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Abstract — A vision-based fuzzy approach to autonomous 
vehicle navigation in complicated room environments with 
obstacle avoidance capability is proposed. In the learning 
stage, through a simple non-visual strategy by driving a 
vehicle around a multi-room environment freely, an 
inter-room path map is constructed by analyzing the recorded 
user-driving control information and the odometer data. And 
following the learned map in the form of an attributed 
undirected graph, the vehicle can accomplish inter-room 
navigation and collision avoidance by several proposed fuzzy 
guidance techniques using environment parameters extracted 
from along-path images acquired by an on-board vision 
system. And measures for navigation accuracy maintenance 
are also proposed. Good experimental results show the 
feasibility of the proposed approach. 

1. INTRODUCTION 
Recently, vision-based autonomous vehicles or mobile 

robots have been used in more and more human 
environments, especially in security patrolling and home 
service applications. A difficulty encountered in such 
vehicle navigation applications is the complicated 
environment faced by an autonomous vehicle, resulting in a 
challenge of designing a general and flexible learning 
strategy for various navigation environments. Most former 
works [1-5] focused on vision-based learning. Though this 
approach is useful for constructing visual environment data, 
which can then be used for locating the vehicle in the 
navigation stage, yet certain restrictions are usually 
imposed on the learning process, resulting in inconvenience 
or difficulty in conducting the learning work. Furthermore, 
certain artificial landmarks or specific scene features are 
often forced to appear in the environment to be learned, in 
order to accomplish the work of locating the vehicle by 
landmark or feature matching in the navigation stage. This 
often makes the learning method inapplicable or less 
flexible in certain applications. Finally, use of landmark or 
feature matching often yields imprecise vehicle location 
results, leading possibly to unstable navigation 
performances. In this paper, we propose a non-visual 
approach to learning which solves all the above-mentioned 
problems encountered in the conventional vision-based 
learning approach. 

The proposed non-visual learning process is just a 
sequence of free actions of vehicle driving through a 

number of reachable rooms without using a vision system. 
The vision system is used in the navigation stage mainly for 
the purpose of collision avoidance. Only simple data 
consisting of the records of user-driving actions as well as 
the odometer values of traversed paths are collected, 
followed by the execution of a path map creation process 
with the learned data as input. The generated path map 
consists of a set of connected nodes, with each inter-node 
edge being a traversed trajectory in the learning process. 

In the navigation stage, the main task is to guide the 
vehicle to follow a selected path generated from the learned 
path map. The path information consists of a set of driving 
actions and odometer values. A vision-based navigation 
strategy based on fuzzy-set theory is proposed. The reason 
why we adopt the fuzzy-control approach is three-fold. First, 
general indoor environments, especially those in rooms 
with furniture and decorations, are quite complicated, and 
conventional vision-based methods requiring precise image 
analysis for vehicle location computation are mostly 
inapplicable. Second, the adopted fuzzy-control approach 
on the contrary allows the vehicle system to infer navigable 
space along the path in a less accurate way. And lastly, 
fuzzy computation, when combined with our collision- 
avoiding strategy of vehicle guidance, becomes simple and 
effective, as experienced from our experiments. The 
proposed collision-avoiding guidance strategy is based on 
the use of a computer vision system using a wireless camera, 
and regards objects along navigation routes as obstacles, 
which should be avoided. In essence, we keep equilibrium 
between navigation accuracy and fuzzy control. 

In the remainder of this paper, the proposed vehicle 
system configuration and the overall navigation procedure 
is sketched in Section 2. In Section 3, the proposed learning 
process is described. In Section 4, the proposed fuzzy 
guidance techniques are detailed. Some experimental 
results are shown in Section 5, followed by some 
concluding remarks in the last section. 

2. SYSTEM CONFIGURATION AND NAVIGATION PROCEDURE 
In this study, we use as our autonomous vehicle the 

Amigo Robot, a mini-vehicle made by ActivMedia 
Robotics Technologies, Inc. There are an odometer and a 
wireless camera on the vehicle. Through the wireless device 
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and the system software on the vehicle, we can control the 
vehicle with a remote PC. The max advance and rotation 
speeds of the robot are 75 cm/sec and 300 degrees/sec, 
respectively, and either of the two speed encoders on the 
vehicle encodes 39000 ticks per wheel revolution with 124 
ticks per millimeter. Although there are ultrasonic sensors 
on the vehicle, they are not used in this study. 

