Formal Languages and Theory of Computation

Wen-Hsiang Tsai, Ph. D.

Life-time Chair Professor

蔡文祥
交大終身講座教授
2015/09/14
Chapter 0

Introduction

[image: image36.wmf]

=

¡H

Taj Mahal in India
[image: image1]

Outline
0.0 Reasons for Taking This Course

0.1 General Concepts

0.2 Problems Studied in Theory of Computation

0.3 Fields Related to Theory of Computation

0.4 Applications of Theory of Computation

0.5 Brief History of Theory of Computation

0.6 Textbooks and Course Grading
0.0 Reasons for Taking This Course
· There are many reasons for one to take this course:

· This course is the philosophy of computer science (CS).
· This course is indispensable for a complete study of CS.
· This course can broaden the views in all fields of CS.
· This course can enhance one’s problem solving capability.
· This course provides a basic training for undergraduate students.
· This is a background course for graduate students.
· This course is a qualification exam topic for Ph. D. students.
0.1 General Concepts
· Course title ---

Formal Languages and Theory of Computation (正規語言與計算理論)

· Scope of course:

· Formal languages

· Automata theory

· Computability

· Computational complexity
· Formal Languages ---

· Definition ---

Study of “strings of symbols,” including their descriptions, properties, generations, recognitions, compiling, applications, …
· Concepts ---
· Strings of symbols include those of natural languages, computer languages, discrete signals, …

· Formal languages are the results of study of automatic processing of symbolic information

· Formal languages are parallel to numerical mathematical processing

· Formal languages are similar to the role of set theory (集合論) in mathematics
· Automata Theory ---

· A question ---

Do you know how a vending machine works? Can you design one (see Fig. 1.1 for examples of vending machines)?

[image: image2]
Fig. 1.1 Vending machine room seen in Hokkaido, Japan 2004.
· An example (1/3) ---

How to design a vending machine?
· Answer: use a finite automaton!
· Assumptions (for simplicity):

· Only NT 5-dollar and 10-dollar coins are used.
· Only drinks all of 20 dollars are sold.
· Requiring “memory” called “states” for the design of the finite automaton which is based on a “transition diagram” as shown in Fig. 1.1.
· Some notes for explaining Fig. 1.2 --- see Fig. 1.3.

[image: image3]
Fig. 1.2 Transition diagram of a finite automaton for a vending machine.

[image: image4]
Fig. 1.3 Some notes for explaining Fig. 1.2.
· Definition of automata theory ---

Study of dynamic behaviors of “discrete-parameter information systems” in form of “abstract computing devices” or “machines.”
· Examples of discrete-parameter information systems ---

· digital systems, nerve systems, languages

· information transmission systems

· human-environment interactions, …
· Three major models of automata (see Fig. 1.4) ---

· generator --- with output and without input

· acceptor --- with input and without output

· transducer --- both with input and with output

[image: image5]
Fig. 1.4 Three models of finite automata.
· Examples ---

· generator ---

· “natural language” grammar (generating “sentences” spoken by people)

· reception robot (speaking organized words and sentences; see Fig. 1.5 for examples)

· context-free grammar (generating strings of symbols) ***

(*** abstract models studied in this course)

[image: image6.jpg]

 [image: image7.jpg]

(a) (b)
Fig. 1.5 Reception robots. (a) A robot seen World Expo 2005 in Japan. (b) Another robot (left) designed by Toshiba and used by Mitsukoshi
· acceptor ---

· digital lock (accepting digits; see Fig. 1.6 for an example)

· lexical analyzer (recognizing computer language keywords)

· finite automaton (accepting valid strings of symbols) ***

(*** abstract models studied in this course)

[image: image8]
Fig. 1.6 A digital lock.

