

Augmented Reality-based In-vehicle Tour Guidance in

Park Areas by Vertical-line Features in Omni-images

1Yen-Cheng Wei, 2Bao-Shuh P. Lin and 3Wen-Hsiang Tsai

1Institute of Multimedia Engineering
2, 3 Department of Computer Science

National Chiao Tung University, Hsinchu, Taiwan

Emails: nick0301n@hotmail.com, whtsai@cis.nctu.edu.tw

ABSTRACT

A new tour guidance system for use in a vehicle

driven in park areas based on augmented reality and

omni-vision techniques is proposed. A passenger in

the vehicle can get tour guidance information from a

passenger-view image generated by the system and

displayed on a passenger-held mobile device. The

passenger-view image simulates what is seen by the

passenger through the front vehicle window. Nearby

building information is augmented on the passenger-

view image for convenient inspection. To implement

the system, a method for vehicle localization are

proposed, by which line features are detected and

analyzed to compute the vehicle position by the

longest common subsequence algorithm. Also

proposed is a method for generating the passenger-

view image from acquired omni-images and

augmenting building information on correct

positions in the passenger-view image using the

building positions yielded by the vehicle localization

process. Good experimental results showing the

feasibility of the proposed system are also included.

Keywords: omni-image; augmented reality; tour

guidance; longest common sequence algorithm

I. INTRODUCTION

Today, video cameras are now used widely,

bringing convenience to people. A new possible

application is to affix a video camera on top of a

vehicle and display the acquired images of the

scenes in front of the vehicle on the screen of a

mobile device held by an in-vehicle passenger, on

which the information of along-path buildings can

be “augmented” properly for tour guidance in a

park area. This study aims to develop a system of

this new type of augmented reality (AR) based

1 This work was supported by NSC project No. 101-2221-E-009-047-.
3 Wen-Hsiang Tsai is also with the Department of Information

Communication, Asia University, Taichung, Taiwan 41354.

tour guidance for uses by in-vehicle passengers

with hand-held mobile devices. An illustration of

such a type of tour guidance is shown in Fig. 1.

(a) (b)

Building 2Building 1

Vehicle

Building1

/ building2

Vertical-line feature

Omni-camera

(c)

(d) (e)

Fig. 1. Proposed AR-based tour guidance system in a moving vehicle.

(a) An in-vehicle passenger holding a mobile device. (b) An

“augmented” passenger-view image displayed on mobile-device screen.

(c) Illustration of proposed system seen from top. (d) & (e) Examples of

scenes with vertical lines on objects (buildings, light poles, etc.)

To implement such a type of AR-based

guidance system, the core technique is to estimate

the vehicle location in every navigation cycle

during the tour guidance process, which we call

vehicle localization in this study (equivalent to the

terms of camera-pose estimation and user

positioning used in other studies). The uses of the

Google Map and the GPS [1, 2] seems applicable

for this purpose, but the imprecision in the GPS

positioning results with errors ranging from 3 to 15

meters causes unacceptable AR effects on the

mobile-device screen  the augmented guidance

information will appear at incorrect positions on

the screen, especially when the vehicle is driven

through narrow roads with buildings close by.

Instead, an omni-vision approach is adopted in this

study for vehicle localization, i.e., an omni-camera

is affixed on top of the vehicle for taking images

of the vehicle-surround to locate the vehicle. The

abundant features appearing in the acquired

environment images can be made use for more

accurate vehicle localization. Specifically, the

numerous “natural” vertical-line features, which

are long edges appearing on along-path objects and

perpendicular to the ground, like buildings and

light poles such as those shown in Figs. 1(d) and

1(e), are utilized in this study for this purpose.

This contrasts with the technique proposed by

Chen and Tsai [3] in a similar study using

“artificial” circular-shaped landmarks laid on

sidewalks, which are less easy to deploy and apt to

be destructed.

