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Abstract—An omni-vision-based localization method for auto-
matic helicopter landing assistance on a helipad with a circled 
H-shape is proposed. The landing process includes two stages: 
approaching and alignment. Three types of image features, 
circle, line, and point, are used to derive skillfully analytic 
equations for computing the helicopter height, distance, and 
orientation with respect to the landing site. Experimental re-
sults with good location estimation accuracy are also shown. † 
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I. INTRODUCTION 
Vision- based automatic helicopter landing is useful for 

safe helicopter aviation or unmanned air vehicle (UAV) ap-
plications. This approach uses cameras to acquire environ-
ment images and applies image analysis techniques to con-
duct helicopter localization and flight guidance during the 
landing process. See Fig. 1 for an illustration. 

 
Figure  1.Illustration of helicopter landing on a helipad with a circled 

H-shape. 

Many vision-based methods[1-3] have been proposed for 
unmanned helicopter flying, in which traditional projective 
cameras with fixed fields of view (FOV) were used. It is 
advantageous to use omni-cameras to enlarge the viewing 
scope and so speed up the automatic landing process. In this 
direction, Hrabar and Sukhatme [4] designed an omni-vision 
system which tries to find the centroid of the H-shape on the 
helipad to generate commands for guiding the helicopter. 
Demonceaux, et al. [5] proposed a helicopter posture com-
putation method using catadioptric omni-images of the hori-
zon line to estimate the pitch and roll angles of the helicopter. 
Bazin et al. [6] extended the method of [5] to estimate the 
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yaw angle of the helicopter using the information of vanish-
ing points for automatic flight in urban areas. 

Most of the above methods do not investigate the full de-
tails of the automatic landing process. Also, when the 
H-shape or T-shape is used as a landmark for localization, 
the geometric information existing in the landmark was not 
fully exploited. In this study, we investigate 
omni-vision-based helicopter localization techniques as as-
sistance to automatic helicopter landing using the circled 
H-shape on a helipad as the landmark. The features on the 
landmark, including point, line, and circle, and their mutual 
relation properties are used systematically for helicopter lo-
cation estimation. The landing process is divided into two 
stages  approaching and aligning.  

In the remainder of this paper, in Section II we introduce 
the idea of the proposed helicopter localization method. Then, 
in Section III we present the techniques for estimations of the 
helicopter position, orientation, and height in the proposed 
two-stage helicopter landing process. Some experimental 
results are presented in Section IV, followed by conclusions 
in Section V. 

II. IDEA OF PROPOSED METHOD 
The proposed two-stage automatic helicopter landing 

process includes: (1) approaching�− maneuvering the heli-
copter to approach the helipad, and (2) aligning − maneu-
vering the helicopter to fly between, and then in alignment 
with, the two outmost boundary lines of the H-shape. In each 
stage, certain geometric information contained in single 
omni-images of the circled H-shape is used to estimate the 
real-world location information (including the position, ori-
entation, or/and height) of the helicopter. More details are 
described in the following algorithm. For used notations, see 
Fig. 2. 
Algorithm 1. Two-stage automatic landing process. 
Stage 1. Approaching the helipad. 
1. Take an omni-image I1 of the helipad M. 
2. Find the circular shape S in I1 by approximating it as an 

ellipse S′ by the Hough transform. 
3. Compute the orientation θ1 and distance d1 of the heli-

copter with respect to the center C of the H-shape using 
the information of the radius of S and the parameters of S′. 

4. Maneuver the helicopter to approach M using the infor-
mation of θ1 and d1 by adjusting the helicopter orientation 
to decrease the value of θ1 while moving the helicopter 
forward. 

5. Repeat Steps 1 through 4 until the helicopter is at a 
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pre-defined distance to M. 
Stage 2. Aligning with the H-shape boundaries. 
6. Take an image I2 of M. 
7. Find the leftmost and rightmost boundary lines Ll and Lr 

of the H-shape in I2 by approximating them as conic sec-
tions Ll′ and Lr′ using the Hough transform. 

