Chapter 3
Regular Expressions and Languages
(2015/10/8)

[image: image35.jpg]

Giza Pyramids, Egypt
Outline
3.1 Regular Expressions

3.2 Finite Automata & Regular Expressions

3.3 Applications of RE’s

3.4 Algebraic Laws for RE’s

3.1 Regular Expressions

· Use of Regular expressions ---
· The regular expression is a kind of generator for languages.

· It offers a “declarative” way of expressing strings of symbols.

· It defines all and only regular languages.

· Applications of Regular expressions ---
· Used as commands for finding strings in Web browsers or text-formatting systems (such as UNIX grep commands)

· Used as lexical analyzer generator (such Lex or Flex)

· A lexical analyzer breaks source programs into “tokens” (keywords, identifiers, signs, …)
1.1.1 Operators of Regular Expressions

· Review of three operations on two languages L and M:

· Union --- L∪M = {x | x(L or x(M}

· Concatenation --- LM = {xy | x(L, y(M}
Example --- L0 = {}, L1 = L, L2 = LL, …
· Closure (or star, or Kleene closure) ---

L* = L0∪L1∪L2∪...

· Example 3.1 ---
· * = {} because 0 = {}.

· If L = {0, 1}, then L0 = {}, L1 = L, L2 = {00. 01, 10, 11}, …

· If L is the set of all strings of 0’s, then it can be proved that L* is L itself (see the textbook for the proof).
1.1.2 Building Regular Expressions

· Definition ---
A regular expression (RE) E and its corresponding language L(E) are defined recursively in the following way ---
· Basis:

· Constants  and  are RE’s defining languages {} and , respectively, which are expressed as L() = {}, L() = .

· If a is a symbol, then a is an RE defining the language {a} which may be expressed as L(a) = {a} (note: a is of bold face).
· A variable like L (capitalized and italic) represents any language.
· Induction:
Given two RE’s E and F, then we have the following more complicated RE’s.
· Union (
E + F is an RE such that L(E + F) = L(E)∪L(F).
· Concatenation (
EF is an RE such that L(EF) = L(E)L(F).
· Closure (
E* is an RE such that L(E*) = (L(E))*.
· Parenthesization (
(E) is an RE such that L((E)) = L(E).
· Example 3.2 ---
An RE defining a language of strings of alternating 0’s and 1’s is one of the two below:

· (01)* + (10)* + 0(10)* + 1(01)*
· ( + 1)(01)*( + 0)
(Why? See the textbook.)

1.1.3 Precedence of RE operators

· Precedence of RE operators ---
· Highest
“*”
(closure)

· Next

“.”
(concatenation) (left to right)

· Last

“+”
(union) (left to right)

· Use parentheses anywhere to resolve ambiguity

· Example 3.3 ---
The following are three ways to interpret the RE 01* + 1 if parentheses are not used:
· (0(1*)) + 1

by precedence above;
· (01)* + 1

(another meaning);
· 0(1* + 1)

(a third meaning).
3.2 FA’s & RE’s

· Theorems to be proved ---
· Every language defined by a DFA is also defined by an RE.

· Every language defined by an RE is also defined by an -NFA.
· Relations of theorems ---

(thicker yellow arrows indicate equivalence relations to be proved in this chapter)

[image: image2]
Fig. 3.1 Equivalence Relations among DFA’s, NFA’s, -NFA’s, and RE’s.
1.2.1 From DFA’s to RE’s

· Theorem 3.4 ---
If L = L(A) for some DFA A, then there is an RE R such that L = L(R).

Proof.
· Idea: the proof is conducted by constructing progressively string sets defined by a certain RE form, Rij(k), until the entire set of acceptable strings (i.e., the language L(A)) is obtained.

· Steps:

· Assume that the set of states are numbered as {1, 2, ..., n} (1 is the start state).

