Chapter 2
Finite Automata
(part B)
(2015/10/02)
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2.0 Introduction (in part a)
2.1 An Informal Picture of Finite Automata (in part a)
2.2 Deterministic Finite automata (in part a)
2.3 Nondeterministic Finite Automata (in part a)
2.4 An Application: Text Search

2.5 Finite Automata with Epsilon-Transitions
2.4 An Application ( Text Search
2.4.1 Finding Strings in Text

· Concept: searching Google for a set of words is equivalent to just finding strings in documents

· Techniques

· Using inverted indexes

· Using finite automata
· Technique using inverted indexes --- as illustrated by Fig. 2.14.

[image: image2]
Fig. 2.14 An illustration of the technique of inverted indexes.
· Applications unsuitable to use inverted indexing:

· The document repository changes rapidly.

· Documents to be searched cannot be catalogued.
2.4.2 NFA’s for Text Search

· A simple example (supplemental) ---
Find the DFA equivalent to the NFA which searches words of x1 = ab and x2 = b in long text strings over the alphabet  = {a, b}.
· Such words y1 and y2 may be described as 

Segment x1 = ab or x2 = b following any string of a and b, and followed by any string of a and b.

· Equivalently, the two words are two strings y1 and y2 which may be described by concatenations as 

y1 = z1x1z2
y2 = z3x2z4
where zi with i = 1, 2, 3, 4 is any string of a and b

·  An intuitive solution in NFA form according to the above discussion can be drawn directly as shown in Fig. 2.15.

[image: image3]
Fig. 2.15 An NFA for searching words of x1 = ab and x2 = b in long text strings.
· By the lazy evaluation method, the transition table of a DFA equivalent to the NFA in Fig. 15 is shown in Table 2.6 (note: state 12 means state {1, 2}, etc.). The detail of obtaining the DFA is left as an exercise.
Table 2.6 The transition table for the DFA which is equivalent to the NFA of Fig. 2.15.
	
	a
	b

	({1}
{1, 2}
*{1, 3}
*{1, 2, 3}
*{1, 3, 4}
*{1, 2, 3, 4}
	{1,2}
{1, 2}
{1, 2, 3}
{1, 2, 3}
{1, 2, 3, 4}
{1, 2, 3, 4}
	{1, 3}
{1, 3, 4}
{1, 3}
{1, 3, 4}
{1, 3, 4}
{1, 3, 4}


· The transition diagram of the DFA equivalent to the NFA is shown in Fig. 2.16.


[image: image4]
Fig. 2.16 A DFA equivalent to the NFA in Fig. 2.15.
2.4.3 A DFA to Recognize a Set of Keywords

· Example 2.14 ---

use an NFA to search two keywords “web” and “eBay” among text.
· Derive the desired NFA in a way as described previously, which is shown in Fig. 2.17.

[image: image5]
Fig. 2.17 The NFA for Example 2.14.
· How to implement the NFA？
· Write a simulation program like Fig. 2.8 which is repeated here as Fig. 2.18 below.

[image: image6]
Fig. 2.18 The NFA of Example 2.2 accepting x = 00101 which can be implemented by a simulation program.

· Convert the NFA to an equivalent DFA using subset construction and simulate the DFA, which is shown as the Fig. 17 in the textbook (not the Fig. 17 above in this lecture note!!!). 
· Some rules may be inferred as a theorem for constructing directly this kind of keyword-recognition DFA. (For the details, read the textbook by yourself.)
2.5 Finite Automata with Epsilon-Transitions

2.5.1 Use of -transitions

· Concepts ---

· We allow the automaton to accept the empty string.

· This means that a transition is allowed to occur without reading in a symbol.

· The resulting NFA is called -NFA.

· It adds “programming (design) convenience” (more intuitive for use in designing FA’s)
· Example 2.16 --- 

An -NFA accepting decimal numbers like 2.15, .125, +1.4, -0.501… is as shown in Fig. 2.19. 
· To accept a number like “+5.” (nothing after the decimal point), we have to add q4.

[image: image7]
Fig.2.19 An -NFA accepting decimal numbers.
· Example 2.17 --- 
A more intuitive -NFA for Example 2.14 is shown in Fig. 2.20.

