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Abstract—An automatic house-layout construction system via 
vision-based autonomous vehicle navigation without human 
involvement is proposed. The system can be used to acquire the 
floor layout and flat objects on walls like doors and windows of 
an empty room. First, a new type of omni-directional camera 
system is designed, which consists of two omni-cameras aligned 
coaxially and back to back. The proposed house layout 
construction process consists of three stages, vehicle navigation, 
floor layout construction, and 3-D graphic house layout display. 
The vehicle navigation stage is conducted to follow the wall 
mopboards. Then, a global optimization method is proposed to 
construct a floor layout from all the mopboard edges in the 
second stage. In the last stage, doors and windows are detected 
from the omni-images taken in the vehicle navigation stage. 
With the above-mentioned data, a graphic form of the house 
configuration for 3-D display from any viewpoint can be 
obtained. Finally, experimental results are shown to to 
demonstrate the feasibility of the proposed approach. 

Keywords-autonomous vehicle navigation, omni-directional 
camera, automatic house layout construction. 

I. INTRODUCTION 

In recent years, related applications of the autonomous 
vehicle have been developed intensively by many 
researchers to help human beings in various areas of 
automation. There are many empty pre-owned houses with 
uncertain interior space configurations, and a house agent 
may want to obtain the layout of each empty room in a house 
in advance before getting the house ready for sale. It is 
inconvenient and sometimes dangerous for the house agent 
to measure the house layout line by line and room by room 
by hand. Besides, this task usually includes measurement of 
the positions of doors and windows in rooms, which might 
be so numerous that the task becomes too time-consuming to 
be endurable. A possible way out is to conduct the task 
automatically without human involvement! 

To achieve this goal, it is desired to design a vision-based 
autonomous vehicle to possess an ability to navigate by 
mopboard following in an unknown empty room space and 
acquire automatically during navigation the information of 
the room layout and the structures (positions and heights) of 
the doors and windows in the room. This is feasible because 
most houses have mopboards at the roots of the walls. Use of 
the mopboard for vehicle guidance also simplifies the design 
of the vehicle navigation work for solving the above-

mentioned automatic house-layout construction problem. 
Therefore, object localization for estimating mopboard 
positions is required.  

Various visual sensing equipments such as cameras and 
ultrasonic sensors were used to acquire the 3-D information 
in vehicle surroundings in the past studies [1-2]. For depth 
information estimation, the most common stereo matching 
method may be used, which is based on the triangulation 
principle to obtain the relation between a 3-D point and 
multiple cameras, but matching of corresponding points 
between images is often a difficult problem in this approach. 
Use of the laser range finder together with conventional 
imaging sensors were also used frequently [3-4]. However, 
the laser range finder has a drawback, that is, it can only scan 
a 2D plane at a specific height. Jeng and Tsai [5] proposed a 
space-mapping method for the omni-camera image, which 
can be used to estimate the location of an object. In this 
study, we propose a method which is based on two concepts. 
The first is the use of the triangulation principle to measure 
depths of objects (i.e, their ranges). The other is the use of 
the space-mapping technique proposed by Jeng and Tsai [5] 
to get the location for a concerned object. In this way, we can 
estimate the positions of objects on the floor and walls in a 
room. 

Autonomous vehicles or mobile robots usually suffer 
from accumulations of mechanical errors during navigation, 
which cause inaccurate measures of the moving distances 
and orientations yielded by the odometer in the vehicle. Chen 
and Tsai [6] proposed a mechanical error correction method 
by curve-fitting the erroneous deviations from correct paths. 
In this study, we utilize the curve-fitting method proposed by 
Chen and Tsai [6] to correct the positions of the vehicle and 
use the edge information estimated from images to correct 
the direction of the vehicle. Analyzing the omni-images 
taken by different types of camera is an important topic. Kim 
and Oh [4] proposed a method for extracting vertical lines 
from an omni-image with the help of the horizontal lines 
generated by a laser range finder. 

The goal of this study is to design a system for automatic 
house-layout construction in an empty indoor room space 
using a vision-based autonomous vehicle. It is assumed that 
the adjacency walls in the room are perpendicular to each 
other. In order to achieve this goal, the system needs not only 
a capability of automatic navigation but also one to acquire 
environment information automatically. For a vehicle to 



have such capabilities, an imaging device with two 
vertically-aligned omni-cameras connected in a bottom-to-
bottom fashion is designed in this study. With the 
environment information collected from the taken images, a 
method for constructing a 3-D house layout in graphic form 
by estimating the locations of mopboard edges, doors, and 
windows is also proposed. The system consists of three 
major phases: setup of the imaging system, vehicle 
navigation by mopboard following, and 3-D construction of 
room space. The details will be introduced in the following 
sections. 