· Use the technique of induction to construct Rij(k), starting at k = 0 and stop at k = n (the largest state number), for all i, j = 1, 2, …, n.
· Meaning of RE Rij(k) ---

Rij(k) is used to denote the set of strings w such that

(1) each w is the label of a path from state i to state j in DFA A; and
(2) the path has no intermediate node whose number is larger than k.
· Then, if k = n, i = 1, and j specifies an accepting state, then Rij(k) = R1j(n) defines a set of strings accepted by DFA A, with each string forming a path starting from the start state (specified by i = 1) to the accepting state (specified by j).
· If there are more than one accepting state, i.e., if F = {j1, j2, ..., jm} is the set of accepting states, then all the R1j(n) so obtained for all the accepting states j = j1, j2, …, jm are collected by union as the final result:
R1j1(n) + R1j2(n) + ... + R1jm(n)
(end of the proof of theorem).
· Construction of Rij(k) by induction ---
· Basis (for k = 0):
(A) When k = 0, all state numbers (1, and so there is no intermediate state in path i to j, leading to 2 cases:

(1) an arc (a transition) from i to j;

(2) a path from i to i itself.
(B) If i (j, only Case (1) is possible, leading to 3 cases:

(B1) no symbol for such a transition, indicating that Rij(0) =;
(B2) one symbol a for the transition, indicating that Rij(0) = a;
(B3) multiple symbls a1, a2, ..., am for the transition, indicating that
Rij(0) = a1 + a2 + ... + am
(C) If i = j, only Case (2) is possible, which means that there exists at least a path from i to i itself, plus one the following 3 cases:

(C1) no symbol for such a transition, indicating that the path may be described by Rij(0) = ;
(C2) one symbol a for the transition, indicating that the path may be described by Rij(0) =  + a;
(C3) multiple symbls a1, a2, ..., am for the transition, indicating that the path may be described by Rij(0) =  + a1 + a2 + ... + am.
· Induction (for k (0):

(A) Suppose that there is a path from i to j that goes through no state numbered higher than k. Then, two cases should be considered:
(1) the path does not go through k, indicating that the path is just Rij(k-1);
(2) the path goes through k at least once, meaning that the path may be broken into 3 pieces:
(a) through i to k without passing k, meaning that this part of the path is just Rik(k-1);
(b) from k to k itself, meaning that this part of the path may be described by (Rkk(k-1))* (in a recursive way);

(c) from k to j without passing k, meaning that this part of the path is Rkj(k-1),
so that the three pieces may be concatenated to be
Rik(k-1)(Rkk(k-1))*Rkj(k-1).
(The above process may be described by the diagram shown in Fig. 3.)
(B) Combining (1) and (2) above, we get the RE defining “all the paths from i to j that go through no state higher than k” as

Rij(k) = Rij(k-1) + Rik(k-1)(Rkk(k-1))*Rkj(k-1).

[image: image3]
Fig. 3.2 Illustration of paths represented by Rij(k).
· Example 3.5 ---
Convert the DFA shown in Fig. 3.3 into an RE.

[image: image4]
Fig. 3.3 The DFA of Example 3.5.

· Rij(0) may be constructed to have the results shown in Table 3.1; the details are derived in the following.
· R11(0) =  + 1

because (1, 1) = 1 (going back to state 1);
· R12(0) = 0

because (1, 0) = 2 (getting out to state 2);
· R21(0) = 

because there is no path from state 2 to 1;
· R22(0) = ( + 0 + 1)
because (2, 0) = 2 and (2, 1) = 2 (going back to state 2).
Table 3.1 The constructed values of Rij(0) of Example 3.5.

	R11(0)
	 + 1

	R12(0)
	0

	R21(0)
	

	R22(0)
	(+ 0 + 1)

· We can then compute all Rij(k) for k = 1 and k = 2.

· However, we may alternatively compute only necessary terms of Rij(k) backward from the final states, to save time.

· There is only one final state, namely, 2, so we only have to compute
R12(2) = R12(1) + R12(1)(R22(1))*R22(1).

· That is, we only have to compute R12(1) and R22(1), without computing R21(1) and R11(1).