[image: image8]
Fig. 2.20 A more intuitive -NFA for Example 2.14.
2.5.2 Formal Notation for an -NFA

· Definition ---

An -NFA A is denoted by A = (Q, , , q0, F) where the transition function  takes the following as arguments:

· a state in Q, and
· a member of ∪{}.
· Notes ---
· The empty string  cannot be used as an input symbol, but can be accepted to yield a transition!

· (qi, ) is defined for every state qi (getting into the dead state  if there is no next state with  as input symbol originally).
· Example 2.18 --- 

The -NFA of Fig. 2.19 is described as follows.
· E = ({q0, q1, ..., q5}, {., +, (, 0, 1, ..., 9}, , q0, {q5}).
· The transitions include, e.g.,
· (q0, ) = {q1};
· (q1, ) = .
· See Table 2.7 for a complete transition table of E.
Table 2.7 The transition table for the -NFA of example 2.18.
	
	
	
	
	0, 1, …, 9

	q0
q1
q2
q3
q4
q5
	{q1}


{q5}


	{q1}





	

{q2}




{q3}


	
{q1, q4}
{q3}
{q3}




2.5.3 Epsilon-Closures -closures)

· Concepts ---

· We have to define the -closure to define the extended transition function for the -NFA.

· We “-closure” a state q by following all transitions out of q that are labeled .
· Formal recursive definition of the set ECLOSE(q) for q ---
· Basis: state q is in ECLOSE(q) (i.e., ECLOSE(q) includes the state q itself);

· Induction: if p is in ECLOSE(q), then all states accessible from p through paths of ’s are also in ECLOSE(q).

(A metaphor: those “state stations” accessible through “-type highways” are all included in ECLOSE(q).)
(比喻：“經式快速道路路段可到的所有states車站皆算在ECLOSE(q)之內”)
· Definition of the-closure of a set S of states ---
ECLOSE(S) = ∪q(S ECLOSE(q).
· Example 2.19 ---
Given an -NFA as shown in Fig. 2.21, we have
· ECLOSE(1) = {1, 2, 3, 4, 6};
· ECLOSE({3, 5}) = ECLOSE(3)∪ECLOSE(5) = {3, 6}∪{5, 7} = {3, 5, 6, 7}.
[image: image1]Fig. 2.21 The -NFA of Example 2.19.

2.5.4 Extended Transitions & Languages for -NFA’s

· Recursive definition of extended transition function 
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· Basis: 
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(q, ) = ECLOSE(q). 

· Induction: if w = xa, then 
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(q, w) is computed as:

If 
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(q, x) = {p1, p2, …, pk} and 
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(pi, a) = {r1, r2, …, rm}, then
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(q, w) = ECLOSE({r1, r2, …, rm}) = ECLOSE(
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(pi, a)).
· An illustration of the above definition is shown in Fig. 2.22.
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Fig. 2.22 A illustration of computing the recursive definition of extended transition function 
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· Example 2.20 --- 

Compute 
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(q0, 5.6) for the -NFA of Fig. 2.19.

· Compute 
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(q0, 5) = 
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(q0,5) first:
· 
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(q0, ) = ECLOSE(q0) = {q0, q1};
· q0, 5)∪(q1, 5) = ∪{q1, q4} = {q1, q4};
· 
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(q0, 5) = 
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(q0, 5) = ECLOSE((q0, 5)∪(q1, 5))

= ECLOSE({q1, q4}) = ECLOSE({q1})∪ECLOSE({q4})
= {q1, q4}.
(Complete the rest of computations by yourself!)
· The language of an -NFA ---

Given an -NFA E = (Q, , , q0, F), the language accepted by it is
L(E) = {w | 
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(q0, w)∩F ( }.
2.5.5 Eliminating -Transitions

· Concepts ---
· The -transition is good for design of FA, but for implementation, they have to be eliminated.

· Given an-NFA, we can find an equivalent DFA (a theorem seen later).
· Proof of equivalence of the -NFA and the DFA ---
· Let E = (QE, , E, q0, FE) be the given -NFA, the equivalent DFA D = (QD, ,D, qD, FD) is constructed as follows.