· transducer ---

· Interpreter (translating natural languages; see Fig. 1.7 for an example)

· Compiler (translating high-level languages into machine codes)

· Turing machine (transforming strings of symbols) ***

(*** abstract models studied in this course)

[image: image9]
Fig. 1.7“Interpreter” (雙面翻譯) (a movie).
· Computability ---

· Definition ---

Study of problem solving capabilities of computational models.
· The most famous computational model ---
Turing machine (see Fig. 1.8)

[image: image10]
[image: image11]
(a) (b)
Fig. 1.8 Computational Models. (a) Alan Turing who invented the most famous computational model --- Turing machine. (b) The Turing machine (learned later)
· Problem types based on resources ---

· Impossible problem
· Possible-with-unlimited-resources-but-impossible-with-limited-resources problem
· Possible-with-limited-resources problem
· Problem types based on time (a type of resource) ---

· Undecidable problem --- a problem that cannot be solved, even given infinite time
· Intractable problem --- a problem that can be solved in theory (e.g., given large but finite time), but which in practice takes too long for their solutions to be useful (i.e., it cannot be solved in polynomial time)
· Tractable problems --- a problem that is neither undecidable nor intractable (i.e., it can be solved in polynomial time)
· Advantage of studying the theory of computability ---

Studies of computability help us not to waste time on “unsolvable problems” already investigated before.
· Computational complexity ---

· Definition ---

Study of “efficiency” of problem solving.
· The scope of computational complexity --- see Fig. 1.9 (learned later in this course)

· Concepts ---

· To unify comparison, an abstract model is needed as the machine for executing problem solutions.

· Usually the most famous “Turing machine” (an automaton) is used.

· Turing machine, though simple, has been proved to be able to simulate any problem solving steps (“algorithms”) designed by human beings!

· Turing machine is the foundation for development of modern computation theory!

[image: image12]
Fig. 1.9 The scope of computational complexity.
0.2 Problems Studied in Theory of Computation

· Essential problems studied ---

· “What are the fundamental capabilities and limitations of computers?”

· What can a computer do at all? --- studied in the domain of Computability!

· What can a computer do efficiently? --- studied in the domain of Computational complexity!
· A basic concept ---
A Turing machine conceptually is no more than a pen and a paper with several reasoning rules! And it is as powerful as a modern computer ! (See Fig. 1.10 for an illustration.)

[image: image13]
(a) (b) (c)
Fig. 1.10 An illustration of the concept of Turing machine. (a) A modern computer. (b) A pen and a piece of paper. (c) Turing machine.
0.3 Fields Related to Scope of Theory of Computation
· Many fields are related to the scope of the theory of computation:

· Compiling theory (based on formal languages

· Switching circuit theory (based on automata theory

· Algorithm analysis (based on computational complexity

· Natural language processing (based on formal languages

· Syntactic pattern recognition (based on formal languages

· Programming languages (based on formal languages

· Artificial intelligence (based on formal languages and automata theory

· Neural networks (based on automata theory

0.4 Applications of Theory of Computation

· List of applications ---
· Text analysis ---

· text search (文辭搜尋)

· text editing (文句編輯)
· Compiler design (編譯器設計)

· lexical analysis (辭彙分析)

· parser generation (剖析器產生)
· Language design

· programming language design (程式語言設計)

· document description language design (公文描述語言設計)

· e.g., HTML, XML, …

· picture language design (圖畫語言設計)

· e.g., SVG, VHML, …

· special language design (特別語言設計)
· Digital system design

· computer design (計算機設計)

· special digital system design (特殊數位系統設計)
· Protocol modeling and verification (網路協定模式化與驗証)

· Expert system design(專家系統設計)

· Cryptography(密碼學) …
· A specific application --- special digital system design

· Mainly based on automata theory --- using finite automata or “sequential machines” (finite automata both with input and with output)

· Some specific examples of digital systems --- elevators, vending machines, traffic signal control systems …
0.5 Brief History of Theory of Computation

· At beginning of 19th century, mathematicians believe:
axiomatization of mathematics (數學公理化).
· That is, it is possible to decide the truth of any mathematical statement thru use of inference rules and axiom systems.
· In 1931, Kurt Gödel proposed the incompleteness theorem which says:
the truth of certain mathematical statements cannot be proved by the use of mathematical axioms.
· That is, some mathematical problems cannot be solved by algorithms.