About other related vision-based localization

methods for AR applications, Johansson and

Cipolla [4] proposed a camera-pose estimation

method from a single image of a building which is

modeled as a number of parallel planes. Robertson

and Cipolla [5] proposed a method for matching a

single image against a database of facade views of

buildings with known positions. Coors et al. [6]

proposed a localization system using a 3D city

model rendered from different viewing angles. Lee

et al. [7] conducted tracking of the omni-camera

pose in outdoor environments according to 5-

degree-of-freedom motion estimates between two

reference images and an input image. Reitmayr

and Drummond [8] proposed a model-based hybrid

tracking system combining the uses of edge-based

tracking, gyroscope, gravity, magnetic field

measurement, and a database of reference frames.

Wagner et al. [9] combined two techniques,

namely, SIFT and Ferns, for tracking natural

features from planar targets in realtime on mobile

phones. Uchiyama and Marchand [10] proposed an

approach for detecting and tracking various types

of planar objects with geometric features by using

traditional keypoint detectors with the locally

likely arrangement hashing technique.

The remainder of this paper is organized as

follows. In Sec. 2, the system configuration and

processes are introduced. In Sec. 3, the proposed

vehicle localization idea is described. In Sec. 4, the

process of environment learning is presented. In

Sec. 5, the details of the vehicle localization

process are described. In Sec. 6, the proposed

method for AR-based tour guidance is presented.

In Sec. 7, some experimental results are included,

followed by conclusions in Sec. 8.

II. SYSTEM CONFIGURATION AND PROCESSES

The configuration of the proposed system is

shown in Fig. 2(a), which is of a client-server

structure. A client-side system is set up on a laptop

computer in the vehicle. The system controls an

omni-camera affixed on the top of the vehicle to

acquire an omni-image in every navigation cycle and

transforms the omni-image into a passenger-view

image, which “simulates” what is seen through the

vehicle window by a passenger sitting aside the

driver in the vehicle (see Figs. 1(a) and 1(b) for an

illustration). The passenger-view image and a

reduced version of the originally-acquired omni-

image are then sent to a remote server-side system

through a 4G/LTE network.

4G/LET

NetworkComputer
Laptop

Vehicle

Omni-camera

Client-side

system

Server-side

system
Pad

f

image plane

Oc

O

hyperboloidal-

shaped mirror
P(X, Y, Z)

p(u, v)
z

perspective

camera

x

base plane

(a) (b)

f

2c

Om

P(X, Y, Z)

(u, v)

b

ahyperboloidal

-shaped

mirror

image

coordinate

system

Oc

camera

coordinate

system

X

Y

Z

u

v

q

q

(c)

(d) (e)

Fig. 2. Proposed system. (a) Configuration. (b) Side view of used

omni-camera. (c) Details of (b) with image and camera coordinate

systems shown. (d) Multiple vertical lines coming from a light pole

and two building edges. (e) Extracted vertical lines from (a).

In the navigation stage in which tour guidance

is conducted, the server-side system, after

receiving the image data, analyzes them by the

following steps: 1) detect vertical lines in the

reduced omni-image; 2) match the vertical lines

against a previously-learned vertical-line database

to compute the location of the vehicle; 3) calculate

the positions and orientations of the close-by

buildings seen along the path (see Fig. 1(c) for an

illustration) with respect to the vehicle’s location

and orientation; 4) unwrap the acquired omni-

image and generate a passenger-view image from

the result; 5) compute the positions of the closed-

by buildings on the passenger-view image using

the data obtained in Step 3); 6) augment the names

and related information of the closed-by buildings

on the passenger-view image by imposing them on

the positions computed in Step 5); 7) send the

augmented passenger-view image to the client-side

system which then displays it promptly on the

mobile-device screen.