A description of the major steps of the proposed system 
processes, including learning and navigation, is as follows. 

Stage 1: learning 
1.1 Free manual driving --- In this major step, we 

drive the vehicle from one room spot to another 
as wished, recording all the driving actions and 
information, including turnings with specified 
directions, and backward and forward moves 
with traversed distances. 

1.2 Automatic path map creation --- In this step, we 
identify two types of path nodes, check node and 
turn node, in the path data collected in the last 
step to create a path map of the visited room 
spots in the form of a graph with undirected 
edges specifying the navigated routes. 

Stage 2: navigation 
1.3 Path generation --- In this step, a user selects a 

starting spot and an ending one for navigation, 
and the vehicle system generates accordingly a 
path consisting of a sequence of nodes and edges, 
with each node including its corresponding 
space coordinates and each edge including the 
labels of its two end nodes. 

1.4 Path traverse --- The vehicle then starts to 
navigate along the generated path by visiting the 
nodes sequentially through the routes specified 
by the inter-node edges, using the fuzzy 
guidance techniques of line following between 
check nodes and curve following between turn 
nodes. Precision maintenance measures are also 
carried out at each node. 

3. PROPOSED LEARNING PROCESS 
As mentioned previously, the learning strategy proposed 

in this study is non-visual and uses no landmark or special 
features for vehicle location in the navigation environment. 
So, the vision system on the vehicle is disabled during the 
learning process. 

3.1 Free Manual Driving Step 

During the previously-mentioned manual driving step in 
the learning stage, the proposed system allows a user to 
control the vehicle to move freely in an unknown 
environment through a simple control interface. Each action 
taken by the user is recorded as a command together with its 
execution time with respect to the start time of the learning 
process. And the location of the vehicle, including its 
position and direction, is recorded every fixed time period 
(say, every second). A list of the labels for data representing 

the user-driving actions and information is shown in Table 
1. All the recorded data are called learned data in the sequel. 
Each command is associated with three or four parameters. 
More specifically, either of the ‘turn leftward’ or the ‘turn 
rightward’ command is associated with the parameters of 
turn angle, position coordinates, direction angle, and action 
time; and each of the ‘move forward’, the ‘move backward’, 
and the ‘stop’ command with the parameters of position 
coordinates, direction angle, and action time (without the 
turn angle). 

 

 
3.2 Automatic Path Map Creation Process 

The proposed automatic path map creation process, as 
mentioned previously, is designed to create a graph 
composed of two kinds of nodes, check node and turn node, 
from the learned data. An algorithm is proposed as follows 
for this purpose. 

Algorithm 1. Automatic path map creation process. 

Step 1. Take the learned data as input, and identify check 
nodes and turn nodes by processing the 
commands sequentially in the input in the 
following way. Let the currently processed 
command be denoted as C0, the previously 
processed one as C−1, and the next processed one 
as C+1. 

Step 1.1. If C0 is ‘move forward’, then 
a. if C−1 is ‘turn leftward’ or ‘turn rightward,’ 

then create a turn node at the spot visited by 
the vehicle three seconds after the action 
time of C0 (i.e., three seconds after C0 was 
executed); 

b. if C+1 is executed at a spot farther than a 
meter from C0, then create check nodes at 
spots with distance intervals of one meter 
with C0 as the first created check node. 

Step 1.2. If C0 is ‘stop’, then  
if the C+1 is ‘turn leftward’ or ‘turn 
rightward’, then create a turn node at a 
spot visited by the vehicle three seconds 

TABLE 1 
USER-DRIVING COMMANDS AND PARAMETERS FOR LEARNED DATA 

TYPES COMMAND & PARAMETERS LABEL OR VALUE

command move forward f 
command move backward b 
command turn leftward l 

command turn rightward r 
command stop s 
parameter turn angle θt  
parameter position coordinates (x:y) 
parameter direction angle θd

parameter action time t 
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before the action time of C0  (i.e., three 
seconds before C0 was executed); 
otherwise, create a check node at C0. 

Step 2. Repeat Step 1 until all commands in the input are 
processed. 

In the above algorithm, the two threshold values of three 
seconds and one meter may be varied to meet other 
application needs. It can be seen from the algorithm that the 
resulting path map is a simple attributed undirected graph, 
which we found sufficient for this study. 