8. Compute the helicopter height h over the helipad using 
the information of the known distance dm between Ll and 
Lr. 

9. Compute the distances dl and dr of the helicopter with 
respect to Ll and Lr, respectively, as well as the orientation 
θ2 of the helicopter with respect to Ll, using the informa-
tion of Ll′, Lr′, and h. 

10. Maneuver the helicopter to fly between Ll and Lr and 
adjust its orientation to be parallel to Ll using the informa-
tion of dl, dr, and θ2. 

11. Repeat Steps 6 through 10 until θ2 approaches zero (i.e., 
until it is equal to a pre-selected small value). 

 
Figure  2. Detail of a circled H-shape on a standard helipad. 

III. PROPOSED LOCALIZATION TECHNIQUES 
The techniques proposed for the two stages of the heli-

copter landing process are described in this section. 
3.1 Proposed Techniques for Approaching Stage 

The major steps in the first stage for approaching the 
helipad include the following tasks. 
(A) Task A  Circular shape detection 

A camera coordinate system (CCS) and an image coor-
dinate system (ICS) are set up on the omni-camera system for 
use in this study, which includes a traditional perspective 
camera and a hyperboloidal-shaped mirror, as depicted in Fig. 
3. The camera coordinates, denoted as (X, Y, Z), are used to 
specify the position of each space point in the real world, and 
the image coordinates, denoted as (u, v), are used to specify 
the position of the corresponding image point. The perspec-
tive camera and the mirror are assumed to be aligned so that 
the omni-camera system becomes single-viewpointed and 
that the optical axis of the perspective camera coincides with 
the mirror axis. Here, the mirror axis is defined as the line 
going through the mirror surface center and perpendicular to 
the mirror base plane. The middle point between the per-
spective camera’s lens center Ol and the mirror’s focus point 
Om is taken to define the origin Oa of the CCS. The hyper-
boloidal mirror shape so may be described by 

2 2
2 2

2 2
1,

R Z
R X Y

a b
− = − = + , 2 2c a b= +  

where a, b are two parameters, and Om is located at (0, 0, 

+c) and Ol at (0, 0, −c) in the CCS. 

 
Figure  3. Camera and image coordinate systems in this study. 

According to [8, 9], the relation between the camera co-
ordinates (X, Y, Z) of a space point P and the image coordi-
nates (u, v) of its corresponding image point p may be de-
scribed by the following equalities, where α and β are two 
space angles as illustrated in Fig. 4: 

2 2

2 2

( ) sin 2
tan

( ) cos

b c bc

b c

βα
β

+ −
=

−
;    (1) 

2 2cos /r r fβ = + ;            (2) 
2 2sin /f r fβ = + ;           (3) 

2 2tan ( ) /Z c X Yα = − + ,        (4) 

where 22 vur +=  and f is the camera’s focal length. We 
assume that a, b, c, and f are known in advance, which may 
be obtained by proper camera calibration. Also, according to 
the rotational invariance property of the omni-camera sys-
tem [10], we have 

2 2 2 2cos / /X X Y u u vθ = =+ + ;    (5) 
2 2 2 2sin / /Y X Y v u vθ = + = + ,    (6) 

where θ is the angle of space point P with respect to the 
X-axis and is also that of image point p with respective to 
the u-axis. The above equations may be used to derive two 
equalities describing direct relation between (u, v) and (X, Y, 
Z) as follows [8-10]: 

2 2

2 2 2 2 2

( )
;

( )( ) 2 ( )

Xf b c
u

b c Z c bc Z c X Y

−
=

+ − − − + +
   (7) 

2 2

2 2 2 2 2

( )

( )( ) 2 ( )

Yf b c
v

b c Z c bc Z c X Y

−
=

+ − − − + +

.  (8) 

