an -NFA with a stack.

· The stack can be read, pushed, and popped only on the top.
· Two different versions of PDA’s ---

· Accepting strings by “entering an accepting state”;
· Accepting strings by “emptying the stack.”
· The original PDA is nondeterministic.

· There is also a subclass of PDA’s which are deterministic in nature.

· Deterministic PDA’s (DPDA’s) resembles parsers for CFL’s in compilers.
· It is interesting to know what “language constructs” which a DPDA can accept.

· The stack is infinite in size, so can be used as a “memory” to eliminate the weakness of “finite states” of NFA’s, which cannot accept languages like L = {anbn | n (1}.

6.1 Definition of PDA
6.1.1 Informal Definition
· Advantage and weakness ---
· Advantage of the stack --- the stack can “remember” an infinite amount of information.

· Weakness of the stack --- the stack can only be read in a first-in-last-out manner.

· Therefore, it can accept languages like LwwR = {wwR | w is in (0 + 1)*}, but not languages like L = {anbncn | n (1}.
· A graphic model of a PDA --- as shown in Fig. 6.1.
[image: image1]
· Some comments ---

· The input string on the “tape” can only be read.

· But operations applied to the stack is complicated; we may replace the top symbol by any string ---

· by a single symbol

· by a string of symbols

· by the empty string  which means the top stack symbol is “popped up (eliminated).”

· Example 6.1 ---
Design a PDA to accept the language LwwR = {wwR | w is in {0, 1}*}.
· In start state q0, copy input symbols onto the stack.

· At any time, nondeterministically guess whether the middle of wwR is reached and enter q1, or continue copying input symbols.

· In q1, compare the remaining input symbols with those on the stack one by one.

· If the stack can be so emptied, then the matching of w with wR succeeds.

6.1.2 Formal Definition
· A PDA is a 7-tuple P = (Q, , , , q0, Z0, F) where
· Q: a finite set of states;
· : a finite set of input symbols;
· : a finite stack alphabet;
· : a transition function such that (q, a, X) is a set of pairs (p, ) where
· q(Q (the current state);
· a( or a =  (an input symbol or an empty string);
· X(;
· p(Q (the next state)
· (* which replaces X on the top of the stack in the following way:

(1) when  = , the top stack symbol is popped up;
(2) when  = X, the stack is unchanged;
(3) when  = YZ, X is replaced by Z, and Y is pushed to the top;
(4) when  = Z, X is replaced by Z and string  is pushed to the top.
· q0: the start state;
· Z0: the start symbol of the stack;
· F: the set of accepting or final states.
· Example 6.2 (Example 6.1 continued) ---
Designing a PDA to accept the language LwwR.

· Need a start symbol Z of the stack and a 3rd state q2 as the accepting state.

· A PDA is P = ({q0, q1, q2}, {0, 1}, {0, 1, Z0}, , q0, Z0, {q2}) such that
· (q0, 0, Z0) = {(q0, 0Z0)}, (q0, 1, Z0) = {(q0, 1Z0)}

(conduct initial pushing steps with Z0 to mark stack bottom)
· (q0, 0, 0) = {(q0, 00)}, (q0, 0, 1) = {(q0, 01)}, (q0, 1, 0) = {(q0, 10)}, (q0, 1, 1) = {(q0, 11)}
(continue pushing)
· (q0, , Z0) = {(q1, Z0)}
(check if input is  which is in LwwR)
· (q0,, 0) = {(q1, 0)}, (q0, , 1) = {(q1, 1)}
(check the string’s middle)
· (q1, 0, 0) = {(q1, )}, (q1, 1, 1) = {(q1, )}
(matching pairs)
· (q1,, Z0) = {(q2, Z0)}
(enter final state)
6.1.3 A Graphic Notation for PDA’s

· The transition diagram of a PDA is easier to follow.

· We use “a, X/” on an arc from state p to q to represent that “transition (q, a, X) contains (p, )” as shown in Fig. 6.2.

[image: image2]
Fig. 6.2 A graphic notation for transitions of a PDA.
· Example 6.3 ---
The transition diagram of the PDA of Example 6.2 is as shown in Fig. 6.3 (Fig. 6.2 in p. 230 of the textbook).
· A question --- where is the nondeterminism?
Fig. 6.3 The PDA of Example 6.3.
6.1.4 Instantaneous Descriptions of a PDA
· The configuration of a PDA is represented by a 3-tuple (q, w, ) where

· q is the state;

· w is the remaining input; and

·  is the stack content.
· Such a 3-tuple is called an instantaneous description (ID) of the PDA.
· The change of an ID into another is called a move, denoted by the symbol
[image: image3.wmf]_

|

P

, or
[image: image4.wmf]_

|

 when P is understood.

