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10.0 Introduction
· Concepts to be taught ---
· We will study the theory of “intractability.” That is, we will study the techniques for showing problems not solvable in polynomial time.
· Definition of intractable problems – problems which can only be solved in exponential time.
· Review of two concepts ---
· The problems solvable on computers are exactly those solvable on Turing machines.

· Problems requiring polynomial time are solvable in amounts of time which we can tolerate, while those requiring exponential time generally cannot be solved in reasonable time except for small instances.

· We will study a “(boolean) satisfiability” problem equivalent to Lu and PCP.

· We also reduce tractable or intractable problems but the reduction should be done in polynomial time. That is, we need polynomial-time reductions.

· Let  denote the class of problems which are solvable by deterministic TMs (DTMs) in polynomial time.
· Let  denote the class of problems which are solvable by nondeterministic TMs (NTMs) in polynomial time.

· A major assumption in the theory of intractability is  (  (still an open problem).

·  (  means:  includes at least some problems which are not in  (even if we allow a higher-degree polynomial time for the DTM).

· There are thousands of problems in  which are easily solved by a polynomial-time NTM but no polynomial-time DTM is known for their solution.
· Either all of these problems in  have polynomial-time deterministic solutions or none does (i.e., they require exponential time).

10.1 The Classes  and 
· Concepts to be taught ---
· 

· 

· Technique of polynomial-time reduction

· NP-completeness
10.1.1 Problems Solvable in Polynomial Time
· Definitions --- 

· A TM M is said to be of time complexity T(n) [or to have “running time T(n)”] if whenever M is given an input w of length n, M halts after making at most T(n) moves, regardless of whether or not M accepts.

· A language L is in class  if there is some polynomial T(n) such that L = L(M) for some DTM M of time complexity T(n).
· Questions ---
· (in-box discussion, p. 427) Is there anything between polynomial time O(nk) and exponential time O(2cn) for some constant c ?

Answer: Yes! It is O(nlog2n) = O(2(log2n)2). Why? 

· log2n > k for large n

· cn > (log2n)2 for large n

10.1.2 An Example: Kruskal’s Algorithm

· Definitions –

· Graphs --- nodes + edges + weights

· Spanning tree --- a subset of edges such that all nodes are connected

· Minimum-weight spanning tree (MWST) --- a spanning tree with the least possible total edge weight
· Kruskal provides a “greedy’ algorithm for finding an MWST.

· Kruskal’s algorithm may be solved in polynomial time by a computer: 

· in O(n2) easily;

· in O(nlogn) more efficiently.
· The modified MWST problem ---
“does graph G has an MWST of total weight W or less?”
· This problem may solved in polynomial time O(n4) by a DTM (see pp. 430-431 in the textbook).
· Conclusion ---
The MWST problem is in .
10.1.3 Nondeterministic Polynomial Time

· Definition ---
A language L is in class  if there is some polynomial T(n) such that L = L(M) for some NTM M of time complexity T(n), where n is the length of an input.
(Note: NP means nondeterministic polynomial)

· Because DTM’s are also NTM’s, so  ( .

· It seems some problems in  is not in , but actually “whether  = ?” is an open problem.

· That is, whether everything that can be done in polynomial time by an NTM can in fact be done by a DTM in polynomial time, perhaps with a higher-degree polynomial, is unknown yet.
10.1.4 An  Example: The Traveling Salesman Problem

· Definition of traveling salesman problem (TSP) ---
Given a graph with integer weights on edges and a weight limit, if there is a Hamilton circuit of total weight at most W in the graph?

· Hamilton circuit --- a set of edges that connect the nodes into a single cycle (“completing the traversal in one way to save time and gas” “一趟走完, 省時省油”).

· Properties of the TSP ---
· It appears that all ways to solve the TSP have to try all cycles and computing their total weights.

· The number of cycles in a graph with m nodes is O(m!) which is more than the exponential time O(2cm) for any constant c.

· If we have a nondeterministic computer or NTM, we can guess all permutations of nodes and compute their weights in order in polynomial time O(n) and O(n4), respectively, using a single-tape TM. (note: n here = m in the last page)

· So, the TSP is in .

10.1.5 Polynomial-Time Reductions

· Concepts --- 

· To prove a problem P2 not in , 
we can reduce a problem P1 also not in  to it. 
(A)
· An illustrative diagram is Fig. 10.1 (Fig. 10.2 in the textbook) below (similar to Fig. 8.7).
· The reduction algorithm should take polynomial time; otherwise, the proof will not be valid.
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Figure 10.1 Reduction of problems.
· Proof of statement (A) above (by contradiction) ---
· Assume P2 is in .
· Given an input to P1, the reduction includes translation of P1 to P2 and the output of P2.