When the helicopter is not too close to the helipad, ac-
cording to Wu and Tsai [7], the circle S�enclosing the 
H-shape, though irregular in shape when appearing in a 
given omni-image I,�may be approximated well as an ellipse�
S′, and the length of the major axis of the extracted ellipse 
gives a hint for computing the distance of the helicopter to 
the H-shape. Accordingly, in this study we use the Hough 
transform technique to detect S′ in I after I is processed into 
an edge-point image using the Sobel edge detection operator. 
Specifically, the coordinates (uC, vC) of the center C′ of the 
detected ellipse S′ as well as the values U and V of the major 
and minor axes of S′ may be obtained as the output of the 
Hough transform process for use in helicopter orientation 
and distance computations described next. 
(B) Task B − orientation and distance computation 
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While referring to Fig. 4 which is a top view of the 
omni-camera system and the circular shape S, let the known 
radius of S be denoted by RS and let the camera coordinates 
of the center C of S be denoted by (XC, YC, ZC). In the landing 
process, it is assumed that the omni-camera is looking 
downward, so that the normal vector of the helipad is parallel 
to the optical axis of the omni-camera. We will now derive 
the distance and orientation of the helicopter to the helipad, 
or more precisely in a reverse way, the distance d1 and ori-
entation θ1 of the center C of the circle with respect to the 
CCS on the helicopter. d1 and θ1 can then be used for ma-
neuvering the helicopter to approach S (Step 4 of Algorithm 
1). 

First, we know that the projection of the center C of S on 
an image I is just the center C′ of the detected ellipse S′ 
whose coordinates (uC, vC) can be obtained by the Hough 
transform process as mentioned previously. Then, according 
to the rotational invariance property described by (5) and (6) 
we can get the desired parameter θ1, which is both the angle 
of S′ with respect to the u-axis and the angle of S with respect 
to the X-axis, as: 

1 12 2 2 2
1 cos cos[ / ] [ / ]C C C C C CX X Y u u vθ − −

= =+ + ; or (9) 

1 12 2 2 2
1 sin sin[ / ] [ / ]C C C C C CY X Y v u vθ − −

= =+ +  �(10) 

As to d1, to make the derivation of it easier, we rotate S′ 
by the angle of θ1, with the rotation result being shown in the 
image plane depicted in Fig. 5. Then, the rotated S′ may be 
described by the following equation: 

2 2

2 2

( )
1C

u' u ' v'

U V

−
+ =                (11) 

where the new image coordinates are described by (u′, v′) 
and the new ellipse center is located at (uC′, 0). Furthermore, 
let the two endpoints of the major axis of S′ be denoted as pα 
and pβ, and their corresponding space points be denoted as 
Pα and Pβ, respectively. Then, by the rotational invariance 
property again, it can be figured out that the following side 
proportionality property is truth as illustrated by Fig. 5: 

i iO / O /C C' P P p pα β α β=           (12) 

where Oi is the origin of the ICS (also the origin of the CCS 
seen from the top view), 

iO C  is the desired real-world 

distance d1 on the floor from C to the camera, 
i

O C' is the 

image distance from C′ to Oi which equals 2 2

C C
u v+ , 

P Pα β  is the diameter value 2Rs of S, and p pα β  is the 

length U of the major axis of S′. Accordingly, d1 can be 
computed finally from (12) as: 

d1 = 2
s

R

U

2 2

C C
u v+ .             (13) 

3.2 Proposed Techniques for Aligning Stage 
The major steps in the second stage for the helicopter to 

align with the outmost boundary lines of the H-shape include 
the following three tasks. 
(A) Task A  Boundary line detection 

Based on some optics and geometry of the omni-camera, 
detection of an outmost boundary line L (either of Ll or Lr) of 
the H-shape in an omni-image I is accomplished in this study 

first by deriving an equation to describe the projection L′ of L 
in I, which is a conic section, as will proved later. The deri-
vation is conducted in a novel way in this study so that the 
resulting equation becomes simple and analytic, facilitating 
design of an uncomplicated Hough transform algorithm to 
extract L′ and computation of the helicopter location in a 
faster speed for practical applications. 
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Figure  4. Top view of image plane and circular shape S illustrating side 

proportionality relation between approximating ellipse S′ and 
circular shape S. 