4. PROPOSED FUZZY GUIDANCE FOR NAVIGATION 
In every navigation cycle, an input image captured with 

the wireless camera is processed to obtain two kinds of 
features, namely, collision-free direction, and degrees of 
collisions of the left and the right route sides. These features 
are taken as input into a fuzzy guidance algorithm, which 
yields an angle as output for use to steer the vehicle in each 
navigation cycle. In the following, we first describe how we 
compute the two kinds of features in Section 4.1, and then 
present the guidance algorithm in Section 4.2. 

4.1 Computing Features for Use in Guidance 

Image processing techniques are applied in this study to 
captured images to compute the features for use in vehicle 
guidance, as described in the following. 

A. Computing collision-free direction 
The feature of collision-free direction means the 

direction into which the vehicle may be driven with no 
collision with the objects along the path navigated by the 
vehicle. Such a feature is computed in every navigation 
cycle in the following way. First, we want to divide the 
input image into 4×4 blocks and classify each image block 
into two classes, namely, route area and non-route one. As 
a preliminary step to achieve this goal, we utilize an 
algorithm presented in Li and Tsai [6] to locate image 
blocks of possible route areas. The essence of the algorithm 
is to use two pixel features, namely, a pixel’s gray-scale 
value and its Sobel edge value, to identify candidate 
route-area pixel. A pixel in the input image with its 
gray-scale value close to a pre-learned gray-scale value of 
the room ground and with its Sobel edge value smaller than 
a pre-selected threshold is classified as a candidate 
route-area pixel. An example of such image pixel 
classification results is shown in Figs. 2(a) and 2(b). 
Because of color and uniformity similarities, some wall or 
furniture regions may be misclassified as route areas, as can 
be seen in Fig. 2(b). Nevertheless, we propose an algorithm 
in this study to remove such erroneous areas in the 
following, which in addition computes the 
above-mentioned feature of collision-free direction from 
the remaining correct route areas in the input image. 

Algorithm 2. Computation of route areas and 
collision-free direction. 

Step 1. Perform region growing to find as the desired route 
area the largest bottom region in the candidate 
route-area pixels extracted from the input image using 
[6]. The region growing result of the above example 
is shown in Fig. 2(c). 

Step 2. Put two parallel horizontal scanning lines in a fixed 
lower part of the route area. If any non-route area 
crosses either scanning line and cuts it into several 
line segments, pick out the longest segment and call it 
a non-obstacle segment; otherwise, the original 
scanning line is selected as the non-obstacle segment. 
At the end of this step, two non-obstacle segments 
will be obtained. 

Step 3. Find the middle points of the two non-obstacle 
segments and connect them to form a line segment 
which we call route segment. The found middle 
points for the above example are A and B as shown in 
Fig. 2(c). 

Step 4. Compute the middle point of the route segment, 
which we call route center. The result of this step for 
the last example is point C in Fig. 2(c). 

Step 5. Connect the route center to the middle point of the 
bottom line of the image to form a line segment, 
which we call guidance line, like the line labeled L in 
Fig. 2(d). 

Step 6. Find as the desired collision-free direction θg the 
angle of the guidance line with respect to the bottom 
line of the image. 

In the above algorithm, no complicated 3D computer 
vision technique is used in computing the collision-free 
direction, as contrasted with conventional methods. Also, 
notice that by the above algorithm, the vehicle 
automatically has the capability of obstacle avoidance. 
Actually, obstacles in the path are treated similarly to 
along-path side objects (like furniture) in this study. 

B. Computation of degrees of collisions 

The degrees of collisions of the left and the right route 
sides are defined and computed in this section. We first 
define a rectangular window in each captured image with 
two sub-windows separated by a centerline, as shown in Fig. 
2(e). Then the proportion of the route area in the left 
sub-window is defined to be the degree of collision of the 
left route side, which will be denoted by PL. That of the 
right route side can be defined similarly, and denoted by PR. 