· So, if (q, a, X) contains (p, ), then the following is a corresponding move:

 (q, aw, X)
[image: image5.wmf]_

|

 (p, w, )

· We use
[image: image6.wmf]*

_

|

P

 or
[image: image7.wmf]*

_

|

 to indicate zero or more moves.
· Example 6.4 (continued from Example 6.2) ---
The moves for the input w = 1111 is as follows.
(q0, 1111, Z0)
[image: image8.wmf]_

|

 (q0, 111, 1Z0)
[image: image9.wmf]_

|

 (q0, 11, 11Z0)
[image: image10.wmf]_

|

 (q1, 11, 11Z0)

[image: image11.wmf]_

|

 (q1, 1, 1Z0)
[image: image12.wmf]_

|

 (q1, , Z0)
[image: image13.wmf]_

|

 (q2, , Z0)

· There are other paths entering dead ends which are not shown in the above derivations.
· Theorem 6.5 ---
If P = (Q, , , , q0, Z0, F) is a PDA, and

(q, x, )
[image: image14.wmf]*

_

|

P

 (p, y, ),

then for any string w in * and  in *, it is also true that
(q, xw, )
[image: image15.wmf]*

_

|

P

 (p, yw, ).

· The reverse is not true; but if  is taken away, the reverse is true, as shown by the next theorem.
· Theorem 6.6 ---
If P = (Q, , , , q0, Z0, F) is a PDA, and
(q, xw, )
[image: image16.wmf]*

_

|

P

 (p, yw, ),

then it is also true that
(q, x, )
[image: image17.wmf]*

_

|

P

 (p, y, ).

6.2 The Language of a PDA
· Some important facts ---
· There are two ways to define languages of PDA’s as mentioned before:
· by final state;
· by empty stack.
· It can be proved that a language L has a PDA that accepts it by final state if and only if L has a PDA that accepts it by empty stack (a theorem to be proved later).
· For a given PDA P, the language that P accepts by final state and by empty stack are usually different.
· In this section, we show conversions between the two ways of language acceptances.

6.2.1 Acceptance by Final State

·
Definition ---
If P = (Q, , , , q0, Z0, F) is a PDA. Then L(P), the language accepted by P by final state, is
{w | (q0, w, Z0)
[image: image18.wmf]*

_

|

P

 (q, , ), q(F}

for any .
· The PDA shown in Example 6.2 indeed accepts the language LwwR (see Example 6.7 for the detail in the textbook).
6.2.2 Acceptance by Empty Stack

· Definition ---
If P = (Q, , , , q0, Z0, F) is a PDA. Then N(P), the language accepted by P by empty stack, is
{w | (q0, w, Z0)
[image: image19.wmf]*

_

|

P

 (q, , ), q(F}

for any q.
· The set of final states, F, may be dropped to form a 6-tuple, instead of a 7-tuple, for a PDA.
· Example 6.8 ---
The PDA of Example 6.2 may be modified in the following way to accept LwwR by empty stack:

simply change the original transition (q1, , Z0) = {(q2, Z0)} to be (q1, , Z0) = {(q2, )}. That is, just eliminate Z0.
6.2.3 From Empty Stack to Final State

· Theorem 6.9 ---
If L = N(PN) for some PDA PN = (Q, , , N, q0, Z0), then there is a PDA PF such that L = L(PF).
Proof. The idea for the proof is to use Fig. 6.4 below.

[image: image20]
Fig. 6.4 PF simulates PN and accepts the input string if PN empties its stack.
· Define PF = (Q∪{p0, pf}, , ∪{X0}, F, p0, X0, {pf}) where F is such that

· F(p0, , X0) = {(q0, Z0X0)} (with X0 as the bottom of the stack);
· For all q(Q, a( or a = , and Y(, F(q, a, Y) contains all the pairs in N(q, a, Y).
· F(q, , X0) contains (pf, ) for every state q in Q.
· It can be proved that W is in L(PF) if and only if w is in N(PN) (see the textbook for that detail).
· Example 6.10 ---
Design a PDA which accepts the if/else errors by empty stack.

· Let i represents if; e represents else.