 
Figure  5. Illustration of a space line projected onto the image plane. 

In more detail, as shown in Fig. 6, suppose that the 
boundary line L has a specific point P0 located at camera 
coordinates (X0, Y0, Z0), and let P be an arbitrary point on L 
with camera coordinates (X, Y, Z). Then P and P0 together 
form a vector V0 = (X − X0, Y − Y0, Z − Z0). Also, let the di-
rection vector of L be denoted as VL = (dX, dY, dZ). Then, by 
the fact that V0 and VL are parallel, we get the equality V0 = 
λVL which leads to 

(X, Y, Z) = (X0 + λdX, Y0 + λdY, Z0 + λdZ)    (14) 
where λ is a parameter. 

Also, let Q be the space plane going through both the line 
L and the mirror base center Om which is located at camera 
coordinates (0, 0, +c); Nq be the normal vector of Q with 
components (l, m, n); and P′ be an arbitrary point on Q with 
camera coordinates (X, Y, Z). Then, P′ and Om together form 
a vector Vm = (X − 0, Y − 0, Z − c) = (X, Y, Z − c) which is 
perpendicular to Nq, so that the inner product of Vm and Nq 
becomes zero, leading to the following equality: 

lX + mY + n(Z − c) = 0,         (15) 
which is equivalent to 

Z − c = ( ) /lX mY n− + .          (16) 
Now we want to derive an equation for describing the 

projection of the space line L on the image, which also ex-
presses the relation between the camera coordinates (X, Y, Z) 
of a space point P on L and the image coordinates (u, v) of 
the image point p corresponding to P. Note that P is also on 
plane Q. Combining (4) through (6) and (16), we get 
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2 2
tan

Z c

X Y
α

−
=

+

= 
2 2 2 2

[ ] /
lX mY

n
X Y X Y

− +
+ +

 

= 
2 2 2 2

[ ]/
lu mv

n
u v u v

− +
+ +

= 2 2

( / ) ( / )lu n lv n

u v

+
−

+
.      (17) 

Also, substituting (2) and (3) into (1), we can get 
2 2 2 2 2

2 2 2 2

( ) 2
tan .

( )

b c f bc f u v

b c u v
α

+ − + +
=

− +
    (18) 

Equating (17) and (18) followed by some reductions leads to 
2 2 2 2 2 2( ) 2 ( ) 2 2 0A D u ABuv B D v ACu BCv E− + + − + + + = (19) 

where 
l

A
n
= , m

B
n
= ,

2 2

2 2

( )

( )

b c f
C

b c

+
=

−
,

2 2

2

( )

bc
D

b c
=

−

, E = C2 − D2f2.(20) 

Multiplying (19) by n2, we get: 

(l2 − n2D2)u2+2lmuv+(m2 − n2D2)v2+2lnCu+2mnCv+n2E=0.(21) 

Eq. (20) or (21) shows that the projection of a space line 
on an image is a conic section curve. And (20) shows that the 
coefficients of the equation may be described indirectly in 
terms of the parameters of the normal Nq = (l, m, n) of plane 
Q. These coefficients actually are related to the elements of 
the direction vector VL⋅= (dX, dY, dZ) of L by the equality 

Nq⋅VL = (l, m, n)⋅(dX, dY, dZ) = ldX + mdY + ndZ = 0  (22) 

because Nq and VL are perpendicular, where “⋅” means the 
inner product for vectors. Furthermore, Eq. (19) has a good 
property that the parameters l, m, and n are confined to ap-
pear in just two variables A and B, as shown by (20). This 
facilitates the extraction of the conic section curve by a sim-
ple technique using a 2D Hough transform described in the 
following. 
Algorithm 2. Extraction of conic-section projection of a 

space line on an omni-image by Hough transform. 
Input: an omni-image I which includes the projection L′ of 

a space line L on I. 
Output: the two parameter A and B in the conic-section 

description, Eq. (19), of L′. 
Steps: 
1. Extract the points of L′ out of I by thresholding and edge 

detection to form a new edge-point image I′. 
2. Set up a 2D Hough space with parameters A and B and set 

all cell values in the space to be zero. 
3. For each point in I′ at coordinates (u, v) and for each cell 

at parameters (A, B), if u, v, A, and B satisfy Eq. (19), then 
increment the cell value by one. 