· Polynomial-time reduction means:

· the translation takes time O(mj) on input of length m;
· the output instance of P2 cannot be longer than the number of steps O(mj), so that its length is at most O(cmj).

· Suppose that we can decide the membership in P2 in time O(nk) for an input of length n.

· Then we can decide the membership of P1 for an input of length m by conducting:

· the reduction of translating P1 to P2 with output instance of P2 of length O(cmj); and 

· performing the decision work about P2.
· The total work takes time O(mj) + O((cmj)k) = O(mj + cmjk), which is an order of polynomial time (since c, j, k are all constants). (See the illustration in Fig. 10.2).

· Therefore, decision of P1 takes polynomial time. That is, P1 is in .
· This is a contradiction because we have known that P1 is not in .
· Therefore, the assumption “P2 is ” made initially is wrong. Done.
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Fig. 10.2 Time complexity of problem reduction.
· Concepts ---
· Reversely, we can also say that if P2 is in , and P1 can be reduced to P2 in polynomial time, then P1 is also in .

· Summary: if P1 (reduce P2, then 

· P1 not in  ( P2 not in ; 

· P2 in  ( P1 in .

· Only polynomial-reductions will be used in the study of intractability.

10.1.6 NP-Complete Problems

· Definition of NP-completeness ---

Let L be a language (problem). We say L is NP-complete if the following statements about L are true:
· L is in .

· For every language L' in , there is a polynomial-time reduction of L' to L (every: “completeness”).
· Some comments on NP-completeness ---
· As will be seen, an NP-complete problem is the TSP.

· It appears that  ( , and that all NP-complete problems are in  ( , so we view a proof of NP-completeness of a problem as a proof of the fact that the problem is not in .

· We will show our first NP-complete problem to be the (boolean) satisfiability problem (SAT) by showing that the language of every polynomial-time NTM has a polynomial-time reduction to the SAT.

· Once we have an NP-complete problem, we can prove a new problem P to be NP-complete by reducing some known NP-complete problem to it (P), using a polynomial-time reduction.

· Theorem 10.4 ---
If P1 is NP-complete, P2 is in , and there is a polynomial-time reduction of P1 to P2, then P2 is NP-complete.

Proof.

· By the 2nd point of the definition of NP-completeness, we have to show every language L in  polynomial-time reduces to P2. 

· Since P1 is NP-complete, we know that L may be reduced to P1 in polynomial-time p(n).

· Thus, a string w in L of length n is converted to a string x in P1 of length at most p(n).

· Also, we know P1 may be reduced to P2 in polynomial time, say, q(m).

· This reduction transforms x to a string y in P2, taking time at most q(p(n)).

· So, the transformation of w to y takes time at most p(n) + q(p(n)), which is a polynomial.

· Therefore, L is polynomial-time reducible to P2. Done.
(A diagram like the previous one may be drawn.)

· Theorem 10.5 ---
If some NP-complete problem P is in , then  = .

(A wish to achieve so that the open problem can be solved!)

Proof.
· Since P is NP-complete, all languages L in  reduce to P in polynomial time. And Since P is in , then L is in  (by Section 10.1.5, green line in p.27).

· That is, all languages L in  are also in , i.e., (.
· By definition, we have (. So,  = . Done.
10.2 An NP-Complete Problems

· NP-hard problem (An in-box note of the last section) ---
· Some problems are so hard that we can prove Condition (2) of the definition of NP-completeness (“every language in  reduces to language L in polynomial time”) but we cannot prove Condition (1) (“L is in .”)

· “Intractable” is usually used to mean “NP-hard”.
10.2.1 The Satisfiability Problem

· Definition ---
The boolean expressions are built from the following elements.

· Variables with values 1 (true) and 0 (false).

· Binary operators ( and ( for logical AND and OR, respectively.

· Unary operator ( for logical NOT (negation).

· Parentheses ( and ) used to alter the default precedence of operators: ( (highest), (, ( (lowest).

· Example 10.6 ---
An example of boolean expression is E = x ( ( (y ( z). 

· For E to be true, the only truth assignment T is: x is true, y is false, and z is false. 

· Definitions ---

· A truth assignment T for a given boolean expression E assigns either true or false to each of the variables mentioned in E.

· The value assigned to a variable x is denoted by T(x).

· The overall value of E is denoted by E(T).

· A truth assignment T is said to satisfy boolean expression E if E(T) = 1.

· A boolean expression is said to be satisfiable if there exists at least one truth assignment T that satisfies E.

· Example 10.7 ---

The boolean expression E of the last example is satisfiable because the truth assignment T defined by T(x) = 1, T(y) = 0, and T(z) = 0 satisfies E. 

· It can be figured out that the boolean expression E' = x ( ((x ( y) ( (y is not satisfiable (for details, see the textbook) 
· Definition --- 

The satisfiability problem is:

given a boolean expression, is it satisfiable?

which will be abbreviated as SAT.