II. SYSTEM CONFIGURATION 

In the proposed system, we make use of a Pioneer 3-DX 
vehicle made by MobileRobots Inc. as a test bed. The 
vehicle is equipped with an imaging system composed of 
two catadioptric omni-directional cameras which are 
connected and vertically-aligned in a bottom-to-bottom 
fashion. The imaging system is not only part of the vehicle 
system but also plays an important role of gathering 
environment information and locating the vehicle. A diagram 
illustrating the configuration of this system is shown in Fig. 
1(a), and Figs. 1(b) and 1(c) show an example of the omni-
images captured by the imaging system. 

The overall framework of the proposed system is 
illustrated in Fig. 2. The major stages in proposed 3D house-
layout construction by vehicle navigation include: (1) vehicle 
navigation by mopboard following; (2) floor-layout 
construction; and (3) 3-D house-layout construction. 

 
(b) 

 
(a) 

 
(c) 

Figure 1.  Illustration of system configuration. (a) The two-camera 
imaging system is equipped on the vehicle. (b) An acquired image of the 
ceiling using the upper camera. (c) An acquired image of the floor using 
the lower camera.  
 

 

Figure 2.  Flowchart of proposed system. 

Before conducting vehicle navigation, we must perform 
the setup of the system which includes space-mapping 
calibration and mechanic error correction. For camera 
calibration, we establish a space-mapping table which is 
proposed by Jeng and Tsai [5] for each omni-camera by 
finding the relations between specific points (on a specially-
designed calibration object) in 2-D omni-images and the 
corresponding points in 3-D space. In other words, the space-
mapping table specifies a relation among the corresponding 
space-image coordinates pairs (Pi, pi). The relation between 
the omni-camera and image coordinate systems is shown in 
Fig. 3, and the example of mapping table is shown in Table 1. 
As a result, the vehicle which carries the imaging system has 
the abilities to estimate the distances between the vehicle and 
an object (the mopboard here) utilizing the omni-images. 

 

 
Figure 3.  Relation between omni-camera and image coordinate 
systems. 
 

 
Table 1. Example of pano-mapping table of size M×N [5]. 

 
 
When creating the space mapping table, the focal point of 

the hyperboloidal mirror is viewed as the origin in the CCS. 
However, the focal point may not be located on the bottom 
of the omni-camera. We propose in this study a method to 
find the focal point of the hyperboloidal mirror. As shown in 
Fig. 4, we use two different landmarks L1 and L2 which have 
the same corresponding image point p with known heights 
and horizontal distances from the transverse axis of the 
hyperboloidal mirror. We assume that Ow is at (0, 0, 0). Then, 
as shown in Fig. 4, the position of the focal point can be 
computed by the following equation: 
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Accumulations of mechanical errors during navigation 
usually will lead to wrong control instructions and inaccurate 



vehicle localization information, and it is desired to conduct 
a calibration task to eliminate such errors. Chen and Tsai [6] 
proposed a mechanical error correction method by curve-
fitting the erroneous deviations from correct paths. In this 
study, we use this method for correcting the vehicle 
odometer readings. 
 

 
Figure 4.  Finding out the focal point Om. 

III. 3-D DATA MEASUREMENT MEHTOD 

In this study, we design a new type of omni-directional 
camera to achieve acquisition of environment images. Note 
that the two omni-cameras are connected and vertically-
aligned in a bottom-to-bottom fashion, which means that 
none of the space points can be projected on both image 
planes at the same time. As a result, the most common stereo 
matching method that is based on the triangulation principle 
to obtain the relation between a 3-D point and multiple 
cameras does not work here at all. We need another theory to 
deal with the stereo matching problem here. One way 
proposed in this study is to estimate the horizontal distance 
to the desired object point, and subsequently to utilize both 
the distance and the elevation angle of the space point with 
respect to the local camera coordinate system CCSlocal to get 
relevant 3-D data. As shown in Fig. 5, assume that both 
space points P1 and P2 lie on the vertical line L which is 
perpendicular to the x-y plane in the global coordinate 
system GCS and that P1 is the intersection point of L and the 
x-y plane in the GCS. Assume also that P1 and P2 lie on the 
light rays with the azimuth-elevation angel pairs of (θ1, ρ1) 
and (θ2, ρ2) with respect to the upper camera coordinate 
system CCS1 and the lower camera coordinate system CCS2, 
respectively, where Om1 is the focal point of the lower mirror, 
and Om2 is the focal point of the upper mirror. Assume finally 
that the point Olocal with coordinates (0, 0, 0) is the origin of 
the CCSlocal. Referring to Fig. 5 and by the triangulation 
principle, we have 