III. VEHICLE LOCALIZATION BY VERTICAL LINES

A. Proposed Vehicle Localization Idea

The core of the proposed system is the vehicle

localization technique by which AR-based tour

guidance can be conducted. The main idea of the

proposed vehicle localization technique is to match

the vertical lines of objects appearing in the

acquired omni-image against a pre-learned

vertical-line database. This idea is based on two

properties of the omni-image acquired by the

omni-camera [11], which are reviewed in the

following (refer to Figs. 2(b) and 2(c) for

illustrations of the omni-camera structure and the

involved coordinate systems, respectively, and also

to Figs. 2(d) and 2(e) for a real omni-image and a

processed version of it with edges extracted,

respectively): 1) the radial-line property: a vertical

line L in the real-world space will appear to be a

radial line l going through the center of the omni-

image if the base plane of the mirror of the omni-

camera is parallel to the ground, as can be seen

from the images of Figs. 2(d) and 2(e); 2) the

rotational-invariance property: a real-world point

P will appear to be an image point p in the omni-

image with its orientation q in the image

coordinate system (ICS) identical to that of P with

respect to the camera coordinate system (CCS) as

long as the u-axis direction of the ICS is taken to

be identical to the X-axis direction of the CCS, as

illustrated by Fig. 2(c) where the angle q is marked

in blue.

From the above two properties, a 3rd property

of the omni-image can be figured out: 3) the

vertical-line property: the orientation (of the base

point P) of a vertical line L in the real world with

respect to the CCS is identical to that of the

corresponding radial line l in the omni-image with

respect to the ICS, as shown in Figs. 3(a) and 3(b).

According to the vertical-line property

mentioned above, at each specific spot along the

tour path, since each vertical line L on the along-

path objects “seen” from the omni-camera is fixed

with its orientation unchanged all time, the radial

line l corresponding to L in the omni-image are

fixed as well with the same orientation. Therefore,

the multiple radial lines in the omni-image may be

regarded as stable features and can be utilized for

vehicle localization by a way of vertical-line

matching, as illustrated in Figs. 3(c) through 3(e)

in which three vertical lines coming from a light

pole and two building edges are utilized.

θ

Light pole

Car Orientation

θ

Light pole

Car Orientation

(a) (b)

θ
Car

Orientation

Building corner

edge

Light pole

Building corner

edge

θ1

Car

Orientation

θ2

θ3

(c) (d)

θg

Car

Orientation

θf

θp

Horizontal

Direction

(e)

Fig. 3. Matching vertical lines for vehicle localization. (a) The

vehicle passing a light pole with orientation q. (b) An omni-image

with the light pole detected with same orientation q in omni-image.

(c) Illustration of (a) from top. (d) Orientation angles of vertical-line

features. (e) Computing orientation angle θf of vertical line.

Subsequently, the radial line l coming from the

projection of a vertical line L onto the omni-image

will be said to be a vertical-line feature. It is noted

by the way that the orientation of each vertical line

in the real-world space, computed with respect to

the X-axis direction of the CCS, is also the

direction of the vehicle movement, or equivalently,

the direction of the currently-visited path segment,

as illustrated in Figs. 2(c) and 3(e).

B. Vehicle Localization by Line Features

For the system to match multiple vertical-line

features for vehicle localization during the

navigation stage, a database of along-path vertical-

line features has to be “learned” in advance in a

learning stage. The details of such a feature

learning process will be described later. The more

vertical lines are used in the feature matching

process, the more accurately vehicle localization

can be conducted.

However, even if in the learning stage the

multiple vertical-line features are learned

completely, in the navigation stage some of such

features might be missed or extra features might be

detected due to various error sources in the

acquired omni-image. That is, feature insertions

and deletions should be considered in the vertical-

line matching process in addition to normal feature

matchings called substitutions. To handle these

three types of feature matching, the longest

common subsequence (LCS) algorithm is

appropriate, which we propose for use in this study.

The LCS algorithm aims at finding the longest

subsequence common to two or more symbol

sequences. For our study here, each symbol is a

vertical-line feature in the omni-image, specified

mainly as the orientation angle of the vertical line

in the real-world space, or equivalently, as that of

the vertical-line feature in the omni-image,

according to the previously-mentioned vertical-line

property of the omni-image. If the orientation

angles of two vertical-line features are distinct, the

corresponding symbols are regarded as different as

well. Moreover, there are two input symbol

sequences only for our case here, one being that of

the vertical-line features found in the omni-image

acquired of the current-visited spot, and the other

that of the vertical-line features kept in the learned

database. The LCS algorithm is as follows

Algorithm 1. Finding the LCS.