· To compute each of these terms, we need some RE equalities to simplify intermediate results which we described next.
(Example 3.5 will be continued.)
· Some equalities (R is an RE) ---
1. R = R =  (so  = annihilator for concatenation);
2.  + R = R +  = R (so  = identity for union);
3. R = R = R (so  = identity for concatenation);
4. ( + a)* = a* = (a + )*;
5. ( + a)a* = (a* + aa*) = a* + aa* = a*;
6. a*( + a) = (a* + a*a) = a* + a*a = a*.
(All the above equalities are theorems provable by easy deductions, which are omitted. For details, see the textbook.)
· Example 3.5 (continued) ---
· To compute R12(2) = R12(1) + R12(1)(R22(1))*R22(1), we have the following derivations.
· R12(1) = R12(0) + R11(0)(R11(0))*R12(0)
= 0 + ( + 1)( + 1)*0

(by substitutions)
= 0 + ( + 1)1*0

(by Equality 4 above)
= 0 + 1* 0

(by Equality 5 above)
= ( + 1*)0

(by the distributive law)
= 1*0

(by Equality 4 above)
· R22(1) = R22(0) + R21(0)(R11(0))*R12(0)
= ( + 0 + 1) + ( + 1)*0

(by substitutions)
= ( + 0 + 1) + 

(by Equality 1 above)
=  + 0 + 1

(by Equality 2 above)
· Finally, R12(2) may be computed as follows.
· R12(2) = 1*0 +1*0( + 0 + 1)*( + 0 + 1)
(by subst.)
= 1*0 +1*0(0 + 1)*( + 0 + 1)

(by Equality 4 above)
= 1*0 +1*0(0 + 1)*

(by Equality 6 above)
= 1*0( + (0 + 1)*)

(by the distributive law)

= 1*0(0 + 1)*

(by Equality 4 above)
· The correctness of the final result R12(2) = 1*0(0 + 1)* may checked by inspecting the transition diagram shown in Fig. 3.3.
· The above method also works for the NFA and the -NFA.
1.2.2 Converting DFA’s to RE’s by State Elimination
· Idea ---
· Step 1 – regard symbols on arcs as RE’s;
· Step 2 – conduct each of the type of conversion as illustrated by Fig. 3.4;
· Step 3 – collect RE’s for all the final states.
[image: image1]
[image: image5]
Fig. 3.4 Illustration of converting DFA’s to RE’s by eliminating states (for a complete diagram, see the textbook).

· Details of Step 3 ---
· For each final state q, eliminate all the states as illustrated in Fig. 3.4 except the start state q0.

· If q (q0, then a 2-state automaton is left as shown in Fig. 3.5 (Fig. 3.9 in the textbook), whose corresponding RE may be shown to be (R+SU*T)*SU* (provable by the type of conversion described in Fig. 3.4).

[image: image6]
Fig. 3.5 The first type of partial result of Step 2 (a 2-state automaton.

· If q = q0, then perform one more state elimination to eliminate q, leaving only the start state q0 as shown in Fig. 3.6 (also, see an example later). The corresponding RE is R*.

· Collect the result for each final state derived as above to get the final result.

[image: image7]
Fig. 3.6 The first type of partial result of Step 2.

· Example 3.5A (supplemental) (for the case q = q0 in Step 3 discussed above) ---
Given a DFA as shown in Fig. 3.7, try to find the equivalent RE.

[image: image8]
Fig. 3.7 DFA used for Example 3.5A for the case q = q0.
· Regard q0 as two separate but identical states, and regard q as s.
· Apply the conversion scheme shown in Fig. 3.4 to eliminate q1 and obtain a result as shown in Fig. 3.8.
· Use the result R11 + Q1S*P1 = X + YV*Z as R into Fig. 3.6 to obtain a result as shown in Fig. 3.9.
· And the final result is R* = (X + YV*Z)*.
(This result might be used in your homework.)

[image: image9]
Fig. 3.8 Process for obtaining the RE for the DFA of Example 3.5A shown in Fig 3.7.

[image: image10]
Fig. 3.9 The final result for obtaining the RE for the DFA of Example 3.5A shown in Fig 3.7.
· Example 3.5 revisited (solved by state elimination) ---
Use the state elimination scheme to obtain the RE for the DFA of Example 3.5 (not Example 3.5A) shown in Fig. 3.3 (which is repeated below).

[image: image11]
Fig. 3.3 The DFA of Example 3.5 (repeated here for viewing convenience).

· Use the derivation for 2-state automaton described previously (shown in Fig. 3.5 and repeated below) directly to get R = 1, S = 0, T = , U = 0 + 1.

[image: image12]
Fig. 3.5 The first type of partial result of Step 2 (a 2-state automaton (repeated here for viewing convenience).