 1

1tan
MH

D
α

= , (3) 
where D is the horizontal distance between Olocal and P1, and 
MH1 is the height of the focal point Om1. As a result, the 
height H2 of the space point P2 can be computed by 

 2 2 2tanH MH D α= + ×  (4 ) 
where MH2 is the height of the focal point Om2. 

According to the rotational invariance property of the 
omni-camera, we can derive the following equations: 
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Figure 5.  (a) Computation od depth using the two-camera omni-
directional imaging system. (b) Details of (a). 
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Because the vertical line L is perpendicular to the X1-Y1 and 
X2-Y2 planes and the positive direction of the X1-axis in the 
CCS1 is opposite to the positive direction of the X2-axis in 
the CCS2, it can be found that X1 � �X2 and 

 1 2 1 2cos cos ; sin sin θ θ θ θ= − = . (9 ) 
Now, we can utilize (3), (4), and (9) to calculate the 
coordinates 

1 1 1
( , , )p p pX Y Z  of P1 with respect to the CCSlocal 

as follows: 
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and the coordinates 
2 2 2

( , , )p p pX Y Z  of P2 with respect to the 
CCSlocal as follows: 
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IV. HOUSE LAYOUT CONSTRUCTION 
As mentioned previously, it is desired to conduct the 

house-layout construction task by driving the vehicle around 
the room and collect environment data. More specifically, 
we discuss the major stages of the house-layout construction 
task in the following. 

A. Vehicle navigation by mopboard following 
Most houses have mopboards at the roots of their walls. 

The mopboard feature is used for vehicle navigation in this 
paper. In this section, we describe the method we use to 
detect mopboard edges in omni-images and the entire 
navigation strategy. 

According to the rotational invariance property of the 
omni-image, all points lying on each straight line L, which is 
parallel to the Z1-axis in the CCS1, are projected onto the 
image plane of the upper image coordinate system ICS1 with 
the azimuth θ1, forming a straight line in the ICS1 and 
passing the origin I1 of ICS1, as shown in Fig. 6. And 
because mopboards occupy the bottom parts of walls, it 
results in a fact that the projected pixels of the mopboards in 
the omni-image also have an obvious band. We utilize these 
two properties to find out the mopboard edge points which 
are located on the edge between the mopboard and the floor. 

Assuming that the house is empty, we can transform an 
acquired grayscale image into a binary one by a pre-defined 
threshold and perform erosion and dilation operations on it. 
In this way, the mopboard will remain in the image and the 
mopboard edge points can be detected by using a scanning 
line starting from the image center. An algorithm for the 
detection of the mopboard edges is described as follows. 

 

 
Figure 6.  Vertiine L in the OCSlocal and corresponding line l in the ICS1 

Algorithm 1: Mopboard detection 

Input: An omni-image Ik taken from the lower omni-camera; 
a desired scanning range; and a vehicle mask. 
Output: A set Mk of image coordinates of mopboard edges. 
Steps:  
1) Transform Ik into a grayscale version IG. 
2) Reset the gray values gpi of each pixel pi in the gray 

image IG by comparing gpi with a pre-defined threshold T 
as follows: 

if gpi ≥ T, set gpi as a white pixel;  
else, set gpi as a black pixel. 

3) Perform erosion on IG to obtain a new image IG′. 
4) Perform dilation on IG′ to obtain a second new image IG′′. 
5) For each scan line Lθ in a pre-selected angle scanning 

range with certain angular scanning steps, perform the 
following steps. 
a) Start from the image center of IG′′, traverse along the 

line Lθ, and find the first intersection black pixel p 
of IG′′ with Lθ. 

b) Check if p is followed by 10 or more consecutive 
black pixels along Lθ: if so, then add the coordinates 
of p into Mk (which is set empty initially). 