Input: two sequences of symbols Sx = < x1, x2, …,

xn> and Sy = < y1, y2, …, ym>.

Output: the length L of the LCS of Sx and Sy.

Steps.

1. If n = 0 or m = 0, then set L = 0.

2. (Symbol substitution) If xn  ym, then do the

following steps: 2.1) with Sx' = < x1, x2, …, xn-

1> and Sy' = < y1, y2, …, ym-1> as inputs, perform

this algorithm (Algorithm 1) recursively to

compute the length L' of the LCS of Sx' and Sy';

2.2) set L = L' + 1.

3. If xn  ym, then do the following steps: 3.1)

(Symbol deletion) With Sx = < x1, x2, …, xn>

and Sy' = < y1, y2, …, ym-1> as inputs, perform

this algorithm (Algorithm 1) recursively to

compute the length Ln of the LCS of Sx and Sy';

3.2) (Symbol insertion) With Sx' = < x1, x2, …,

xn-1> and Sy = < y1, y2, …, ym>, perform this

algorithm (Algorithm 1) recursively to compute

the length Lm of the LCS of Sx' and Sy; 3.3) If Ln

> Lm, set L = Ln; else, set L = Lm.

To use the above algorithm for the purpose of

vertical-line matching, we have to modify the

conditions xn = ym and xn  ym used in Steps 2 and

3, respectively, because the orientation angles of

the vertical-line features detected by the system

have in general small variations due to various

error sources. That is, we set a tolerant range d for

determining whether xm = xn or not: if |xm  xn| < d,

then yes; else, no. Then, we take d as an additional

input to Algorithm 1 and use it in Steps 2 and 3 as

said. The algorithm we propose for vehicle

localization is as follows.

Algorithm 2. Vehicle localization.

Input: 1) a sequence Sx of the multiple vertical-

line features detected by the system at a path spot;

2) a threshold d for judging the equality of two

orientation angles; 3) a threshold D for judging if

a matching is successful, and 4) a set Se of

learned data which include a series of along-path

vehicle positions Pi and the associated sequences

Si of the vertical line features “seen” at each Pi.

Output: the decided vehicle position Pv or a

message of “fail to localize the vehicle.”

Steps.

4. Set L = 0.

5. Take sequentially an unprocessed sequence Si

with length Li from the learned data set Se.

6. With Sx, Si, and d as inputs, perform Algorithm

1 to compute the length L' of the LCS of Si and

Sx.

7. If L' is larger than L and the ratio L'/Li > D,

then set L = L' and take the vehicle position Pv

to be the position Pi corresponding to Si,

meaning that the vehicle is located to be at

position Pi so far.

8. If Se is not exhausted, then repeat Steps 2

through 4; else, carry out either of the

following two steps: 1) if L  0, then take the

final Pv as the desired vehicle localization result;

2) if L = 0, then output the message “fail to

localize the vehicle.”

When the above algorithm fails to localize the

vehicle, the “old” vehicle location is not modified

but taken to be that “predicted” using the data of

the previous navigation cycle.

IV. LEARNING OF ENVIRONMENTS

A. Learning of Environment Map

According to the proposed vehicle localization

technique described above, an environment

learning process is proposed for use in the

learning stage. The major task is to construct an

environment map which includes the information

of: 1) a real-world map, 2) a set of pre-selected

paths, 3) the vertical line features seen along each

path, and 4) the “to-be-augmented” names and

other information of the buildings along each path.

In this process, at first a real-world map of the

navigation environment, which is an image, is

downloaded from the application system

“OpenStreetMap” on a website. Then, all desirable

navigation paths are selected on the map, with

each path drawn as a sequence of piecewise line

segments and including the positions of the end

points, (x1, y1) and (x2, y2), of each line segment p

in the path, and the length Lp and the orientation

angle qp of p computed respectively by

 2 2

1 2 1 2() ()pL x x y y    ; (1)

 qp = tan1[(x1  x2)/(y1  y2)], (2)

where qp is defined with respect to the horizontal

direction of the above-mentioned real-world map.

