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ABSTRACT 

A new tour guidance system for use in a vehicle 

driven in park areas based on augmented reality and 

omni-vision techniques is proposed. A passenger in 

the vehicle can get tour guidance information from a 

passenger-view image generated by the system and 

displayed on a passenger-held mobile device. The 

passenger-view image simulates what is seen by the 

passenger through the front vehicle window. Nearby 

building information is augmented on the passenger-

view image for convenient inspection. To implement 

the system, a method for vehicle localization are 

proposed, by which line features are detected and 

analyzed to compute the vehicle position by the 

longest common subsequence algorithm. Also 

proposed is a method for generating the passenger-

view image from acquired omni-images and 

augmenting building information on correct 

positions in the passenger-view image using the 

building positions yielded by the vehicle localization 

process. Good experimental results showing the 

feasibility of the proposed system are also included. 

Keywords: omni-image; augmented reality; tour 

guidance; longest common sequence algorithm 

I. INTRODUCTION 

Today, video cameras are now used widely, 

bringing convenience to people. A new possible 

application is to affix a video camera on top of a 

vehicle and display the acquired images of the 

scenes in front of the vehicle on the screen of a 

mobile device held by an in-vehicle passenger, on 

which the information of along-path buildings can 

be “augmented” properly for tour guidance in a 

park area. This study aims to develop a system of 

this new type of augmented reality (AR) based 
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tour guidance for uses by in-vehicle passengers 

with hand-held mobile devices. An illustration of 

such a type of tour guidance is shown in Fig. 1. 
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Fig. 1. Proposed AR-based tour guidance system in a moving vehicle. 

(a) An in-vehicle passenger holding a mobile device. (b) An 

“augmented” passenger-view image displayed on mobile-device screen. 

(c) Illustration of proposed system seen from top. (d) & (e) Examples of 

scenes with vertical lines on objects (buildings, light poles, etc.) 
 

To implement such a type of AR-based 

guidance system, the core technique is to estimate 

the vehicle location in every navigation cycle 

during the tour guidance process, which we call 

vehicle localization in this study (equivalent to the 

terms of camera-pose estimation and user 

positioning used in other studies). The uses of the 

Google Map and the GPS [1, 2] seems applicable 

for this purpose, but the imprecision in the GPS 

positioning results with errors ranging from 3 to 15 

meters causes unacceptable AR effects on the 

mobile-device screen  the augmented guidance 

information will appear at incorrect positions on 

the screen, especially when the vehicle is driven 

through narrow roads with buildings close by. 



 

 

Instead, an omni-vision approach is adopted in this 

study for vehicle localization, i.e., an omni-camera 

is affixed on top of the vehicle for taking images 

of the vehicle-surround to locate the vehicle. The 

abundant features appearing in the acquired 

environment images can be made use for more 

accurate vehicle localization. Specifically, the 

numerous “natural” vertical-line features, which 

are long edges appearing on along-path objects and 

perpendicular to the ground, like buildings and 

light poles such as those shown in Figs. 1(d) and 

1(e), are utilized in this study for this purpose. 

This contrasts with the technique proposed by 

Chen and Tsai [3] in a similar study using 

“artificial” circular-shaped landmarks laid on 

sidewalks, which are less easy to deploy and apt to 

be destructed. 

About other related vision-based localization 

methods for AR applications, Johansson and 

Cipolla [4] proposed a camera-pose estimation 

method from a single image of a building which is 

modeled as a number of parallel planes. Robertson 

and Cipolla [5] proposed a method for matching a 

single image against a database of facade views of 

buildings with known positions. Coors et al. [6] 

proposed a localization system using a 3D city 

model rendered from different viewing angles. Lee 

et al. [7] conducted tracking of the omni-camera 

pose in outdoor environments according to 5-

degree-of-freedom motion estimates between two 

reference images and an input image. Reitmayr 

and Drummond [8] proposed a model-based hybrid 

tracking system combining the uses of edge-based 

tracking, gyroscope, gravity, magnetic field 

measurement, and a database of reference frames. 