· The PDA is designed in such a way that
if the number of else (#else) > the number of if (#if), then the stack will be emptied.
· A PDA by empty stack for this is as follows and shown in Fig. 6.5:

PN = ({q}, {i, e}, {Z}, N, q, Z)
where
· when an “if” is seen, push a “Z”;

· when an “else” is seen, pop a “Z”;

· when (#else) > (#if + 1), the stack is emptied and the input sting is accepted.

[image: image21]
Fig. 6.5 A PDA by empty stack for Example 6.10.

· For example, for input string w = iee, the moves are:

(q, iee, Z)
[image: image22.wmf]_

|

 (q, ee, ZZ)
[image: image23.wmf]_

|

 (q, e, Z)
[image: image24.wmf]_

|

 (q, , ) accept！
· How about w = eei?

· A PDA by final state is as follows and shown in Fig. 6.6:
PF = ({p, q, r}, {i, e}, {Z, X0}, F, p, X0, {r}).

[image: image25]
Fig. 6.6 A PDA by final state for Example 6.10.

· For input w = iee, the moves are:
(p, iee, X0)
[image: image26.wmf]_

|

 (q, iee, ZX0)
[image: image27.wmf]_

|

 (q, ee, ZZX0)
[image: image28.wmf]_

|

 (q, e, ZX0)

[image: image29.wmf]_

|

 (q, , X0)
[image: image30.wmf]_

|

 (r, , ) accept！
· Theorem 6.11 ---
Let L be L(PF) for some PDA PF = (Q, , , F, q0, Z0, F). Then there is a PDA PN such that L = N(PN).
Proof. The idea is to use Fig. 6.7 below (in final states of PF, pop up the remaining symbols in the stack).

[image: image31]
Fig. 6.7 PN simulating PF and empties its stack when and only when PN enters an accepting state.

6.3 The Language of a PDA
· Equivalences to be proved ---
· CFL’s defined by CFG’s;
· Languages accepted by final state by some PDA;
· Languages accepted by empty stack by some PDA.
· Equivalence of the last two above have been proved.

6.3.1 From Grammars to PDA’s

· Given a CFG G = (V, T, Q, S), we may construct a PDA P that accepts L(G) by empty stack in the following way:
· P = ({q}, T, V∪T, , q, S) where the transition function  is defined by:
· for each nonterminal A, (q, , A) = {(q, ) |  ( is a production of G};

· for each terminal a, (q, a, a) = {(q, )}.
· Theorem 6.13 ---
If PDA P is constructed from CFG G by the construction above, then N(P) = L(G).
· Proof. See the textbook.

· Example 6.12 ---
Construct a PDA from the expression grammar of Fig. 5.2:

I (a | b | Ia | Ib | I0 | I1;
E (I | E*E | E+E | (E).
The transition function for the PDA is as follows:

a) (q, , I) = {(q, a), (q, b), (q, Ia), (q, Ib), (q, I0), (q, I1)}

b) (q, , E) = {(q, I), (q, E+E), (q, E(E), (q, (E))}
c) (q, d, d) = {(q, )} where d may any of the terminals a, b, 0, 1, (,), +, *.
6.3.2 From PDA’s to Grammars

· Theorem 6.14 ---
Let P = (Q, , , , q0, Z0) be a PDA. Then there is a context-free grammar G such that L(G) = N(P).
Proof. Construct G = (V, T, P, S) where the set of nonterminals consists of:
· the special symbol S as the start symbol;
· all symbols of the form [pXq] where p and q are states in Q and X is a stack symbol in .
· The productions of G are as follows.

(a) For all states p, G has the production S ([q0Z0p].

(b) Let (q, a, X) contain the pair (r, Y1Y2 … Yk), where

· a is either a symbol in  or a = 
· k can be any number, including 0, in which case the pair is (r, ).
Then for all lists of states r1, r2, …, rk, G has the production

[qXrk] (a[rY1r1][r1Y2r2]…[rk(1Ykrk].
· Example 6.15 ---
Convert the PDA of Example 6.10 (shown in Fig. 6.5) to a grammar.

· Nonterminals include only two symbols, S and [qZq].
· Productions:
1. S ([qZq]

(for the start symbol S);
2. [qZq] (i[qZq][qZq]

(from (q, ZZ)(N(q, i, Z))

3. [qZq] (e

(from (q, )(N(q, e, Z))

· If we replace [qZq] by a simple symbol A, then the productions become

1. S (A
2. A (iAA
3. A (e
· Obviously, these productions can be simplified to be

1. S (iSS
2. S (e
· And the grammar may be written simply as G = ({S}, {i, e}, {S (iSS | e}, S).
6.4 Deterministic PDA’s
6.4.1 Definition of a Deterministic PDA

· Intuitively, a PDA is deterministic if there is never a choice of moves (including -moves) in any situation.
· Definition ---
A PDA P = (Q, , , , q0, Z0, F) is said to be deterministic (a DPDA) if and only if the following two conditions are met:
· (q, a, X) has at most one element for any q(Q, a( or a = , and X(. (“There must exist one.”)

