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Abstract

Moiré patterns often appear in the image obtained from
scanning a printing on a magazine or a newspaper. The
patterns do not exist in the original printing but come
from alias sampling of screened halftone pictures. A new
method of scanning is proposed to suppress the moiré
patterns. First, the Fourier analvses of both screening
and scanning are presented. from which the new moiré
suppression scanning method is derived. The method
employs a double-scan process. In the second scan, we
shift the scanning position by half of the sampling grid
distance of the first scan. Then by averaging the images
of the two scans, most of the moiré fringes can be
removed. Some experimental results are shown to prove
the feasibility of the proposed approach.

1. Introduction

Most printed articles are produced by the planographic
printing technique, in which only a few color inks are
used. By this technique, we can hardly print images using
as many color inks as in the source images. For example,
a common gray-scale image contains 256 gray levels. It is
impossible to produce a printing using corresponding 256
gray inks. It is necessary to perform a screening process
to translate a gray-scale image into a halftone image. A
halftone image is a high-frequency black and white image,
in which gray intensities are represented as black dots of
different sizes. The black dots in a halftone image are
spread periodically and orthogonally in order to comfort
the human eyes. Practically, a software or machine, called
raster image processor (RIP), is required to generate
halftone images. The generated halftone image can then
be printed by the planographic technique.
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When we scan an image with periodic structures,
aliasing is unavoidable and additional moiré patterns will
usually appear in the scanning result [1]. Because screen
dots repeat periodically in a halftone image, scanning a
halftone image will generate additional moiré patterns.
Fourier analysis can be employed to describe this
phenomenon. In this paper, the Fourier analyses of both
the screening and the scanning processes will be
presented.

According to the structure of scanner hardware, the
process of image scanning can be divided into three major
stages. The first stage is pre-filtering which is an optical
process related to the characteristic of the scanner lens.
For a large drum scanner, a user can adjust the focus and
aperture of the lens to make the scanning result sharper or
smoother. The next stage is the sampling process which is
realized by motor moving or CCD arrangement. A user
can adjust the scanning resolution to change sampling
grids. Brightness of the scanned picture will also be
quantized into digital values. The final stage is post-
filtering which is a software process employed to correct
digital image values by gamma correction, look up tables
(LUT), or other software filters.

Fig. 1 shows a flowchart of the screening and scanning
processes. The moiré phenomenon mainly comes from
the thresolding step in screening and the sampling step in
scanning. Some works proposed to suppress the moiré
patterns are reviewed in the following.
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Fig. 1. The screening and scanning flow.

(1) Smoothing is a natural way to remove high-
frequency noise. A scanner operator usually adjusts the
focus or aperture in the pre-filtering stage to smooth the
scanning result in order to suppress the moiré
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phenomenon. As is well known, smoothing is a low-pass
filter in the frequency domain. It removes high-frequency
signals from the image. A common image usually has less
power in the high-frequency range than in the low-
frequency range. Low-pass filtering will reduce the high-
frequency halftone screen signals, remove most periodic
structures of the image, and make the sampling yield less
alias. On the other hand, there are some problems which

are related to smoothing. First, the image will be blurred.

Next, it is difficult to perform good aperture or focus
adjustment. Besides, only high-end drum scanners support
these kinds of adjustments in the pre-filtering stage.

(2) Using inverse halftoning as a post-filter is possible.

First, all the detail of the halftone image is scanned with
higher resolution. By analysis of each screen dot, it is

possible to derive a corresponding gray-scale image.

Miceli and Parker [2] and Fan [3] proposed algorithms to
do this. Some drawbacks of these methods are that the
additional processing time may be long and that high-
resolution scanning takes longer time and larger memory
space.

(3) Shu and Yeh [4)] analyzed possible factors that may
cause moir€ patterns. They figured out a rule to formulate
the relationship between scanning resolution, screening
resolution, their angles, and moiré visibility. A suggestion
to select a scanning resolution was proposed to make
scanning yield minimum visibility of moiré patterns.

(4) Russ [5] proposed filtering of images in the
frequency domain. Periodic information in the frequency

domain is removed by manual masking operations.