6) Repeat Step 5 until the scan range is exhausted. 

After detecting the mopboard edge points, we have a set 
Mk which includes the image coordinates of the detected 
mopboard edge points. Denote the set Mk in more detail 
by { }( , )k t tM u v= , where (ut, vt) are the detected mopboard 
edge coordinates in the ICS1. In order to estimate the 
corresponding locations of these detected edge points, we 
first choose an element (ut, vt) from Mk and calculate the 
corresponding radius rt and azimuth θt by transforming (ut, vt) 
into the corresponding polar coordinates (rt, θt). Then, we 
determine a column index of the pano-mapping table by 
finding out which azimuth interval the θt lies on. For 
example, if there exists i satisfying the following equation: 

1(2 / ) ( 1) (2 / )i t ii M i Mθ π θ π θ += × ≤ < + × = , (12) 
then the column index is taken to be i. Also, we compare rt 
with rs in the entry Eis of the pano-mapping table, and keep 
the nearest radius rj. As a result, the corresponding ρj can be 
found out. Once the ρj is known, the 3-D position estimation 
task can be carried out. 

For vehicle navigation, the distance to the wall is 
important navigation information. The main idea is to 
navigate and keep the navigation path parallel to the wall. In 
this way, we choose three regions RL, RR, and RF on the 
CCSlocal, as shown in Fig. 7, so that the walls which are close 
to the vehicle can be detected. And we define the three sets 
SL, SR , and SF by 
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where the set Mk includes the detected mopboard edge points 
with coordinates in the CCSlocal. 
 

 
Figure 7.  An illustration of the pre-defined detect regions. 

 
However, for example, the edge points which are on the 

left wall with respect to the vehicle may appear both in RL 
and in RF at the same time, resulting in the wrong distance 
estimation. In order to transform the detected mopboard edge 
point locations into useful navigation information and 
environment data, a pattern classification technique is 
proposed. Once we can assign each of the edge points to its 
corresponding wall by this classification technique, we can 
adjust the direction of the vehicle to keep the vehicle’s 
navigation path parallel to each wall and estimate the 
distances to the nearby walls. Let the new sets derived from 
(13) after the pattern classification process be described as 
follows: 
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As a result, the distances to each wall can be estimated more 
accurately, and are used as navigation information to guide 
the vehicle. 

As mentioned above, the estimated positions of the 
detected mopboard edge points are derived in a raster-
scanning order in the omni-image. Based on this order, the 
classification process would be simplified because any of 
these estimated points can be easily divided into two parts. 
The purpose of using a pattern classification technique in this 
study is to find an edge point locating at the corner of two 
adjacent walls that can divide the edge points into two parts. 
With a property that the adjacent walls are perpendicular to 
each other, we can conduct the pattern classification process 
by the LSE criterion to find such a corner point, if it exists. 
Let such a corner point, denoted as Sk, divides the set of edge 
points in different walls into two sets, denote as Sk1 and Sk2. 
A reasonable assumption is made here, that is, the two lines 
which are used to fit the points in Sk1 and Sk2 by the LSE 
criterion, respectively, are perpendicular to each other. In 
this way, such a corner point will yield a minimum error.  

Before driving the vehicle to go forward or to turn 
around, it is desired that the vehicle can keep its path to be 
parallel with the walls. Otherwise, the vehicle may hit the 
wall. For this purpose, the detected mopboard edges can be 
used, by a line fitting process, to generate a straight line 
which describes the direction of these detected edges. With 
the direction of the line, the vehicle can adjust its pose such 

that it can keep an appropriate distance with respect to the 
wall. The entire process is illustrated in Fig. 8. 

 

 
(a) 

 
(b) 

Figure 8.  Vehicle direction adjustment. (a) θ���90o. (b) θ ��90o. 
 