4. Detect the peak cell value in the Hough space and take the 
parameters (A, B) of the cell with the peak value as output 
to draw a conic-section curve described by (19). 

In the sequel, whenever a conic section described by (19) 
is mentioned, we assume that the two parameter values A and 
B in (19) have been obtained by Algorithm 2 above. This 
means that the ratios l/n and m/n are also known because l/n 
= A and m/n = B according to (20). 
(B) Task B  Height computation 

Suppose we are dealing with one of the two outmost 
boundary lines Ll and Lr of the H-shape and let the line be 
denoted as L. We want to find a reference point, which we 
propose to be the minimum-distance point Pmin on L to the 

origin Oa of the camera coordinate system, as illustrated by 
Fig. 7. This point Pmin will be used later for the purpose of 
helicopter height computation here. 

To find Pmin on L, we know that L is on the floor, so L is 
parallel to the X-Y plane of the camera coordinate system. 
Consequently, the component dZ of the direction vector VL = 
(dX, dY, dZ) of L is zero, and Eq. (22), which is ldX + mdY + 
ndZ = 0, may be transformed into 

/( / ) /( / )X Y sd m n d l n= − =           (23) 
where s is a new parameter. Combining (14) and (23), we 
get a parametric equation for L as 

(X, Y, Z) = (X0 + 
m

n
sλ, Y0  − 

l

n
sλ, Z0 + dZλ)   (24) 

where (X0, Y0, Z0) specify the coordinates of point P0 on L yet 
to be determined. Since L is on the landing floor with the 
helicopter being at a certain height h which we want to find 
out here, we have Z = −h for all points on L, and so (24) 
above may be rewritten as 

(X, Y, Z) = (X0 + mt/n, Y0  − lt/n, −h)       (25) 
where t = sλ. The distance from the camera coordinate sys-
tem origin Oa at (0, 0, 0) to an arbitrary point on L at (X, Y, Z) 
therefore is 

d(t) = ||(X, Y, Z) − ( 0 ,  0 ,  0 ) | |  = 2 2 2

0 0
( / ) ( / )X mt n Y lt n h+ + − + . 

And the minimum distance dmin from Oa to L may be ob-
tained by taking the derivative of the square of d(t) above, 
setting it to be zero, and solving the resulting equation 
which is of the following form: 

0 02( / )( / ) 2( / )( ) 0/X t n m n Y t nm l l n+ + − − = .   (26) 
The solution tmin of (26) above is 

2 2
min 0 0( / / ) /[( / ) ( / ) ]t mX n lY n m n l n= − + + .     (27) 

 
Figure  6. Finding minimum-distance point Pmin on a boundary line. 

To decide the values of X0 and Y0 in the above equality, 
we may regard L as a line with an infinite length and going 
through the space plane Q0 described geometrically by the 
equation X = 0. We then take the intersection point of L and 
Q0 to be the point P0, which has coordinates (X0, Y0, Z0) with 
X0 = 0 and Z0 = −h. Accordingly, (16) may be reduced to be 

0 ( ) /Y n h c m= + ,              (28) 
so that (27) becomes 

min

2 2( / )( ) /[( / ) ( / ) ]t l m h c m n l n= + + .        (29) 
Therefore, the coordinates (Xmin, Ymin, Zmin) of the mini-
mum-distance point Pmin on L to Oa may now be calculated 
from (26) and (29) to be 

(Xmin, Ymin, Zmin) = ( 2 2

( / )( )

( / ) ( / )

l n h c

m n l n

+

+
,  2 2

( )

( / ) ( / )

( / ) h c

m n l n

m n +

+
, −h) 