· If (q, a, X) is nonempty for some a(S, then (q, , X) must be empty. (“There cannot be more than one.”)
· Example 6.16 –

· There is no DPDA for LwwR of Example 6.2.

· But there is a DPDA for a modified version of LwwR as follows, which is not an RL (proved later):

LwcwR = {wcwR | w (L((0 + 1)*)}.

· To recognize wcwR, just store 0’s and 1’s in stack until center marker c is seen. Then, match the remaining input wR with the stack content which is w.

· The PDA can so be designed to be deterministic by searching the center marker without trying matching all the time nondeterministically.

· A desired DPDA is shown in Fig. 6.8, which is difference from Fig. 6.3 in the blue c).

[image: image32]
Fig. 6.8 The PDA of Example 6.16.
6.4.2 Regular Languages and DPDA’s

· The DPDA accepts a class of languages that is between the RL’s and the CFL’s, as proved in the following.

· Theorem 6.17 ---
If L is an RL, then L = L(P) for some DPDA P (accepting by final state).

Proof.
· Easy. Just use a DPDA to simulate a DFA as follows.

· If DFA A = (Q, , A, q0, F) accepts L, then construct DPDA P = (Q, , {Z0}, P, q0, Z0, F) where P is such that P(q, a, Z0) = {(p, Z0)} for all states p and q in Q such that A(q, a) = p.

· The DPDA accepts a class of languages that is between the RL’s and the CFL’s, as proved in the following.
· The language-recognizing capability of the DPDA by empty stack is rather limited.
· A language L is said to have the prefix property if there are no two different strings x and y in L such that x is a prefix of y.
· For examples of such languages, see Example 6.18

· Theorem 6.19 ---
A language L is N(P) for some DPDA P if and only if L has the prefix property and L is L(P') for some DPDA P'.

· For the proof, do exercise 6.4.3.
6.4.3 DPDA’s and CFL’s

· DPDA’s can be used to accept non-RL’s, for example, LwwR mentioned before.

· It can be proved by the pumping lemma that LwwR is not an RL (see the textbook, pp. 254~255).

· On the other hand, DPDA’s by final state cannot accept certain CFL’s, for example, LwwR.
· It can be proved that LwwR cannot be accepted by a DPDA by final state (see an informal proof in the textbook, p. 255).

· Conclusion ---
The languages accepted by DPDA’s by final state properly include RL’s, but are properly included in CFL’s.

6.4.4 DPDA’s and Ambiguous Grammars

· Theorem 6.20 ---
If L = N(P) (accepting by empty stack) for some DPDA P, then L has an unambiguous CFG.

· Proof. See the textbook.
· Theorem 6.21 ---
If L = L(P) for some DPDA P (accepting by final state), then L has an unambiguous CFG.

· Proof. See the textbook.

[image: image33.png]

[image: image34.png]

stack reader

& writer

…

0

1

1

0

1

0

B

A

B

Z

0

Top of stack

Bottom of stack

finite-state control

Tape reader

tape

Fig. 6.1 A graphic model of the PDA.

q

 p

a, X/

q0

q1 q1

, Z0/Z0

, 0/0

,, 1/1

q2q2

, Z0/Z0

start

, Z0/0Z0, Z0/1Z0, 0/00

, 1/01

, 0/10

, 1/11

, 0/

, 1/

(push 0 on top of Z0)

pf

q0

PN

, X0/

, X0/

, X0/

p0

, X0/Z0X0

PF

i, Z/ZZ

e, Z/

q

start

e, Z/

i, Z/ZZ

q

p

r

, X0/

, X0/ZX0

start

, any/

p00

p

q00

PF

, any/

, X0/Z0X0

start

PN

, any/

q0

q1 q1

c, Z0/Z0

c, 0/0

,c, 1/1

q2q2

, Z0/Z0

start

, Z0/0Z0, Z0/1Z0, 0/00

, 1/01

, 0/10

, 1/11

, 0/

, 1/

(push 0 on top of Z0)

PAGE
12

_1459188240.unknown

_1459188522.unknown

_1459188415.unknown

_1459188130.unknown

_1459188152.unknown