Before the vehicle starts a navigation session, it will 

estimate the distances to the nearby walls which are within 
the relevant angular scanning ranges. Based on the distances, 
we can know if it can turn to the left, turn to the right, or go 
forward, and then issue an appropriate control instruction to 
the vehicle to drive it to navigate safely. The major rules for 
controlling the vehicle are described as follows: 
• For the work of the imaging system, keeping an 

appropriate distance with the wall is needed. 
• The vehicle can go forward until the left wall is not 

detected further or until it is blocked by the frontal wall. 
Both situations are illustrated in Fig. 9, and the algorithm 

of issuing a control instruction to the vehicle for each 
navigation cycle is described as follows. Note that the 
distance DLB is assigned a value only under the condition that 
the vehicle exceeds the corner point, as shown in Fig. 9(b). 
For gathering enough information, it is desired that the 
vehicle goes forward a fixed distance moveDistfix if it is 
moveable, and then collect information. Refer to Fig. 9 for 
notations used in the algorithm. DL, DF, and DR are the 
distances between the vehicle and the left wall, the frontal 
wall, and the right wall, respectively, if the corresponding 
walls are detected. The threshold values passLengthnear and 
passLengthfar are used to decide whether the vehicle can 
move forward or not. 

 

B. Floor-layout construction 
As mentioned, it is reasonable to use two mutually 

perpendicular lines to fit the edge points which belong to 
adjacent mutually perpendicular walls. It means that if we 
choose one fitting line and adjust the direction of it, the 
directions of other fitting lines will change, too. As a result, 
using the fitting lines to fit the edge points will incur fitting 
errors. Based on this idea, we propose a global LSE 

(a) 
 

(b) 
Figure 9.  Illustration of the safe ranges. (a) Approaching to the frontal 
wall. (b) Exceeding the corner. 



optimization method to minimize the fitting error and the 
entire process is described in the following algorithm. 
Algorithm 2: Floor-layout construction 
Input: n sets of detected mopboard edge points, S1, S2, …, Sn 
of n walls, W1, W2, …, Wn. 
Output: A floor layout. 
Steps:  
1) (Line fitting for each wall) Fit the points in Sk of Wk with 

a line Lk by the LSE curve fitting scheme and compute 
its mean point Mk where 1 ≤ k ≤ n. 

2) (Optimal fitting with respect to a chosen line) Perform 
the following steps to obtain globally optimal fitting 
with respect to a selected fitting line of a certain wall. 
a) Choose a fitting line Lk, starting from k =1 until k = n, 

and compute its direction angle θk. 
b) Adjust θk by adding a small angle ε (initially adding 

−10o and then adding 0 . 1 ο each time later until 
adding up to +10o), resulting in θk′, to generate a new 
line Lk′ such that Lk′ passes the point Mk with 
direction angle θk′. 

c) (Generation of other fitting lines) Generate a 
sequence of lines Lk+1′, Lk+2′, …, L(k+n−2)mod n′ with 
each Lk+i′ perpendicular to its former line Lk+(i−1)′ and 
passing its original mean point Mk+i (i.e., every two 
neighboring lines are mutually perpendicular). 

d) (Computing the sum of fitting errors of all lines) 
Compute the error ei of fitting all the points in Si of 
Wi to line Li′ obtained in the last two steps (Steps b) 
and c) above), and sum the errors up to get a total 
error ek′ for Lk′. 

e) Repeat b) through d) until the range of angular 
adjustment, (−10o, + 10o), is exhausted. 

f) Find the minimum of all the total errors ek′ and 
denote it as emin, k. 

g) Repeat Steps a) through f) to compute the emin, k for 
all k = 1, 2, …, n. 

h) Find the global minimum error emin, ko
 as the one 

which is the minimum of all the emin, k. 
3) Take all the lines with adjusted angles corresponding to 

emin, ko
 as the desired floor layout. 

C. 3-D house-layout construction 
Only creating a floor layout is insufficient for use as a 3-

D model of the indoor room space. The objects on walls such 
as doors and windows must also be detected and be drawn to 
appear in the desired 3-D room model. Therefore, it is 
indispensible to analyze the omni-images taken by the 
imaging system to extract such objects. However, an omni-
image covers a large range, but the further the distance is, the 
larger the estimation error is. How to retrieve the desired 
information is an important task. For this, we propose a 
method to determine a scanning range with two direction 
angles for each pair of omni-images based on the floor layout 
edge equation. With the scanning region for each omni-
image, we can retrieve appropriate 3-D information from 
different omni-images. Note that each object which is 
detected by the scanning region of each omni-image is 
regarded as an individual one. Therefore, adjacent objects 

which appear in the consecutive omni-images taken from the 
same omni-camera (the upper or the lower one) must be 
combined into one based on, e.g., the information of their 
positions. Also, due to the configuration of the imaging 
system, some objects on the wall, such as windows and 
doors, may appear in the pair of omni-images (the upper and 
the lower ones). To solve it, we propose a method to 
recognize doors and windows from the combined objects. 