Next, the vertical-line features seen along each

line segment p of each navigation path are

“learned.” The learned data for each vertical-line F

include: 1) the position of F on the real-world map

when viewed as a single point from the top; 2) the

geometric relation of F with respect to p

(described in detail later); and 3) the orientation

angle qf of F with respect to the direction of p, as

illustrated in Fig. 3(e).

More specifically about data item 2) above,

while the vehicle is moving on path line segment p,

it is possible that only on a part of p can the

vertical line feature F be seen by the omni-camera.

Therefore, for each detected vertical line F, we

save the direction angles qfirst and qlast from which

the system in the vehicle can detect F for the first

time and for the last time, respectively, in the

omni-image by a radial-line detection scheme

proposed in this study. In other words, we “learn”

the range qfirst ~ qlast of the direction angles (in

degrees) in which the vertical line F can be seen

by the omni-camera. As to data item 3) above, a

process is designed in this study which we will

describe in the next section.

Finally, AR information for each building seen

along the path is “learned,” which includes: 1) the

geometry of the building drawn as line segments; 2)

the name of the building; and 3) the geometric

relation between the building and the path.

Specifically, to learn such building information,

we drive the vehicle on the path and check visually

if the buildings appear in the created passenger-

view image: if yes, we stop the vehicle, mark each

“visible” building corner on the real-world map.

Then, we connect every two building corners by a

line segment to form a side of the building on the

real-world map. Only visible building sides from

the passenger viewpoint are kept; those invisible

ones are removed. Finally, we save the building

name into the environment map. These steps are

repeated until the end of the path is reached.

After learning the above three types of map

data, environment map construction is completed.

Accordingly, the proposed system can calculate

the position of a nearby building with respect to

any line segment of each path on the map.

B. Learning of Vertical-line Features
The task of learning the data of each along-path

vertical line includes two parts: learning of a

single vertical-line feature at a time and learning

of multiple line features simultaneously. The aim

is to calculate the orientation angles of the

vertical-line features observable from each line

segment of the path for use in vehicle localization.

(a) Learning of single vertical-line feature

In the 1st part of the learning task, we drive the

vehicle along the path and detect one by one

vertical lines appearing in the acquired omni-

image. Each time a vertical line F is detected along

a line segment p of the path, we stop the vehicle,

and carry out the works of 1) measuring manually

the position P of F; 2) computing orientation angle

qf of F; 3) associating F with p; and 4) marking F

as a point on the map. We repeat this process until

the end of the path is reached. Here, the orientation

angle qf of F, as illustrated in Fig. 3(c), is

computed by:

 qf = qg  qp (3)

where qp is computed according to (1) and θg is the

orientation angle of P of the vertical-line feature F

with respect to the horizontal direction of the map.

Note that though qg is the real-world orientation

angle of the vertical line, it can be obtained from

the orientation angle of the vertical line in the

omni-image according to the derived vertical-line

property mentioned previously.

(b) Learning of multiple vertical-line features

In the 2nd part of the vertical-line learning task,

multiple features are learned simultaneously

automatically by simulation at each spot on each

line segment along the path, differently from the

first part which is conducted by car driving and

manual measurements. Specifically, for each line

segment pi of the path in the map, and for each

discrete point Pk on pi, we conduct the following

steps: 1) from the data learned in the first part of

vertical-line learning task as described in Sec.

4.2(a), retrieve as a set Si those vertical lines Fj

which are associated with pi; 2) pick out from Si

those vertical lines Fj which are observable from

point Pk where observableness from Pk means that

the direction of the line from Pk to Fj falls into the

range qfirst ~ qlast between the first-time and last-

time direction angles of vertical line Fj on pi; 3)

calculate the orientation angle qf of each retrieved

vertical line Fj by the following steps: 3a) use the

“learned” position of Fj and that of Pk on the map

to compute the orientation angle qg of Fj with

respect to the horizontal direction of the map; 3b)

compute the angle qp of the vehicle’s movement

direction as that of path line segment pi with

respect to the horizontal direction of the map using

the map data; 3c) compute the orientation angle qf

for Fj according to Eq. (3); 4) save qf into a table Ti

for pi for uses in the navigation stage.