Wagner et al. [9] combined two techniques, 

namely, SIFT and Ferns, for tracking natural 

features from planar targets in realtime on mobile 

phones. Uchiyama and Marchand [10] proposed an 

approach for detecting and tracking various types 

of planar objects with geometric features by using 

traditional keypoint detectors with the locally 

likely arrangement hashing technique. 

The remainder of this paper is organized as 

follows. In Sec. 2, the system configuration and 

processes are introduced. In Sec. 3, the proposed 

vehicle localization idea is described. In Sec. 4, the 

process of environment learning is presented. In 

Sec. 5, the details of the vehicle localization 

process are described. In Sec. 6, the proposed 

method for AR-based tour guidance is presented. 

In Sec. 7, some experimental results are included, 

followed by conclusions in Sec. 8. 

II. SYSTEM CONFIGURATION AND PROCESSES 

The configuration of the proposed system is 

shown in Fig. 2(a), which is of a client-server 

structure. A client-side system is set up on a laptop 

computer in the vehicle. The system controls an 

omni-camera affixed on the top of the vehicle to 

acquire an omni-image in every navigation cycle and 

transforms the omni-image into a passenger-view 

image, which “simulates” what is seen through the 

vehicle window by a passenger sitting aside the 

driver in the vehicle (see Figs. 1(a) and 1(b) for an 

illustration). The passenger-view image and a 

reduced version of the originally-acquired omni-

image are then sent to a remote server-side system 

through a 4G/LTE network. 
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Fig. 2. Proposed system. (a) Configuration. (b) Side view of used 

omni-camera. (c) Details of (b) with image and camera coordinate 

systems shown. (d) Multiple vertical lines coming from a light pole 

and two building edges. (e) Extracted vertical lines from (a). 

 

In the navigation stage in which tour guidance 

is conducted, the server-side system, after 

receiving the image data, analyzes them by the 

following steps: 1) detect vertical lines in the 

reduced omni-image; 2) match the vertical lines 

against a previously-learned vertical-line database 

to compute the location of the vehicle; 3) calculate 

the positions and orientations of the close-by 

buildings seen along the path (see Fig. 1(c) for an 

illustration) with respect to the vehicle’s location 

and orientation; 4) unwrap the acquired omni-

image and generate a passenger-view image from 

the result; 5) compute the positions of the closed-



 

 

by buildings on the passenger-view image using 

the data obtained in Step 3); 6) augment the names 

and related information of the closed-by buildings 

on the passenger-view image by imposing them on 

the positions computed in Step 5); 7) send the 

augmented passenger-view image to the client-side 

system which then displays it promptly on the 

mobile-device screen. 

III. VEHICLE LOCALIZATION BY VERTICAL LINES 

A. Proposed Vehicle Localization Idea 

The core of the proposed system is the vehicle 

localization technique by which AR-based tour 

guidance can be conducted. The main idea of the 

proposed vehicle localization technique is to match 

the vertical lines of objects appearing in the 

acquired omni-image against a pre-learned 

vertical-line database. This idea is based on two 

properties of the omni-image acquired by the 

omni-camera [11], which are reviewed in the 

following (refer to Figs. 2(b) and 2(c) for 

illustrations of the omni-camera structure and the 

involved coordinate systems, respectively, and also 

to Figs. 2(d) and 2(e) for a real omni-image and a 

processed version of it with edges extracted, 

respectively): 1) the radial-line property: a vertical 

line L in the real-world space will appear to be a 

radial line l going through the center of the omni-

image if the base plane of the mirror of the omni-

camera is parallel to the ground, as can be seen 

from the images of Figs. 2(d) and 2(e); 2) the 

rotational-invariance property: a real-world point 

P will appear to be an image point p in the omni-

image with its orientation q in the image 

coordinate system (ICS) identical to that of P with 

respect to the camera coordinate system (CCS) as 

long as the u-axis direction of the ICS is taken to 

be identical to the X-axis direction of the CCS, as 

illustrated by Fig. 2(c) where the angle q is marked 

in blue. 