· The desired result is:
(R+SU*T)*SU* = (1 + 0(0 + 1)*)*0(0 + 1)*

= 1* 0(0 + 1)*.
The same as derived before. Correct!
· Example 3.6 ---
Use the state elimination scheme to obtain the RE for the NFA shown in Fig. 3.9.

[image: image13]
Fig. 3.9 NFA of Example 3.6.
· Step 1: regard all symbols on the arcs as RE’s, we get a result as shown in Fig. 3.10.

[image: image14]
Fig. 3.10 Result of Step 1 of Example 3.6.
· Step 2: to remove B, applying the state-elimination conversion shown in Fig. 3.11 (a repetition of Fig. 3.4), we get s = B, q1 = A, q2 = C, S = , Q1 = 1, P1 = 0 + 1, R11 =  so that
R11 + Q1S*P1 =  + 1*(0 + 1) = 1(0 + 1) = 1(0 + 1).
And the resulting intermediate NFA is as shown in Fig. 3.12.

[image: image15]
Fig. 3.11 A repetition of Fig. 3.4.

[image: image16]
Fig. 3.12 Result of Step 2 of Example 3.6.

· Step 3: for the final state D, we have to remove C further using the conversion shown in Fig. 3.11 again, resulting in s = C, q1 = A, q2 = D, S =  Q1 =1(0 + 1), P1 =0 + 1, R11= , so that
R11 + Q1S*P1 =  + 1(0 + 1)*(0 + 1) = 1(0 + 1)(0 + 1).
And the resulting intermediate NFA is as shown in Fig. 3.13.

[image: image17]
Fig. 3.12 Result of Step 3 of Example 3.6.

· Step 4: by the conversion using the 2-state automaton shown in Fig. 3.13 (a repetition of Fig. 3.5), we get R = (0 + 1), q1 = A, q2 = D, S = 1(0 + 1)(0 + 1), T = , U = so that
(R+SU*T)*SU* = (0 + 1 + 1(0 + 1)*)*(1(0 + 1)(0 + 1)) *
= (0 + 1)*1(0 + 1)(0 + 1).
And the resulting intermediate NFA is as shown in Fig. 3.14.

[image: image18]
Fig. 3.13 A repetition of Fig. 3.5 (a 2-state automaton (repeated here for viewing convenience).

[image: image19]
Fig. 3.14 Result of Step 4 of Example 3.6.

· Step5: for the other final state C, starting from Fig. 3.14, we have to eliminate D using the state elimination scheme shown in Fig. 3.11, and since D has no successor, deleting D has no effect to the other parts, resulting in the diagram shown Fig. 3.15.

[image: image20]
Fig. 3.15 Result of Step 5 of Example 3.6.

· Step 6: by the conversion shown in Fig. 3.11 again, we get

(R+SU*T)*SU* = (0 + 1 + 1(0 + 1)*)*(1(0 + 1))*
= (0 + 1)*1(0 + 1).
· Step 7: the final result is a sum of the previous two derivation results:

desired RE = (0 + 1)*1(0 + 1) + (0 + 1)*1(0 + 1)(0 + 1)
which may be checked for its correctness.
1.2.3 Converting RE’s to Automata

· Theorem 3.7 ---

Every language defined by an RE is also defined by an FA.

Proof.
· Basis ---
There are three cases, as shown in Fig. 3.16, in which proper NFA’s have been constructed to accept respectively the strings represented by the three basic RE’s , , and a. It can be seen that each NFA works correctly; see the textbook for the proof.

[image: image21]
Fig. 3.16 Three basic constructions of NFA’s from RE’s.
· Induction ---
Three cases of the following need be considered as shown in Fig. 3.17 through Fig. 3.19, in which each case of RE operation result has a corresponding NFA. The NFA’s can be seen to work correctly; the details of proof can be found in the textbook.
(1) RE = R + S;
(2) RE = RS;
(3) RE = R*.

[image: image22]
Fig. 3.17 NFA for RE operation R + S.

[image: image23]
Fig. 3.18 NFA for RE operation RS.

[image: image24]
Fig. 3.19 NFA for RE operation R*.

· Example 3.8 ---
Convert RE (0 + 1)*1(0 + 1) into an -NFA.