= (
2 2

( )A h c

A B

+

+
,  

2 2

( )B h c

A B

+

+
, −h)        (30) 
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where A = l/n, B = m/n are known values as mentioned pre-
viously, of the coefficients of the projection L′ of L on the 
image described by (19) and (20). Accordingly, we can get 
from (30) the following values for the coordinates of the 
minimum-distance points Pmin

1 and Pmin
2 of L1 = Ll and L2 = 

Lr, respectively, with respect to Oa: 

(Xmin
1, Ymin

1, Zmin
1) = ( 1

2 2

1 1

( )A h c

A B

+

+
,  1

2 2

1 1

( )B h c

A B

+

+
, −h);  (31) 

(Xmin
2, Ymin

2, Zmin
2) = ( 2

2 2

2 2

( )A h c

A B

+

+
,  2

2 2

2 2

( )B h c

A B

+

+
, −h),  (32) 

where A1 and B1 are the coefficients of the projection L1′ = 
Ll′ of L1 = Ll on the image described by (19) and (20), and 
A2 and B2 are those of the projection L2′ = Lr′ of L2 = Lr. By 
the fact that Ll and Lr are parallel and are separated with a 
known distance dm, it is not difficult to figure out that the 
points Pmin

1, Pmin
2, and the projection point of Oa on the 

landing floor are all on an identical line which is perpen-
dicular both to Ll and to Lr, so that the distance between 
Pmin

1 and Pmin
2 on the landing floor is just dm, leading to the 

following equality: 
2

1 2

2 2 2 2

1 1 2 2

( ) ( )A h c A h c
+

A B A B

+ +
−

+ +

   
2

21 2

m2 2 2 2

1 1 2 2

( ) ( )B h c B h c
= d

A B A B

+ +
−

+ +

   
(33) 

Furthermore, parallelism of Ll and Lr means that their di-
rectional vectors are identical, which we assume to be (dX, dY, 
dZ) with dZ = 0. So, if (l1, m1, n1) is the normal vector of the 
space plane including L1 = Ll and Om and (l2, m2, n2) is that 
for the plane including L2 = Lr and Om, then according to (23) 
we get 

1 1 2 2 1 1 2 2( / ) /( / ) ( / ) /( / )l n l n m n m n=      (34) 
or A1/A2 = B1/B2 because A1 = l1/n1, A2 = l2/n2, B1 = m1/n1, B2 
= m2/n2 according to (20). Define λ as 

λ = A1/A2 = B1/B2             (35) 
which is equivalent to  

A1 = λA2, B1 = λB2.           (36) 
Then, substituting (36) into (33) to eliminate the terms of A1 
and B1, we get 

2 2

m 2 2= /[(1 ) ]h d A Bλ λ +− − c.  ������ (37) 
And using (36) again, we can rewrite the above equation in 
terms of the known values of A1, B1, A2, and B2 in two ways 
to describe finally the desired helicopter height h as 

h = 
2 21 m

2 2

2 1

A d
A B

A A
+

−
− c = 

2 21 m
2 2

2 1

B d
A B

B B
+

−
− c.    (38) 

(C) Task C  Orientation and height computation 
From (31), we know that the helicopter position on the 

landing floor with respect to the reference point Pmin on L1 = 
Ll is described by (Xmin

1, Ymin
1) = ( 2 2

1 1 1( ) /( )A h c A B+ + , 


2 2
1 1 1( ) /( )B h c A B+ + ). And the desired distance dl of the 

helicopter with respect to L1 = Ll on the landing floor is just 

dl = 1 2 1 2

min min( ) ( )X Y+  = (h+c)/ 2 2

1 1A B+ .  (39) 
Similarly, the desired distance of the helicopter to L2 = Lr on 
the landing floor is 

dr = 2 2 2 2

min min
( ) ( )X Y+  = (h+c)/ 2 2

2 2A B+ .  (40) 
As to the helicopter orientation seen from the top view, it 

is taken to be the angle θ2 of line L = Ll with respect to the 

X-axis of the CCS, which may be computed by cosθ2 = 
( ) /(|| || || ||)L X L XV V V V⋅ ×  where VL and VX are the direction 
vectors of L = Ll and the X-axis, respectively. We know that 
VX = (1, 0, 0). And VL = (dX, dY, dZ) may be computed to be 
the unit vector from the point P0 found previously on L (see 
discussions in Section B above) to the point Pmin also on L 
(see Fig. 7) in the following way: 