However, it is difficult to determine in the frequency
domain where is the information that causes moiré
patterns in the original image.

Most of the above methods are based on single scanning
results. In fact, additional scans of different
configurations are also helpful to provide information for
moir¢ suppression. A new method is proposed in this
paper that employs a double-scan process and yields good
suppression of moiré patterns. An additional scan process
is introduced that shifts the scanning position by half of
the distance between two neighboring scanning grids. The
second scanned image contains moir€ patterns which
complement those of the first scanned image. By
averaging these two images, most prominent moiré
patterns can be removed.

The remainder of this paper is organized as follows. In
Section 2, we formulate the screening and scanning
processes. By Fourier analysis, we point out the reason
why moiré patterns are generated during halftone image
scanning. In Section 3, we describe the proposed moiré
suppression scanning method using moving grids. In
Section 4, some experimental results are shown, followed
by conclusions in Section 5.

2. Fourier analysis of moiré phenomenon
2.1 Fourier analysis of screening

Halftoning is a thresholding process that converts a
gray-scale image g(¥) into a binary image A(F).
Thresholding is performed using a thresholding function
s(7). The corresponding binary image value should be 0
(black) if the intensity value of a pixel in the original
gray-scale image is less than or equal to that of the
thresholding function; on the other hand, it should be |
(white) if the intensity value is larger than that of the
thresolding function, as described in the following:

——
h(F>={°‘g(f"“f)’ )
L, g#)>s(r).

According to the fact that the screen dots are spread
uniformly and orthogonally, the thresholding function
s(#) can be defined as a convolution of a screen dot

function s, () with a screen lattice:

S(FY=5,(r)* i iS(F —mA —niy) @
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where r, and 7, are orthogonal basis vectors of the screen

grids which are defined as a combination of m# and nf
where m and » are integer numbers. Screen dot function
s5,(r) defines how the screen dots extend. In practice, an

RIP uses a matrix as the screen dot function. Fig. 2(3)
shows a sample matrix with dimension 8 by 8. It can be
used to define 64 screen dots of different sizes and shapes.
Two examples of the screen dots are shown in Figs. 2(h)
and (c). These dots are used to represent 64 different gray
intensity values. The thresholding function can be
obtained by performing a rotation of the matrix to the

direction parallel to 7, or 7, ; scaling it to the size of ;lfl|

by 1|7 |; and making a convolution with the screen grids.

Fig. 3 shows the thresholding function in the spatial
domain along the direction 7, .
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(c) Screen dot for
gray level 53/64.

(a) Matrix of screen
dot function.

(b) Screen dot for
gray level 19/64.

Fig. 2. lllustration of screen dot function.
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Fig. 3. Thresolding function.

To make the analysis easier, Equation (1) can also be
rewritten in the form

hF) = {0, & (F)s@)<L; 3

Lg,(r)sr)>1

where g, () is the negative function of the original gray-
scale image, defined by

2 1
Gill) ===
g
The Fourier transform H(w) of halftone image h(F) is
related to that of g, (7 )s(*) which is:

oo
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where G, (w) is the Fourier transform of negative gray-
scale image g,(r); S;(w) is the Fourier transform of
screen dot function s,(¥); w, and w, are the reciprocal
basis vectors derived from the basis vectors 7, and 7, ; and
C, is a constant.

Fig. 4 shows the relation of the Fourier transforms of
the screen dot function, the screen grids, and the
thresholding function in the 1-dimensional case. Nonzero
values, i. e., the impulses, only occur at frequencies
kw, +Iw, where k and [ are integer numbers. The
convolution of G, (w) with the impulses in Fig. 4 results
in a function described by (4) and shown in Fig. 5.
Because the negative gray-scale image g,(r) normally

does not vibrate a lot, its Fourier transform G, (w) should
be a hill function that has less power in the high-
frequency range than in the low-frequency range. A
convolution of it with an impulse signal at kw, +/w,
should produce a signal component at frequency
kw, +Iw,. We call such a signal component as a (k,/)-
ordered screen component in the frequency domain. From
the discussion above, we see that the strength of the
(k,l)-ordered screen component decreases by frequency, i.
e., the larger k and / are, the smaller the signal.