· Stated as a language, the problem SAT is the set of (coded) boolean expressions that are satisfiable.

10.2.2 Representing SAT Instances

· Concepts ---
· We assume the variables are numbered as x1, x2, …

· To represent the boolean expression by codes,

· the symbols (, (, (, (, and ) are represented by themselves;

· the variable xi is represented by x followed by 0’s and 1’s that represent i in binary.

· Example 10.8 ---
The boolean expression of Example 10.6 E = x ( ( (y ( z) may be coded as x1 ( ( (x10 ( x11) after regarding x, y, and z as x1, x2, and x3, respectively.

10.2.3 NP-completeness of the SAT Problem

· Concepts ---
· The SAT problem is NP-complete.
· To prove this, we have to do the following:

· show the SAT problem is in ; and
· reduce every language in  to the SAT problem.
· Theorem 10.9 (Cook’s Theorem) (The greatest theorem in computational complexity)---
SAT is NP-complete.

Proof. (too long; only a sketch is shown here)

(part A --- proving that SAT is in )
· use the nondeterministic ability of an NTM to guess a truth assignment T for the given expression E in polynomial time O(n4) (see the textbook for the details).
(part B --- proving if language L is in , there is a polynomial-time reduction of L to SAT)
· describe the sequence of ID’s of the NTM accepting L in terms of boolean variables;

· express acceptance of an input w by writing a boolean expression that is satisfiable if and only if M accepts w by a sequence of at most p(n) moves where n = |w| (see the textbook for the details).
10.3 A Restricted Satisfiable Problem

· Concepts to be taught ---
· We want to prove a wide variety of problems, such as the TSP, to be NP-complete.

· For this purpose, we may reduce SAT to each of these problems in polynomial time.

· But before that, we introduce a simpler SAT problem, called 3SAT, and reduce SAT to a normal form of it, called CSAT, in polynomial time.

· That is, we want to perform reductions in a sequence of SAT ( CSAT ( 3SAT ( other problems.
10.3.1 Normal forms for Boolean Expressions

· Definitions –

· A literal is either a variable or a negated one, like x and (x. And we use(y for (y;

· A clause is a logical OR of one or more literals, like x, x ( y, and x ((y ( z.

· A boolean expression is said to be in conjunction normal form or CNF, if it is the AND of clauses.
· Notations for compression –

· use + for (;

· treat ( as a product and use juxtaposition (no operator) for it (like concatenation).

· Example 10.10 ---

· Boolean expression (x((y)(((x(z) now becomes (x + 
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 + z) which is in CNF.

· Boolean expression (x + y
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)(x + y + z)(
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 + 
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) is not in CNF because x + y
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 is not a clause.
· Definition --- 
· A boolean expression is said to be in k-CNF if it is the product of clauses, each being of the sum of exactly k distinct literals.

· For example, (x + 
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)(
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 + z) is in 2-CNF because every clause has two literals.
· Definitions --- 

· CSAT is the problem: “given a boolean expression in CNF, is it satisfiable?”
· kSAT is the problem: “given a boolean expression in k-CNF, is it satisfiable?”
· Properties --- 
· It can be proved that CSAT, 3SAT and kSAT with k > 3 are all NP-complete (later in Sections 10.3.2 & 10.3.3).

· However, there are linear-time algorithms for 1SAT and 2SAT.

10.3.2 Converting Expressions to CNF

· Concepts ---
· Two boolean expressions are said to be equivalent if they have the same result on any truth assignment to their variables.

· If two expressions are equivalent, then either both are satisfiable or neither is.

· We want to reduce SAT to CSAT, by taking an SAT instance E and convert it to a CSAT instance F such that F is satisfiable if and only if E is. (E and F need not be equivalent.)
· Reduction of SAT to CSAT ---
· The above-mentioned reduction of SAT to CSAT consists of two parts:

· Step 1 - Push all (’s down so that negations are of variables and the new expression becomes an AND and OR of literals (equivalent to the original).

· Step 2 - Write the above result into a product F of clauses to become CNF in polynomial time (not need to be equivalent to the result of last step), so that F is satisfiable if and only if the old expression E is.

· The 2nd step above is implemented by creating an extension of the original assignment T.

· We say S is an extension of T if S assigns the same value as T to each variable that T assigns, but S may also assign a value to variables that T does not mention.

· The 1st step above is implemented as follows.

· ((E(F) ( ((E)(((F) 
(one of DeMorgan’s laws)

· ((E(F) ( ((E)(((F) 
(the other of DeMorgan’s laws)

· ((((E)) ( E 
(Law of double negation)

· Example 10.11 ---
The boolean expression E = (((((x + y))(
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 + y)) may be simplified by the above rules to be 

E = (((((x + y))(
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 + y))


( ((((x + y)) + ((
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 + y)


( (x + y) + (((
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))(
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)


( x + y + x
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which is an OR-and-AND expression of literals.