From the above two properties, a 3rd property 

of the omni-image can be figured out: 3) the 

vertical-line property: the orientation (of the base 

point P) of a vertical line L in the real world with 

respect to the CCS is identical to that of the 

corresponding radial line l in the omni-image with 

respect to the ICS, as shown in Figs. 3(a) and 3(b). 

According to the vertical-line property 

mentioned above, at each specific spot along the 

tour path, since each vertical line L on the along-

path objects “seen” from the omni-camera is fixed 

with its orientation unchanged all time, the radial 

line l corresponding to L in the omni-image are 

fixed as well with the same orientation. Therefore, 

the multiple radial lines in the omni-image may be 

regarded as stable features and can be utilized for 

vehicle localization by a way of vertical-line 

matching, as illustrated in Figs. 3(c) through 3(e) 

in which three vertical lines coming from a light 

pole and two building edges are utilized. 
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Fig. 3. Matching vertical lines for vehicle localization. (a) The 

vehicle passing a light pole with orientation q. (b) An omni-image 

with the light pole detected with same orientation q in omni-image. 

(c) Illustration of (a) from top. (d) Orientation angles of vertical-line 

features. (e) Computing orientation angle θf of vertical line. 
 

Subsequently, the radial line l coming from the 

projection of a vertical line L onto the omni-image 

will be said to be a vertical-line feature. It is noted 

by the way that the orientation of each vertical line 

in the real-world space, computed with respect to 

the X-axis direction of the CCS, is also the 

direction of the vehicle movement, or equivalently, 

the direction of the currently-visited path segment, 

as illustrated in Figs. 2(c) and 3(e). 

B. Vehicle Localization by Line Features 

For the system to match multiple vertical-line 

features for vehicle localization during the 

navigation stage, a database of along-path vertical-

line features has to be “learned” in advance in a 

learning stage. The details of such a feature 

learning process will be described later. The more 

vertical lines are used in the feature matching 

process, the more accurately vehicle localization 

can be conducted.  

However, even if in the learning stage the 

multiple vertical-line features are learned 

completely, in the navigation stage some of such 

features might be missed or extra features might be 

detected due to various error sources in the 

acquired omni-image. That is, feature insertions 



 

 

and deletions should be considered in the vertical-

line matching process in addition to normal feature 

matchings called substitutions. To handle these 

three types of feature matching, the longest 

common subsequence (LCS) algorithm is 

appropriate, which we propose for use in this study. 

The LCS algorithm aims at finding the longest 

subsequence common to two or more symbol 

sequences. For our study here, each symbol is a 

vertical-line feature in the omni-image, specified 

mainly as the orientation angle of the vertical line 

in the real-world space, or equivalently, as that of 

the vertical-line feature in the omni-image, 

according to the previously-mentioned vertical-line 

property of the omni-image. If the orientation 

angles of two vertical-line features are distinct, the 

corresponding symbols are regarded as different as 

well. Moreover, there are two input symbol 

sequences only for our case here, one being that of 

the vertical-line features found in the omni-image 

acquired of the current-visited spot, and the other 

that of the vertical-line features kept in the learned 

database. The LCS algorithm is as follows 

Algorithm 1. Finding the LCS. 

Input: two sequences of symbols Sx = < x1, x2, …, 

xn> and Sy = < y1, y2, …, ym>. 

Output: the length L of the LCS of Sx and Sy. 

Steps. 

1. If n = 0 or m = 0, then set L = 0. 

2. (Symbol substitution) If xn  ym, then do the 

following steps: 2.1) with Sx' = < x1, x2, …, xn-

1> and Sy' = < y1, y2, …, ym-1> as inputs, perform 

this algorithm (Algorithm 1) recursively to 

compute the length L' of the LCS of Sx' and Sy'; 

2.2) set L = L' + 1. 