C. Detection of Vertical Lines in Omni-images
To detect vertical lines in an acquired RGB

omni-image, we transform the image into a YUV

version and apply edge detection to the Y-channel

frame to extract the edge points. Then, based on

the vertical-line property of the omni-image and

starting from the omni-image center, unbroken

radial lines are extracted as desired vertical lines

by searching lines in all radial directions. A result

of this process is shown in Figs. 3(a) and 3(b).

V. PROPOSED AR-BASED TOUR GUIDANCE

A. Vehicle Localization without Vertical Lines

At path spots where vertical-line features are not

available for vehicle localization, we estimate the

vehicle speed and predict accordingly the vehicle

location in the next navigation cycle. Vehicle

speed estimation is accomplished by the use of

motion vectors computed from the acquired omni-

image sequence. Because the vehicle is driven just

in one direction, i.e., forward, on the path, we use

vectors of that direction to simplify motion vector

computation. Also, not all the motion vectors in

the omni-image are useful for vehicle speed

estimation; specifically, we cut out the road part in

the omni-image for motion vector computation, as

illustrated in Fig. 4. The computed directions of

the motion vectors in this part are all the same as

the movement direction of the vehicle. The motion

vectors so computed are averaged finally for use as

the desired vehicle speed.

B. Use of Prior Knowledge for Tour Analysis

During vehicle localization, some environment

knowledge is utilized to speed up the process. The

idea is just to detect the right feature at the right

position. Firstly, we divide the omni-image into

two parts, the left side and the right, as illustrated

in Fig. 5, and vertical-line features in the two sides

are detected respectively. Secondly, the vehicle is

driven just forward, so the detected vertical-line

features must move backward in the image

sequence. Finally, by the estimated vehicle speed

and the pre-learned database, the next positions of

the vertical-line features can be predicted.

Car Orientation

Tre
e Tree

Fig. 4. Illustration of cutting a part of the omni-image (the area

enclosed by red lines) to speed up motion vector computation.

Tre
e Tree

B
ui

ld
in

g
2

Tre
e

Tree

B
uilding 1

Car Orientation

Tre
e Tree

Tre
e

Tree

Car Orientation

(a) (b)

Fig. 5. Illustration of using knowledge of omni-image. (a) Omni-

image which divided two parts. (b) Two parts of image.

B. Proposed Algorithm for Vehicle Localization

Based on the previous discussions and the

mentioned prior knowledge, an algorithm for

estimating the vehicle speed and another for

implementing the idea of proposed vehicle

localization are described in this section. Briefly

speaking, in most areas along the path, the system

uses vertical-line features to locate the vehicle; and

at spots where appropriate vertical-line features

are unavailable, the system uses the estimated

vehicle speed to predict the next vehicle position.

Algorithm 3. Estimation of the vehicle speed.

Input: an image Ir of the last cycle, the image Ic

taken of the visited spot in the current cycle, a

kl search window W, the vehicle direction D(dx,

dy), and two thresholds Tu and Td.

Output: a value s of the current vehicle speed.

Steps.

1. Segment out the road parts in Ir and Ic as Ir' and

Ic', respectively, as illustrated in Fig. 4.

2. Use Ir', Ic', and the search window W to

compute motion vectors by the following steps,

and save the result into a set S: 2.1) divide Ic'

and Ir' into blocks Bi of size zz with z < l and k;

2.2) for each block Bi in Ic', conduct the

following three operations to compute a motion

vector Vi: a) let coordinates (ib, jb) specify the

center of Bi, and (ir, jr) specify that of the block

Ri in Ir' corresponding to Bi; b) search within

the window W in the reference image Ir' to find

a block Ri' centered at (ir', jr') which matches Bi

best according to the measure of the average

pixel-value difference between blocks Bi and Ri;

c) compute the motion vector of Bi to be Vi(vix,

viy) with vix = ib  ir'; viy = jb  jr'.

3. Delete those motion vectors Vi in S which are

not in the vehicle direction D(dx, dy).

4. Delete those motion vectors Vi in S with lengths

larger than Tu or smaller than Td.