Fourier transform result of

the thresholding function screen dot function S, (W)

5w, —4w, 3w, 2%, -w, O wo2W 3w 4w, 5w,

Fig. 4. Relation of Fourier transforms of screen dot
function, screen grids,
and thresholding function.

Fourier transformresult of Eq. (4)

(-1,0)— ordered screen componment (1,0)— ordered screen componment
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Fig. 5. Fourier transform described by Equation (4).

2.2 Fourier analysis of scanning

As described before, there are three stages in the
scanning process. Post-filtering does not affect the moiré
fringe. The following equation models the first two stages
of scanning, namely, pre-filtering and sampling:

g'®) =[hFa@)]x Y T6G-md, -nd,)  (5)

m=—oo p=—oo0

where &, and @, are the basis vectors of the scanning
grids; a(F) is the aperture function which defines the
aperture transmittance of the scanner lens; A(F) is the
source halftone image produced by the RIP and printed
on paper; and g'(F) is the gray-scale image resulting
from scanning. The first part in Equation (5), the
convolution, models the pre-filtering in the scanning
process. Light reflected from the printed halftone image
is collected by the optics structure of the scanner. After
that, light is sampled at position m &, +nd,, where m and
n are integers. Fig. 6 shows the aperture function in the
spatial domain. It models the focus and aperture
characteristics of the scanner lens and is a distance
function. The larger the distance from the center of the
sampling point, the less the light can be transmitted.
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Fig. 6. The aperture function in spatial domain by
distance from sampling center.
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The Fourier transform of Equation (5) is:

G'(7) =[H@ X ADC, 3,

k=—s0]==c0

where H(w) is the Fourier transform of h(¥); A(W) is the
Fourier transform of a(¥); #, and #, are the reciprocal
basis vectors derived from &, and @,; and C, is a
constant.

The first part of Equation (6), the product of the
aperture function and the original halftone image in the
frequency domain, is shown in Fig. 7. According to the
previous discussion, the halftone image H(w) has signal
components at frequencies mw, +nw,, i. e., the (m,n)-
ordered screen components. The product H(w)xA(w)
should also have the corresponding signal components at
mw, +nw,. Then, the product is convolved with the
lattices spread by basis vectors 4, and u,. By the
convolution, the signal component of H(w)xA(w)
centered at mw, +nw, are duplicated at each point of the

scanning grids. When w, and w, do not match %, and #,,
respectively, aliasing occurs. To formulate the
phenomenon, we define mw, +nw, = (kta)u, +(/+b)u,
where m, n, k, and / are integer numbers, and a and b are
numbers smaller than 1/2. Then, the (m,n)-ordered screen
component will be introduced at frequencies *au, tbi,.
When a and b are small, the signal component will be
placed in the low-frequency area and introduce additional
moiré patterns. Such additional signals in the low-
frequency area come from the convolution of
H(W)x A(w) with &(w— ki, —lu,). We call such signals
as (m,n)-ordered moiré signals oriented by (k,/). Fig. 8
illustrates the phenomenon along the # direction. It is
pointed out here that it is the (£1,0)-ordered moiré
signals oriented by (+1,0) placed in the low-frequency
area that introduces the most prominent moiré patterns.

T —— L : ’ *
=S i 3@ 2@ - 0 @ 2w 3 4G Sk
S5 45 35 2% - B2 3% 4w 5%

Fig. 7. H(w)x A(w) in frequency domain.
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signal components in low - frequency area
7

signals oriented by (-1,0)

signals oriented by (1,0)

signals oriented by (-2,0) w _signals oriented by (2,0)
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Fig. 8. Signal component at mw, is shifted into the low-
frequency area.

3. Proposed double scans with moving grids

Moiré patterns will become very different if we move
the sampling grids. By the following analysis, it will be
proved that if we move the sampling grids half of the grid
distance and rescan the image, the resulting moiré fringes
will be negative. Darker moiré patterns will become
lighter, and lighter moiré patterns become darker. By
averaging the original and the rescanned images, a better
image with less moiré phenomenon can be obtained. This
is the basic idea of the proposed approach.