As shown in Fig. 10, for each wall Wk, there are multiple 
navigation imaging spots N1, N2, …, and Nm for taking omni-
images as the environment information. In order to 
determine a scanning region for each omni-image taken at N1 
through Nm, we calculate the midpoint Mij of Ni and Nj for all 
i = 1, 2, …, n� −� 1 and j = i + 1. Then, we project each 
midpoint Mij onto the line Lk which is the result of the floor-
layout construction process mentioned previously, resulting 
in a projection point Mij′. And based on the positions of the 
projection points and the navigation imaging spots, we can 
determine the cover ranges. With the cover range and the 
direction of the vehicle at the navigation spot, we can 
determine the scanning range with two direction angles for 
each pair of omni-images. 

However, if we conduct the detection of objects within 
each scanning range, the mopboard will be detected as an 
object on the wall. Because the objects to be detected are 
doors and windows, and the mopboard is regarded as a 
feature of a wall, the mopboard should not appear in the 
detected objects. For this reason, we define a scanning region 
excluding the mopboard in the scanning range. In order to 
exclude the mopboard part in the scanning range, we use the 
space mapping table in a reverse way to estimate the image 
coordinates of a concerned space point at a known position. 

More specifically, we use the distance to a detected edge 
point, and a pre-defined height of the mopboard to calculate 
the elevation of a point which is on the top edge of the 
mopboard with respect to the CCS1. Then, we can look up 
the space mapping table to find its radius in the omni-image. 

 
(a)  

(b) 
Figure 10.  Illustration of determining scanning range. (a) Decide the 
cover range. (b) Relevant scanning range on omni-image. 

 
As a result, the mopboard part can be excluded in the 

omni-image, forming a desired scanning region. In this way, 
the object detection process can be carried out within this 
region. 

With the above-mentioned scanning region, we can 
detect the objects in each omni-image by the proposed two-



way angular scanning scheme which extends the method in 
Algorithm 1. The two-way scheme is used instead of the 
original one described in Algorithm 1 because the scheme 
can achieve a better estimation. We first perform Steps 1 
through 4 of Algorithm 1 for the pair of images, then traverse 
along the line Lθ from the outer boundary to the inner one 
and from the inner to the outer boundary within the scanning 
regions, and find the first intersection black pixel which is 
followed by 10 or more consecutive black pixels, 
respectively. The first found black pixel in each direction 
will be regarded as an element of the boundary of the 
detected object. According to the two first scanned pixels 
which are detected by traversing along the scanning line with 
opposite directions, we utilize the information within the 
scanning line bounded by the two scanned pixels to 
determine whether the two pixels are boundary points of the 
object or not. Besides, objects may occupy the omni-image 
and are detected for some certain continuous angular interval. 
We utilize the property to combine the detected objects 
which are detected from certain continuous scanning lines 
into an individual one. In this way, there may be some 
individual objects in the scanning region. As a result, 
according to these pixels which are boundary points of the 
object, and by utilizing the 3-D position estimation method 
by looking up the space mapping table, the average heights 
at the bottom and the top of the object can be estimated. 

There are some major rules which may be adopted for 
combing the detected objects. 
• First, we traverse along the scanning line Lθ within the 

scanning region R′ from opposite directions and find the 
pixels pi and po of the object boundaries, respectively. 

• By counting the numbers nb and nsum of black pixels and 
all pixels between the two detected pixels along Lθ, if 
found, and by a threshold and the ratio nb / nsum, we can 
determine whether the pixels pi and po are on the 
boundary of the object or not. 

• In R′, if all the pixels pi and po for each scanning line Lθ 
in an angular interval are all on the boundary of an 
object, then such a largest interval can used to describe 
the same object. Besides, in R′, those combined objects 
may be combined again according to their positions. 

With the above rules, all individual objects can be 
determined in the same scanning region of an omni-image. 

However, an object on a wall may appear to cross two or 
more scanning regions of corresponding source omni-images 
taken by the same upper or lower omni-camera. Besides, an 
object also has a possibility to appear in the pairs of omni-
images simultaneously. For the above reason, we have to 
combine those detected individual objects which belong to 
the same one. Here, we denote O1 and O2 as the sets of the 
individual objects detected from the omni-images taken by 
the lower and upper omni-cameras, respectively. As shown 
in Fig. 11, at first, we conduct the combination task for all 
the objects in O1 and O2, according to their positions to form 
two new sets O1′ and O2′, respectively. Then, we conduct the 
reorganization task. The process is described in the following 
algorithm. 