4.2 Proposed Fuzzy Guidance 

After the features described in Section 4.1 are acquired, a 
steering angle θs

i is computed for use in turning the vehicle 
in the ith navigation cycle. This angle θs

i is an output of a 
fuzzy guidance algorithm proposed in this study and 
described in the next section. If θs

i is positive, it means that 
the vehicle should turn leftward for the angle of θs

i; if θs
i is 

negative, it means that the vehicle should turn rightward for 
θs

i. The proposed fuzzy guidance algorithm is based on two 
fuzzy rules in terms of three linguistic variables LESS, 
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LEFT, and RIGHT that describe the values of the input 
features. The rules are described as follows: 

Rule 1: if the collision-free direction θg trends to LEFT 
and the degree of collision of the right route side 
PR is LESS, then turn the vehicle rightward for 
the angle of θs

i; 
Rule 2: if θg trends to RIGHT and PL is LESS, then turn 

the vehicle leftward for θs
i. 

To implement the above two rules, six membership 
functions ( )gLEFT θµ , ( )gRIGHT θµ , ( )RRLESS P−µ , ( )LLLESS P−µ , 

( )i
Sf θµ 1

, and ( )i
Sf θµ 2

 are defined as shown in Fig. 3, 

in which the units of θg, and PR and PL are degree and 
percentage, respectively. 

  

  
The fire strengths of Rules 1 and 2 can be calculated 

accordingly as follows: 
The fire strengths of Rules 1 and 2 can be calculated 

accordingly as follows: 

( ) ( )RRLESSgLEFT Pm −∧= µθµ1  

( ) ( )LLLESSgRIGHT Pm −∧= µθµ2  

where ∧ denotes the AND operator which is defined as the 
minimum function. After the fuzzification stage, the 
conclusion of each rule can be derived according to fuzzy 
reasoning. Because the membership function of the 
conclusion of each rule is monotonic, the Tsukamoto 
defuzzification method [7] can be applied to our fuzzy 
reasoning here. The crisp output θs

i, which is the desired 
steering angle, is calculated by the following equation: 

( )
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∑
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where mk is the firing strength of Rule k, and ( )jmj
S

1−
θ

µ  is 

the inverse function of ( )i
Sj

S
θµ

θ
. The previous 

discussion results have been followed to design a fuzzy 
guidance algorithm in this study. The details are omitted in 
this paper. 

5. PROPOSED VEHICLE NAVIGATION PROCESS 
The proposed navigation strategies for navigation at the 

previously-mentioned two types of nodes are detailed in 
this section. 

5.1 Line-following Navigation Strategy for Check Nodes 

The navigation strategy of line following is adopted 
when the vehicle passes a check node in its navigation path. 
The vehicle uses mainly the fuzzy guidance technique 
described in the last section during the line following 
procedure. The details are described as follows. 
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Figure 3.  Membership functions 

(a) Rule 1. 

(b) Rule 2. 
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Figure 2.  (a) An input image. (b) Result of candidate 
route point classification. (c) Result of route 
area extraction. (d) Result of guidance line 
computation. (e) Another input image. (f) 
Result of guidance line computation of (e). 

 4



 
 

 

Algorithm 3. Line-following navigation. 

Step 1. Turn the vehicle toward the check node Nc to be 
reached. 

Step 2. Calculate the distance from the current vehicle 
location Lv (recorded in the odometer) to the location 
of Nc (recorded in the learned data), and denote the 
distance by d1. 

Step 3. Move the vehicle forward. 
Step 4. Turn accordingly if the output steering angle of the 

fuzzy guidance algorithm is larger than zero. 
Step 5. Read the odometer to get the current vehicle 

location Lv’ and compute how far the vehicle has 
moved as d2 = |Lv’ − Lv|. 

Step 6. If the difference |d1 − d2| is smaller than 5 
centimeters, then end this navigation session; 
otherwise, turn the vehicle to the original direction of 
Nc specified in the learned data, and repeat Step 3 
through Step 5. 

Note that by Step 6 we can maintain the location 
precision of the line-following navigation; if the vehicle’s 
trajectory has been deviated too far from its right path, then 
the navigation is stopped. Also, by turning the vehicle to the 
original direction of Nc, we can maintain the direction 
precision of the vehicle at each check node. 

5.2 Curve-Following Navigation Strategy for Turn Nodes 
The navigation strategy of curve following is adopted 

when the vehicle passes a turn node (called initial turn node) 
and moves toward another turn node (called end turn node) 
in its navigation path. The proposed curve following 
method uses the information that contains the global 
coordinates of the two turn nodes with their direction angles 
to make a smooth turn. An illustration for the proposed 
curve following technique is shown in Fig. 4. The main 
concept behind is to move the vehicle along a well-planned 
curve joining the two turn nodes by setting different speeds 
for the two wheels individually. An algorithm for the 
method is described as follows. 