· Step 1: the -NFA for RE 0 + 1 is as shown in Fig. 3.20.

[image: image25]
Fig. 3.20 The -NFA for RE 0 + 1 of Step 1 of Example 3.8 (Fig. 3.18(a) in the textbook).
· Step 2: the -NFA for RE (0 + 1)* is as shown in Fig. 3.21.

[image: image26]
Fig. 3.21 The -NFA for RE (0 + 1)* of Step 2 of Example 3.8 (Fig. 3.18(b) in the textbook).
· Step 3: the -NFA for RE (0 + 1)*1(0 + 1) is as shown in Fig. 3.22, where the part (B) in the figure means the partial -NFA resulting from Step 2 above. Note that we connect every two parts by an -transition in the figure.

[image: image27]
Fig. 3.22 The complete -NFA for RE (0 + 1)*1(0 + 1) of Step 2 of Example 3.8 (Fig. 3.18(c) in the textbook).
3.3 Applications of RE’s

· Two examples of applications of RE’s ---
· Lexical analysis

· Text search
1.3.1 RE’s in UNIX

· Concept: RE’s used in UNIX are extended versions of RE’s, allowing non-regular languages to be recognized.
· Rules for character classes of RE’s in UNIX ---
· The symbol . (dot) (any characters
· [a1a2…ak] (a1 + a2 + … + ak
· [a1-ak] ([a1a2…ak]

e.g., [0-9] ([0 1 … 9] (0 + 1 + … + 9

 [A-Z] (A + B + … +Z

 [A-Za-z0-9] (set of all letters and digits

 [+(.0-9] (characters for forming signed digits

· Special notations

e.g., [:digit:] = [0-9], [:alpha:] = [A-Za-z], [:alnum:] = [A-Za-z0-9]
· Operators used in UNIX:

· | as union (+ in RE

· ? as “zero or one of”
e.g., R? ( + R

· + as “one or more of”
e.g., R+ (RR* (= R+)

· {n} as “n copies of”
e.g., R{5} (RRRRR (= R5)

· * still used in UNIX with the same meaning
1.3.2 Lexical analysis

· An example recalled (in Chapter 1) ---
’[A-Z][a-z]*[][A-Z][A-Z]’ means the following RE:
(A+B+…+Z)(a+b+…+z)*_(A+B+…Z)(A+B+…+Z)

where _ means a blank.
· The above can be used to represent addresses like Ithaca NY, Buffalo NY, …
· UNIX commands ---
Each UNIX command lex or flex for lexical analysis has the following form:

UNIX-style RE

{code for lexical analyzer generation;}

· Examples ---
else

{return(ELSE);}

[A-Za-z][A-Za-z0-9]*

{code to enter the found identifier in the symbol table; return(ID);}

>=

{return(GE);}

…

1.3.3 Finding Patterns in Text

· Concept: we can use RE’s in UNIX for pattern search in Web pages.
· An example:
UNIX RE’s for addresses (incomplete) are of the following form:
’[0-9]+[A-Z]?[][A-Z][a-z]*([][A-Z][a-z]*)*[] (Street|St\.|Avenue|Ave\.|Road |Rd\.)’

· e.g., 123A Main Street, 20 Ta Hsueh Rd., …

· Notes:
· There is inconsistency in textbook; blanks should be replaced by [] (see p. 4 & p. 113 in the textbook)

· The backslash is used to differentiate a real dot from the dot used for ‘any character’)
3.4 Algebraic Laws for RE’s

· Purpose of this section: to derive “high-level” algebraic laws for equivalent RE’s
· Definition: two RE’s are said to be equivalent if the languages they define are identical.
· A note: the RE’s to be discussed include variables, instead of just constants like , 0, 1, a, 01, …

1.4.1 Associativity and Commutativity
· Assume that L, M, and N are RE’s (variables). Some equalities involving associativity and commutativity are as follows.
· Commutative law for union ---
L + M = M + L
· Associative law for union ---
(L + M) + N = L + (M + N)
· Associative law for concatenation ---
(LM)N = L(MN)
(Note: the commutative law for concatenation is false.)

1.4.2 Identities and Annihilators
· There are some equalities involving the concepts of identity and annihilator as follows.