· From then, the ideal of axiomatization of mathematics was broken and mathematicians started to think the scope of algorithm capabilities, design theoretical computational machines, and study their capability limitations.
· Many theories were proposed, but the corresponding machines could not be manufactured at that time.
· In 1936, Turing proposed the model of universal algorithm machine, which later was called Turing machine mentioned before.
· Some similar ideas were proposed by other scholars in different forms of models, including: Stephen C. Kleene, Alonzo Church, Emil Post, etc.,

· In 1943, neural physiologists Warren S. McCulloch and Walter Pitts developed finite-state systems to simulate neural networks in biological systems.
· They are pioneers of automata theory.

· In late 1940’s, Von Neumann proposed the idea of stored program for computer models.

· In 1951, a real computer following the idea of “stored program” was constructed: UNIVAC I, which is the world’s first commercially available computer (manufactured by Eckert-Mauchly Computer Company).
· In late 1950’s, linguist N. Chomsky proposed a mathematical model for grammars of natural languages.
· In 1956, he proposed further the concept of context-free grammar, which may be used for defining computer languages.

· In 1956, Kleene proposed the concept of finite automaton for simulating neural networks proposed by McCulloch and Pitts.

· He also proposed regular expressions to describe strings of symbols, and proved them equivalent to finite automata.

· In 1959 and 1960, John W. Backus & Peter Naur proposed sequentially a special expression for computer language grammars, called later Backus-Naur form (BNF).

· It was used to describe computer language ALGOL-60, leading to development of compiling theory.
· In 1969, Stephen A. Cook found that computation problems may be separated into tractable and intractable ones.

· Intractable problems are also called NP-hard problems.

· Such problems cannot be solved by computers except very small instances (with only small-sized inputs).
0.6 Textbooks and Course Grading

· Textbook:
Hopcroft, Motwani, and Ullman, Introduction to Automata Theory, Languages, and Computation (3rd Edition), Addison-Wesley, Boston, MA, USA, 2007
· Reference textbook:

蔡文祥, 正規語言與計算理論 (Formal Languages & The Theory of Computation)(unpublished 尚未出版書籍；Chinese中文)(for reference參考用)
· Course grading:

· Homeworks:

33.33%

· Mid-term exam:

33.33%

· Final exam:

33.33%

· Website for downloading course material and quizzes:

http://people.cs.nctu.edu.tw/~whtsai/

$0

start

$5

$5

$10

$10

$5

$15

$5

$10

$10

 $10

$5

$20

transition diagram

$10

$5 is returned as “output” (not shown)

$20

“Final state”

$0

start

“Start state”

generator

acceptor

transducer

trigger signal

Yes or No

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

Turing machine

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

11

[image: image14.wmf]

[image: image15.wmf]

=

¡H

[image: image16.wmf]

[image: image17.wmf]

=

¡H

[image: image18.wmf]

[image: image19.wmf]

=

¡H

[image: image20.wmf]

[image: image21.wmf]

=

¡H

[image: image22.png]Hamilton cycle

Steiner tree Matl_’ix permanent
Graph 3-coloring Halting problem
Satisfiability

Maximum clique

Factoring
Graph isomorphism

Graph connectivity
Primality testing

Matrix determinant
Linear programming

[image: image23.jpg]ATuring machine is a theoretical generalized
Computer, Gomposed of s taps an which symbols
representing Iniructions are mprinted The tspe
an move backwards and forwards n the machine,
‘Which can read tne iniructions and writs the resut.
antoutput back onto the tape

[image: image24.jpg]

[image: image25.jpg]

[image: image26.jpg]

[image: image27.jpg]

[image: image28.jpg]NICOLE KIDMAN us SEAN PENN

THE INTERPRETER

S i, i’ COMING SOON

[image: image29.wmf]

[image: image30.wmf]

=

¡H

[image: image31.wmf]

[image: image32.wmf]

=

¡H

[image: image33.wmf]

[image: image34.wmf]

=

¡H

[image: image35.wmf]

_1454055320.doc

=

？

_1454055322.doc

=

？

_1454055323.doc

_1454055324.doc

=

？

_1454055321.doc

_1454055318.doc

=

？

_1454055319.doc

_1454055317.doc