 
Algorithm 4. Curve following. 

Step 1. When the vehicle arrives at the initial turn node 

denoted as Nt
1, get the global coordinates ( )11,YX  and 

the direction angle θ1 from the odometer, and convert 
θ1 into a vector 1V

v
 using the following equation: 

1V
v

: 
⎜⎜
⎛ . 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=⎟⎟
⎠

⎞

⎝ )cos(
)sin(

1

1

1

1

θ
θ

Y
X

)2 ,YX

v

Step 2. Get the global coordinates 2 and the direction 
angle θ

(
2 of the end turn node Nt

2 from the learned 
data, and convert θ2  into a vector V  in a similar way 
to that for computing V

2

1

v
. Also, compute a vector 

 which is perpendicular to V⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

d
c

V 3

v

2

v
. 

Step 3. Compute the middle point ( )CC YX ,  between ( )11,YX  
and ( )22 ,YX . 

Step 4. According to geometry theory, a unique circle with 
center ( )OO YX ,  can be obtained by giving two points 
and its vectors. Compute accordingly ( )OO YX ,  by the 
following equation: 

dSYYcSXX OO +=+= 22 ,  
where 

( )( ) ( )( )
( ) ( )1212

122122

YYdXXc
YYYYXXXXS CC

−+−
−−+−−

= . 

The details are omitted here. 

Step 5. Compute a vector V  by the following equation: 4

v

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−=
1

1

1

4 XX
YY

V
O

Ov  = 
⎜⎜
⎛ . 

⎟⎟
⎠

⎞

⎝ Y
X

Step 6. Convert 4V
v

 into an angle θ3 by the following 
equation: 

if Y < 0 and X > 0, then set θ3= ⎟
⎠
⎞

⎜
⎝
⎛−− −

Y
X1tan180 ; 

if Y < 0 and X  < 0, then set θ3 = ⎟
⎠
⎞

⎜
⎝
⎛− −

Y
X1tan180 ; 

otherwise, set θ3 = ⎟
⎠
⎞

⎜
⎝
⎛− . −

Y
X1tan

Step 7. Turn the vehicle leftward for the angle of θ3 if θ3 is 
larger than zero; otherwise, turn the vehicle rightward 
for the angle of θ3. 

Step 8. Set the speeds of two wheels individually by the 
following equations: 

wRR
V
V

R
R

R

L =−= 12
2

1 ,  

Figure 4: A figure illustrating curve following. 
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where VL and VR are the speeds of the left wheel and 
the right one, respectively; R2 and R1 are the distances 
from the center of the circle to the left wheel and the 
right wheel, respectively; and w is the width of the 
vehicle. An illustration of the situation and the 
notations is shown in Fig. 5. 

R2

L R Center of 
circle

Step 9. Start the curve following action until the end turn 
node is reached. w R1

Step 10. Turn the vehicle to the original direction 
specified in the learned data, and finish the turning 
session. 

Note that in the above curve following process, the 
global coordinates of the end turn node are obtained from 
the learned data. Therefore, even though at the initial turn 
node the vehicle is located at an imprecise spot due to 
incremental accumulations of location errors, the final 
vehicle location at the end turn node will become precise 
again. This is a merit of our method. 

Fig. 5: An illustration of computing two wheel speeds for the 
case of turning rightward in curve following. 

6. EXPERIMENTAL RESULTS 
Some images, which are grabbed when the vehicle 

navigated in an experimental trip along a learned path in an 
indoor environment, are shown in Fig. 6. The images also 
illustrate situations of line following, vehicle turning, and 
obstacle avoidance. Each distinct situation is marked 
respectively and clearly in the figure. The speed of the 
vehicle used in this navigation is set to be 10 cm/sec. 

7. CONCLUDING REMARKS 
Several techniques and strategies have been proposed 

and integrated into an autonomous vehicle system with 
simple learning and fuzzy guidance capabilities. 
Satisfactory navigation results have been obtained. Less 
data are acquired in the proposed learning process without 
causing instable and imprecise navigation results. In 
addition, a vehicle navigation method using fuzzy-control 
techniques has been proposed for indoor environments. 
Two kinds of navigation strategies, namely, line following 
and curve following, have been proposed to guide smoothly 
the vehicle in two different navigation sessions. And the 
experimental results show the feasibility of the proposed 
method. 
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