(Note: identity --- a component absorbed by another after some operation is conducted; annihilator --- a component causing another to cease to exist after some operation is conducted.)
·  (identity for union (
[image: image28.wmf]Q

 + L = L +  = L)

· U (annihilator for union (
[image: image29.wmf]Q

U + L = L + U = U)

·  (identity for concatenation (
[image: image30.wmf]Q

L = L = L)

·  (annihilator for concatenation (
[image: image31.wmf]Q

L = L = )
(Note:
[image: image32.wmf]Q

 means “because.”)
1.4.3 Distributive Laws

· There are two equalities involving distributiveness, which are as follows.
· Left distributive law of concatenation over union ---
L(M + N) = LM + LN
· Right distributive law of concatenation over union ---
(M + N)L = ML + NL
(Note: U denotes the universal language.)
1.4.4 The Idempotent Law

· The idempotent law for union ---
L + L = L
(Note: “idempotent” means “relating to or being a mathematical quantity which when applied to itself under a given binary operation (as multiplication) equals itself”;【數】冪等(的); 等冪(的).)
1.4.5 Laws Involving Closures

· There are a few equalities involving the operation of closure as follows.
· (L*)* = L*
· * = 

· * = 

· L+ = L*L = LL*

· (L + M)* = (L*M*)*
· L* = L+ +  (easy)

· L? = + L (the definition of ? were given before)

(For the proofs, see the textbook.)

(Read Sections 3.4.6 & 3.4.7 by yourself.)
3.4.7a Some RE Equalities (supplemental)
· There are more RE equalities which are useful for RE simplification as follows, where p, q, and r are RE’s.
· (* = * = 

· rr* = r*r

· r* = r*r* = (r*)* = r* + r*

· r* =  + rr* =  + r*r =  + r* = ( + r)* = ( + r)r*
· r* = (r + r2 + … +rk)*
(k (1)
· r* =  + r + r2 + … + rk - 1 + rkr*
(k (1)

· (p + q)* = (p* + q*)* = (p*q*)* = p*(qp*)* = (p*q)*p*
· (pq)*p = p(qp)*
· (p*q)* = + (p + q)*q
· (pq*)* =  + p(p + q)*

(For proofs, see the text and exercises of Chapter 6 in my Chinese textbook)
[image: image33.png]

[image: image34.png]

-NFA

RE

NFA

DFA

k

i

j

…

…

(Rkk(k-1))*

circulating zero or more times

Rkj(k-1)

Rik(k-1)

…

0, 1

1

start

2

0

1

Fig. 3.8 in textbook (partial)

S

q1

q2

s

R11

Q1

P1

. . .

. . .

q1

q2

R11+ Q1S*P1

. . .

. . .

Fig. 3.7 in textbook (partial)

U

R

q0

q

S

T

start

Fig. 3.9 in textbook

R

q0

start

Fig. 3.10 in textbook

V

X

q0

q

Y

Z

start

Fig. 3.8 in textbook (partial)

Fig. 3.7 in textbook (partial)

S= V

q0

q0

s

R11=X

Q1=Y

P1=Z

. . .

. . .

q0

q0

R11+ Q1S*P1

=X+YV*Z

. . .

. . .

R=X + YV*Z

q0

start

0, 1

1

start

2

0

1

U

R

q0

q

S

T

start

Fig. 3.9 in textbook

A

start

B

1

0, 1

C

0, 1

D

0, 1

C

A

start

B

1

0 + 1

0 + 1

D

0 + 1

S

q1

q2

s

R11

Q1

P1

. . .

. . .

q1

q2

R11+ Q1S *P1

. . .

. . .

A

start

0 + 1

C

1(0 + 1)

D

0 + 1

A

start

0 + 1

1(0 + 1)(0 + 1)

D

U

R

q0

q

S

T

start

Fig. 3.9 in textbook

A

start

0 + 1

1(0 + 1)(0 + 1)

D

A

start

0 + 1

C

1(0 + 1)



RE = 

RE = 

a

RE = a

RE = R + S

R

S









RE = RS

R



S

RE = R*

R









R0

0

1









0

1

















(B)

0

1









1

(B)





.

.

.

PAGE
18

_1325773770.unknown