Algorithm 3: Objects reorganization 

Input: O1′ and O2′ including the combined objects on walls. 
Output: Window objects set OW, and door objects set OD. 
Steps:  
1) (Objects recognition for each wall) For each floor-

layout edge Fk, perform the following steps to recognize 
the objects on wall Wk. 
a) Choose an object o2,i from O2′, to find an object in 

O1′ at a similar location. 
i. If such object o1,j is found, then check if it is 

connected to the mopboard by its location: 
1. if yes, then recognize o1,j together with o2,i as 

a door, and add it to OD; 
2. otherwise, recognize o1,j together with o2,i as 

a window, and add it to OW. 
ii. If such an object is not found, recognize o2,i as a 

window, and add it to OW. 
b) Repeat Step (a) until the objects of O2′ are exhausted. 
c) Recognize the remaining objects in O1′ as widows, 

and add it to OW. 
2) Repeat Step (1) until all the floor-layout edges are 

exhausted. 

V. EXPERIMENTAL RESULTS 

We show some experimental results of the proposed 
automatic house-layout construction system by autonomous 
vehicle navigation based on mopboard following in indoor 
environments. The experimental environment was an empty 
indoor room with mopboards at the bottom of the walls. Fig. 
12 shows an example of the resulting images of mopboard 
detection in which the red dots show the detected mopboard 
edge points and the result of the pattern classification 
procedure. Fig. 13 shows the estimated mopboard edge 
points of all walls and the floor layout which is constructed 
by the globally optimal fitting method. In Table 2, we show 
the errors in percentage between the actual widths of the 
walls and the estimated data of 9 times of navigations using 
the proposed system. The average error of the wall widths is 
2.75% and the average error in percentage of the estimated 
total perimeter of the floor layout with respect to the real 
data is 0.21%.  We simulated a window in our experimental 
environment by creating a black frame and attaching it on a 
wall. The window is not so low that only the upper omni-
camera can “see” it. An example of the images of the door 
and window and the detection results are shown in Fig. 14. 
An example of house-layout construction in graphic form is 
shown in Fig. 15. 

VI. CONCLUSSIONS 

A system for automatic house-layout construction by 
vision-based autonomous vehicle navigation in an empty 
room space has been proposed. To achieve acquisition of 
images, a new type of omni-directional camera has been 
designed for this study, which consists of two omni-cameras 
aligned coaxially and back to back. The proposed automatic 
house layout construction process consists of three major 
stages: (1) vehicle navigation by mopboard following; (2) 
floor layout construction; and (3) 3-D house layout 



construction. he entire house layout construction process is 
fully automatic, requiring no human involvement, and so is 
very convenient for real applications. The experimental 
results show the feasibility of the proposed method. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 11.  Illustration of object combinations. (a) Scanning regions. (b) 
Individual objects. (c) Combined objects for each omni-camera. (d) 
Reorganization of objects. 
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Figure 12.  Environment data collection. (a) Experimental environment. 
(b) Detected mopboard edge points. (c) The detected mopboard points. 
(d) Result of the classification (the points belonging to the upper wall). 
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Figure 13.  Illustration of global optimization. (a) Etimated mopboard 
edge points of all walls. (b) A floor layout fitting the points in (a). 
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Figure 14.  Images and door detection result. (a) Image of the door taken 
by the upper omni-camera. (b) Image of the door taken by the lower 
omni-camera. (c) Image of the window taken by the upper omni-camera. 
(d) Door detection result of (a). (e) Door detection result of (b). (f) 
Window detection result of (c). 

 

  
Figure 15.  Graphic display of constructed house layout. (a) Viewing 
from the top (green rectangle is a door and yellow one is a window). (b) 
Viewing from the back of the window 
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Table 2. Precision of estimated wall widths and their error percentages. 

Exp. No. Average estimated wall width error % Estimated perimeter error % 

1 2.345 0.36 
2 2.586 0.03 
3 2.948 0.02 
4 3.129 0.35 
5 2.090 0.37 
6 3.137 0.28 
7 2.387 0.09 
8 2.749 0.23 
9 3.335 0.13 

average 2.745 0.21 