First, the effect of the shifting the scanning grids in the
frequency domain is checked. The grids in Equation (5)
can be modified into the following form to shift the grids
half of the grid distance:

i )Eé[?—(»w%)?x1 —(n+5)a,]. )

m=—oo p=—oc0

Rewrite Equation (7) as

Y YOG-imd-inty)- 3 3 8G-md,—ni,) )

m=-—o0 p=—o0 m=—ocop=—oo

and its Fourier transform becomes

26, S 3 8—2kii, ~20d,)-C, 3. 3 80w~ kii, - li,)- 9)
k=—0c0 |=—o0 k=—c0 |=—oc0
For this case, should be modified

accordingly as

Equation (6)

G'(w)=[HW)x A(W)]
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Fig. 9 shows that the two peaks of H(w)xA(W) at
position *#, are complementary to the corresponding
ones (i.e., identical in amplitude but different in sign) of
H(w)x A(w) in Figure-8. We can also notice that in the
low-frequency area, the (£1,0)-ordered moiré signals
oriented by (+1,0) are also negative with respect to the
corresponding ones in Fig. 8.

signal components in

low - frequency area are negative

signals oriented by (—2,Q,A_ A,__/.rignal: oriented by (2,0)

S

T T

: L_‘,—\ﬁ;— - i~ Bl H -
=Si, 4, | =3d,i 2@ % SNREA 3, | 4u, i SW,
! I}
H (oL \ i
L L T -3 W o2w, 3w, 4w, S,

negative owing 1o signals oriented by (1,0)

signals oriented by (-1,0)

shifting scanning grids
Fig. 9. Result of second scan with half grid distance shift.
We now average the results of the two scans. According

to Equation (6) and (10), the signals in the frequency
domain become

G'(#)=[HOX A C, 3 3 8(h—2kii, ~21d,)- (1)

k=—co I=—oo

The averaged signals and the signals removed by the
averaging are shown in Fig. 10. Notice that in the low-
frequency area, the (£1,0)-ordered moiré signals oriented
by (£1.0) have already been removed. The remaining
higher-ordered moir¢ signal components which are placed
in the low-frequency area have much smaller amplitudes,
and so much less influence on the moiré phenomenon.
This means that the major moiré patterns indeed can be
removed by double scans with moving grids.

signalsremovedby

averagingf the twoscan:
7\

S5, ik 3 24

—Sw,

v v 3w 2w,
Fig. 10. The averaged signals (shown by solid curves) and
the signals removed by the averaging (shown by dashed

curves).

4. Experimental results

An image used in the experiment is shown in Fig. 11.
First, we print the image by Howteck RIP with 2000 dpi
using a 133 Ipi screen. Second, we scan the printing with
a Howteck D4000 drum scanner using 250 dpi and a
balanced aperture. The resulting gray-scale image is
shown in Fig. 12 which is full of obvious moiré patterns.
Then, we rescan the same printing by shifting the
scanning position 0.002 inch horizontally and 0.002 inch
vertically. The resulting image with shifted grids is shown
in Fig. 13. Moiré patterns again can be seen obvious.

Fig. 14 shows the difference of the images of the two
scans, which shows the patterns removed by averaging
the two images. The averaged image is shown in Fig. 15.
Compared with the result of the first scan, we see that
most of the moiré fringes are suppressed.

Fig. 11. Original image.

Fig. 12. Result of first scan.
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Fig. 13. Result of second scan.

Fig. 14. Difference between the first and the second scans.

Fig. 15. Averaged image from the first and the second
scans.

5. Conclusions

When scanning a halftone printing, additional moiré
patterns will appear in the scanning result. By Fourier
analysis, we have shown that these patterns come from
the alias sampling of the screened halftone printing by a
scanner. A method which employs a double-scan process,
followed by an averaging process, was proposed to
suppress the additional moiré patterns. In the double-scan
process, we scan the halftone printing twice. The
scanning positions of the two scans are with a shift of half
of the sampling grid distance. In the averaging process,
the results of the two scans are averaged and the major
moiré patterns can be removed, as proved by Fourier
analysis. Some experimental results showing the
feasibility of the approach have also been included.
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