VL = 
1 1 1

min 0 min 0 min 0

1 1 1

min 0 min 0 min 0

( , , )

|| ( , , ) ||

X X Y Y Z Z

X X Y Y Z Z

− − −

− − −

 

where  

(X0, Y0, Z0) = (0, ( ) /n h c m+ , h) = (0, 
2

( ) /h c B+ , −h); 

(Xmin
2, Ymin

2, Zmin
2) = ( 2

2 2

2 2

( )A h c

A B

+

+
,  2

2 2

2 2

( )B h c

A B

+

+
, −h). 

Consequently, we get, after some reductions using the above 
formulas, the desired θ as 

θ2 = cos−1( 2 2/B A B+ ).          (41) 

IV. EXPERIMENTAL RESULTS 
Experiments in a small-scaled simulation environment as 

shown in Fig. 9 have been conducted on a simulated helipad 
with a reduced scale of 1/100. A series of images of the 
helipad with different postures was taken. The real distance 
and orientation of each posture were measured manually as 
reference data. Then, each image was processed to extract 
the circular shape and the derived formulas were used to 
compute the distance and orientation of the H-shape center 
with respect to the helicopter, which is regarded to be located 
at the origin of the CCS. Some results are shown in Fig. 8 
with 8(a) being the original image and 8(b) the result of cir-
cular shape extraction. The computation results together with 
the reference data are shown in Figs. 9 and 10. The error of a 
computed orientation is defined as the difference between 
the real and the computed ones, and the error ratio of a 
computed distance as the ratio of the absolute difference be-
tween the real and the computed distances over the real one. 
From the figures, we can see that all the computed orienta-
tions have errors smaller than 2.5 degree and that all the 
computed distances have error ratios smaller than %. Such 
results may be considered to be within allowable tolerance 
for the helipad approaching stage in which the helicopter is 
maneuvered at a farther distance from the helipad. 

V. CONCLUSIONS 

An omni-vision localization method for assisting auto-
matic helicopter landing on a helipad with a circled H-shape 
has been proposed. The proposed automatic landing process 
is divided into two stages: helipad approaching, aligning 
with the outmost boundary lines of the H-shape, and docking 
on the center of the H-shape. In each stage, proper geometric 
features of point, line, and circle on the landmark are used as 
hints for deriving formulas for computing the location (in-
cluding the height, distance, or/and orientation) of the heli-
copter with respect to the landing site. The proposed tech-
niques are all based on the use of single-view omni-images 
taken by a hyperboloidal omni-camera, in contrast with tra-
ditional methods using multiple views taken by projective 
cameras. Experimental results with good location estimation 
precisions have also been shown. 
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Figure  7.A view of simulated helipad used in experiments. 

 
(a) 

  

(b)                        (c) 

Figure  8. An example of experimental results. (a) An omni-image taken in 
the first stage. (b) Detected helipad shape. (c) Extracted bpundary 
lines of helipad. 

����

� ���

� ���

� ���

� ���

� ���

� � � � � 	 � 
 � � �� � � �

� � � 
 � � � � � � 
 � 
 � � � 
 � � � � � �
� � � � � � � �

� � � 
 � � � � � � 
 � 
 �

� � � 
 � � � � � � 
 � 
 �

� � � 
 � � � � � � 
 � 
 � � � � � � � �

� � � �

d �

d 1

h

d l

 
Figure  9. Error ratios of estimated helicopter distances d1, dr, dl, and heights h 

with respect to real helicopter distances. 
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Figure  10. Error ratios of estimated helicopter orientations θ1 and θ2 with 

respect to real helicopter distances. 

 