· Theorem 10.12 ---
Every boolean expression E is equivalent to an expression F in which the only negations occur in literals, i.e., they apply directly to variables. Moreover, the length of F is linear in the number of symbols of E, and F can be constructed from E in polynomial time.

(for proof, see the textbook; if E has n operators, then F has no more then 2n – 1 ones)
· A comment --- the details of the 2nd step mentioned in the last section, Section 10.3.2, will be implemented in the proof of the following theorem.
· Theorem 10.13 ---
CSAT is NP-complete.

Proof. 

· We prove the theorem by reducing SAT to CSAT.

· The 1st step is to use Theorem 10.12 to convert the given instance of SAT to an expression E whose (’s are only in literals.

· We show the 2nd step of how to convert E to a CNF expression F in polynomial time here such that F is satisfiable if and only if E is.
· The construction of F is by an induction on the length of E.

· Basis: if E consists of one or two symbols, then it is a literal which is also a clause, and so E is already in CNF.

· Induction: assume every expression shorter than E has been converted into clauses. Two cases need be checked.

(1) E = E1 ( E2.
By induction, let F1 and F2 be CNF expressions derived from E1 and E2, respectively. Then, let F = F1 ( F2 which is also in CNF.
(2) E = E1 ( E2.

By induction, let F1 = g1 ( g2 ( … ( gp, F2 = h1 ( h2 ( … ( hq be CNF expressions derived from E1 and E2, respectively. Then, introduce a new variable y and let
F = (y + g1) ( (y + g2) ( … ( (y + gp) ( (
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 + h1) ( (
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 + h2) ( … ( (
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 + hq).

· For the rest of the proof, see the textbook.
· Example 10.14 --- 
Given the boolean expression E = x
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 + 
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(y + z), the corresponding CNF is constructed as follows.
· y + z ( (v + y)(
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 + z) with v as an introduced variable.

· 
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(y + z) ( 
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(v + y)(
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 + z).
· x
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 + 
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(y + z) ( x
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 + 
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(v + y)(
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 + z) ( (u + x)(u + 
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 + 
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[image: image35.wmf]u

 + v + y)(
[image: image36.wmf]u

 + 
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 + z) with u as an introduced variable.

· Theorem 10.15 ---
3SAT is NP-complete.

Proof.
· First, 3SAT is in  since SAT is in .

· Next, we want to reduce CSAT to 3SAT. Since SAT has already been reduced to CSAT, it means that SAT can be reduced to 3SAT, and we are done.

· Given a CNF expression E = e1 ( e2 ( … ( ek which is an instance of CSAT, we want to reduce it to an instance of 3SAT by transforming each ei into a valid form F for 3SAT in the following way:

(1) If ei is a single literal, say (x), then introduce two new variables u and v, and replace (x) by the four clauses (x + u + v)(x + u +(v)(x +(u + v)(x +(u +(v). The only way to make this expression true is for x to be true, as desired.

(2) If ei is the sum of two literals, (x + y), then introduce a new variable z and replace ei by (x + y + z)(x + y +(z). The only way to make this expression true is for (x + y) to be true, as desired.

(3) If ei is the sum of three literals, then it is already in the form required for 3-CNF.

(4) If ei = (x1 + x2 + … + xm) for m ( 4, then introduce new variables y1, y2, …, ym(3 and replace ei by the product of clauses

(x1 + x2 + y1)(x3 +(y1 + y2)(x4 +(y2 + y3)…(xm(2 +(ym(4 + ym(3)(xm(1 + xm +(ym(3).

(10.2)
If ei is true to make E true because one of its literal xj is true, then we may make y1 through yj(2 as well as yj(1 through ym(3 true for the clauses of (10.2) above to be true.

· For other parts of the proof, see the textbook.

10.4 Additional NP-complete Problems
10.4.1~10.4.6
· Theorems --- the following problems are all NP-complete:

· The problem of independent sets (IS)

· The node-cover problem (NC)

· The directed Hamilton-circuit problem (DHC)

· The (undirected) Hamilton-circuit problem (HC)

· The traveling salesman problem (TSP)
· Comments ---
· The reductions of all the above problems and others studied before are illustrated in Fig. 10.12.

· An independent set or stable set in a graph is a set of nodes, no two of which are adjacent (see Fig. 10.8 for an example).
· A node cover of a graph is a set of nodes such that each edge of the graph is incident to at least one node of the set (cf. edge cover).

[image: image38]
Figure 10.12 A hierarchy of problem reduction of the problems mentioned in this chapter.
· A mention of some content in Chapter 11 ---
· Co-  = complements of .
· See Figure 11.1.
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Figure 11.1 Relations of -related problems.[image: image40.png]
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