5. Compute the mean of the lengths vi = (vix
2 +

viy
2)1/2 of all the remaining Vi in S by s =

(vi)/N where N is the number of the remaining

motion vectors; and take s as the output result.

Algorithm 4. Vehicle localization.

Input: the environment map Map, the last vehicle

position Pl(xl, yl), the image Ir taken in the last

cycle, the image Ic taken of the visited spot in the

current cycle, a kl search window W, the vehicle

direction D(dx ,dy), two thresholds Tu and Td, and

a tolerance d for judging angle equality.

Output: the current vehicle position Pv.

Steps.

1. Predict the vehicle position P(xc, yc) by using

the last vehicle position Pl(xl, yl) and estimating

the vehicle speed by the following steps: 1.1)

with Ir, Ic, W, D(dx ,dy) and the two threshold

values Tu and Td as inputs, perform Algorithm 3

to estimate the speed s of the vehicle; 1.2) use s

and Pl(xl, yl) to compute the next vehicle

position P(xc, yc) with Xc = xl + scosq; yc = yl +

ssinq, where θ is the direction angle of the

currently-traversed line segment pi of the path

obtained from the environment map Map.

2. Use the predicted position P(xc, yc) to retrieve

the vertical-line feature table Ti of the line

segment pi of the path around P(xc, yc) kept in

Map as mentioned in Sec. 4.2(b).

3. If Ti is empty (meaning no vertical line is

available for the current spot), then set the

desired vehicle position Pv as P(xc, yc) and exit;

else, continue.

4. Detect the vertical lines in the current omni-

image Ic and compute their orientation angles to

form a sequence Sx = <x1, x2, …, xn> according

to (3), using a vertical-line detection process

similar to that described in Sec. 4.3.

5. For each discrete point Pk in pi, fetch from Ti

the set Sf of the vertical lines corresponding Pk;

and with Sx, Sf, and the threshold value d as

inputs, perform Algorithm 2 to compute the

position Pv of the vehicle as output.

VI. PROPOSED AR-BASED TOUR GUIDANCE

A. Construction of Passenger-view Images

In this study, we use the passenger-view image

to generate the desired AR image. The passenger-

view image is created to simulate what is seen by

the passenger sitting aside the driver through the

front window. Firstly, we assume that the

viewpoint originates from the right-side passenger

seat as illustrated in Fig. 6. Next, we use the

method by Jeng and Tsai [11] to “unwarp” the

acquired omni-image to be a perspective-view

image as illustrated by Figs. 7(a) and 7(b). Then,

we measure the positions of the four corners of the

vehicle window and project them onto the

perspective-view image from the passenger’s view

to cut a part of the image as the result, as

illustrated by Fig. 7(c).

θRθL

θU

θD

(a) (b)

Fig. 6. Illustration of viewpoint in vehicle. (a) Top-view of vehicle

where blue star is the passenger’s viewpoint. (b) Side-view of vehicle.

(a) (b)

(c)

Figure 7. Illustration of generating a passenger-view image. (a) Omni-

image acquired with the omni-camera. (b) Perspective-view image

generated from (a). (c) Passenger-view image transformed from (b).

B. Augmenting Building Names on Images

After localizing the vehicle, we can obtain the

position of the buildings observable by the

passenger according to the environment map. Then,

we can project the building positions onto the

passenger-view image, on which we can finally

augment the learned information of the building,

including its name, to obtain the desired AR image

for display on the mobile device. An example of

the results is shown in Fig. 1(b).

VII. EXPERIMENTAL RESULTS

A result of environment learning, which is an

environment map, is shown in Fig. 8. In the

learning stage, we drove a vehicle as shown in Fig.

9(a) on the path shown in Fig. 8. The system

detected vertical lines like the example in Figs. 9(b)

and 9(c), which were saved into a database.

In AR-based tour guidance, the system detects

vertical line features and conducts vehicle

localization along the path. Two examples of the

vertical-line detection results are shown in Fig. 10.

After locating the vehicle, the system used the

result to generate an AR image on the use-held

mobile device like the result shown in Fig. 11.