· QD is the set of subsets of QE in which each subset S is accessible as an -closed subset of QE, i.e., S (( QE such that S = ECLOSE(S).
(In other words, each -closed set S of states includes those states such that any -transition out of one of the states in S leads to a state that is also in S.)
· qD = ECLOSE(q0) (initial state of D).
· FD = {S | S(QD and S∩FE ( (}.
· D(S, a) is computed for each a in  and each S in QD in the following way:

(1) let S = {p1, p2, ..., pk};
(2) compute 
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(pi, a) and let this set be {r1, r2, …, rm};
(3) set D(S, a) = ECLOSE({r1, r2, …, rm}) = ECLOSE(
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(pi, a)).
· Technique to create accessible states in DFA D ---
· Starting from the start state q0 of -NFA E, generate ECLOSE(q0) as the start state qD of D.
· From the generated states, derive the other states.
· Example 2.21 --- 
Eliminate the -transitions of Fig. 2.19 above.

· Start state qD = ECLOSE(q0) = {q0, q1}.
· D({q0, q1}, +) = ECLOSE(E(q0, +)∪E(q1, +)).
= ECLOSE({q1}∪) = ECLOSE({q1}) = {q1}, ...

· D({q0, q1}, 0) = ECLOSE(E(q0, 0)∪E(q1, 0))
= ECLOSE (∪{q1, q4}) = ECLOSE({q1, q4}) = {q1, q4}, ...

· D({q0, q1}, .) = ECLOSE(E(q0, .)∪E(q1, .)) = {q2}.
(The above partial derivation may be described by Fig. 2.23.)
· D({q1}, 0) = ECLOSE(E(q1, 0)) = ECLOSE({q1, q4}) = {q1, q4}...

· D({q1}, .) = ECLOSE(E(q1, .)) = ECLOSE({q2}) = {q2}.
(The above partial derivation may be described by Fig. 2.24.)

[image: image27]
Fig. 2.23 The first partial derivation of the equivalent DFA of the -NFA of Example 2.21.

[image: image28]
Fig. 2.24 The second partial derivation of the equivalent DFA of the -NFA of Example 2.21.

· D({q1, q4}, 0) = ECLOSE(E(q1, 0)∪E(q4, 0)) = ECLOSE({q1, q4}∪) = {q1, q4}...

· D({q1, q4}, .) = ECLOSE(E(q1, .)∪E(q4, .)) = ECLOSE({q2}∪{q3})
= ECLOSE(q2)∪ECLOSE (q3) = {q2}∪{q3, q5} = {q2, q3, q5}.
(The above partial derivation may be described by Fig. 2.25.)
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[image: image29]
Fig. 2.25 The third partial derivation of the equivalent DFA of the -NFA of Example 2.21.

· D({q2}, 0) = ECLOSE(E(q2, 0)) = ECLOSE({q3}) = {q3, q5}…
· D({q2, q3, q5}, 0) = ECLOSE(E(q2, 0)∪E(q3, 0)∪E(q5, 0))
= ECLOSE({q3}∪{q3}∪) = ECLOSE(q3) = {q3, q5}…

(The above partial derivation may be described by Fig. 2.26.)


[image: image30]
Fig. 2.26 The fourth partial derivation of the equivalent DFA of the -NFA of Example 2.21.

· D({q3, q5}, 0) = ECLOSE(E(q3, 0)∪E(q5, 0)) =ECLOSE({q3}∪) = ECLOSE(q3)
= {q3, q5}…

(The above fifth derivation may be described by Fig. 2.27.)


[image: image31]
Fig. 2.27 The fifth partial derivation of the equivalent DFA of the -NFA of Example 2.21.

· The dead state  need be shown to get the final version of the desired DFA as shown in Fig. 28.
· But according to Section 2.3.6, the diagram in Fig. 27 may be regarded as deterministic.
(A suggestion to the reader: you would better repeat the above entire derivation process to get a full understanding of the involved details.)

[image: image32]
Fig. 2.28 The complete derivation of the equivalent DFA of the -NFA of Example 2.21.

· Theorem 2.22 ---
A language L accepted by some -NFA if and only if L is accepted by some DFA.

· Proof: see the textbook yourself.
· A Review ---
· 3 Types of Automata:
· DFA


--- good for soft/hardware implementation;
· NFA (
[image: image33.wmf]ε

-NFA )
--- intermediately intuitive;
· -NFA


--- most intuitive

(Note: notation 
[image: image34.wmf]ε

 in the above is pronounced as “non-epsilon.”)
· Some equivalence relations among these 3 types of automata are shown in Fig. 2.29.

[image: image35]
Fig. 2.28 Some relations among the three types of automata DFA, 
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-NFA, and -NFA.
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