Light pole

Edge lines on

building walls
Path

Building

Fig. 8. The environment map learned by the proposed system.

(a)

(b) (c)

Fig. 9. A result of the learning stage. (a) An image of the vehicle

driven on the path. (b) An omni-image acquired from the omni-

camera. (c) Vertical-line features detected by the system.

(a) (b)

(c) (d)

(e) (f)

Fig. 10. Two results of detecting vertical lines and vehicle

localization. (a) & (b) Acquired omni-images. (c) Line features

detected from (a) & (b). (e) & (f) Vehicle locations computed by

the system (indicated by red point) using (c) & (d), respectively.

(a)

(b) (c)

Fig. 11. AR-based navigation. (a) An image of the vehicle on a

path spot. (b) An omni-image acquired. (c) Passenger-view image

generated from (b) with name of nearby building augmented.

VIII. CONCLUSIONS

AR and omni-vision based tour guidance for

outdoor environments has been proposed, by

which an augmented passenger-view image which

simulates what is seen through the vehicle window

by a right-side passenger is generated. The image

is displayed on a mobile-device screen held by the

passenger. To implement this, several techniques

have been proposed: 1) learning of the

environment map; 2) detection of vertical lines in

omni-images; 3) vehicle localization using

vertical-line features; 4) generation of passenger-

view images. The experimental results have

revealed the feasibility of the proposed system.

REFERENCES

[1] “Google Maps/Google Earth APIs Terms of Service,”
June 2013. Available at http://www.google.com
/apis/maps/terms.

[2] International GPS Service Central Bureau Data &
products: the products, 2001. http://igscb.jpl.nasa.gov
/components/prods.html.

[3] B. C. Chen and W. H. Tsai, “A Study on Tour Guidance
by Vehicle Driving in Park Areas Using Augmented
Reality and Omni-vision Techniques,” Proc. of IPPR
Conf. on CVGIP, Nantou, Taiwan, Aug. 2012.

[4] B. Johansson and R. Cipolla, “A system for automatic
pose estimation from a single image in a city scene,” Proc.
of IASTED Int’l. Conf. on Signal Process., Pattern Recog.
& Applications, Crete, Greece, June 2002.

[5] D. P. Robertson and R. Cipolla, “An image-based system
for urban navigation,” Proc. 15th British Machine Vision
Conf., Kingston-upon-Thames, UK, pp. 819-828, Sept.
2004.

[6] V. Coors, T. Huch and U. Kretschmer, “Matching
buildings: Pose estimation in an urban environment,”
Proc. of IEEE & ACM Int’l Symp. on Augmented Reality
(ISAR 2000), pp. 89-92, Munich, Germany, October 2000.

[7] J. W. Lee, S. You and U. Neumann, “Tracking with
Omni-Directional Vision for Outdoor AR Systems,”
Proceedings of IEEE ACM Int’l Symposium on Mixed
and Augmented Reality (ISMAR 2002), Darrnstadtt,
Gkrmany, October 2002.

[8] G. Reitmayr and T. W. Drummond, “Going out: Robust
model based tracking for outdoor augmented reality,”
Proc. IEEE Int'l Symp. Mixed and Augmented Reality
(ISMAR’06), Santa Barbara, California, USA, pp. 109–
118, 2006.

[9] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond and
D. Schmalstieg, “Pose tracking from natural features on
mobile phones,” Proc. of IEEE Int'l Symp. Mixed and
Augmented Reality (ISMAR’08), Cambridge, UK, pp.
125–134, 2008.

[10] H. Uchiyama and E. Marchand, “Toward augmenting
everything: detecting and tracking geometrical features
on planar objects,” Proc. of IEEE Int. Symp. on Mixed
and Augmented Reality, (ISMAR’11), Basel, Switzerland,
2011, pp. 17-25.

[11] S. W. Jeng and W. H. Tsai, “Using pano-mapping tables
for unwarping of omni-images into panoramic and
perspective-view images,” Journal of IET Image
Processing, Vol. 1, No. 2, pp. 149-155, June 2007.