3. If xn  ym, then do the following steps: 3.1) 

(Symbol deletion) With Sx = < x1, x2, …, xn> 

and Sy' = < y1, y2, …, ym-1> as inputs, perform 

this algorithm (Algorithm 1) recursively to 

compute the length Ln of the LCS of Sx and Sy'; 

3.2) (Symbol insertion) With Sx' = < x1, x2, …, 

xn-1> and Sy = < y1, y2, …, ym>, perform this 

algorithm (Algorithm 1) recursively to compute 

the length Lm of the LCS of Sx' and Sy; 3.3) If Ln 

> Lm, set L = Ln; else, set L = Lm. 
 

To use the above algorithm for the purpose of 

vertical-line matching, we have to modify the 

conditions xn = ym and xn  ym used in Steps 2 and 

3, respectively, because the orientation angles of 

the vertical-line features detected by the system 

have in general small variations due to various 

error sources. That is, we set a tolerant range d for 

determining whether xm = xn or not: if |xm  xn| < d, 

then yes; else, no. Then, we take d as an additional 

input to Algorithm 1 and use it in Steps 2 and 3 as 

said. The algorithm we propose for vehicle 

localization is as follows. 

Algorithm 2. Vehicle localization. 

Input: 1) a sequence Sx of the multiple vertical-

line features detected by the system at a path spot; 

2) a threshold d for judging the equality of two 

orientation angles; 3) a threshold D for judging if 

a matching is successful, and 4) a set Se of 

learned data which include a series of along-path 

vehicle positions Pi and the associated sequences 

Si of the vertical line features “seen” at each Pi. 

Output: the decided vehicle position Pv or a 

message of “fail to localize the vehicle.” 

Steps. 

4. Set L = 0. 

5. Take sequentially an unprocessed sequence Si 

with length Li from the learned data set Se. 

6. With Sx, Si, and d as inputs, perform Algorithm 

1 to compute the length L' of the LCS of Si and 

Sx. 

7. If L' is larger than L and the ratio L'/Li > D, 

then set L = L' and take the vehicle position Pv 

to be the position Pi corresponding to Si, 

meaning that the vehicle is located to be at 

position Pi so far. 

8. If Se is not exhausted, then repeat Steps 2 

through 4; else, carry out either of the 

following two steps: 1) if L  0, then take the 

final Pv as the desired vehicle localization result; 

2) if L = 0, then output the message “fail to 

localize the vehicle.” 
 

When the above algorithm fails to localize the 

vehicle, the “old” vehicle location is not modified 

but taken to be that “predicted” using the data of 

the previous navigation cycle. 

IV. LEARNING OF ENVIRONMENTS 

A. Learning of Environment Map 

According to the proposed vehicle localization 

technique described above, an environment 

learning process is proposed for use in the 

learning stage. The major task is to construct an 

environment map which includes the information 

of: 1) a real-world map, 2) a set of pre-selected 

paths, 3) the vertical line features seen along each 

path, and 4) the “to-be-augmented” names and 

other information of the buildings along each path. 

In this process, at first a real-world map of the 

navigation environment, which is an image, is 

downloaded from the application system 



 

 

“OpenStreetMap” on a website. Then, all desirable 

navigation paths are selected on the map, with 

each path drawn as a sequence of piecewise line 

segments and including the positions of the end 

points, (x1, y1) and (x2, y2), of each line segment p 

in the path, and the length Lp and the orientation 

angle qp of p computed respectively by 

 2 2

1 2 1 2( ) ( )pL x x y y    ; (1) 

 qp = tan1[(x1  x2)/(y1  y2)], (2) 

where qp is defined with respect to the horizontal 

direction of the above-mentioned real-world map. 

Next, the vertical-line features seen along each 

line segment p of each navigation path are 

“learned.” The learned data for each vertical-line F 

include: 1) the position of F on the real-world map 

when viewed as a single point from the top; 2) the 

geometric relation of F with respect to p 

(described in detail later); and 3) the orientation 

angle qf of F with respect to the direction of p, as 

illustrated in Fig. 3(e). 

More specifically about data item 2) above, 

while the vehicle is moving on path line segment p, 

it is possible that only on a part of p can the 

vertical line feature F be seen by the omni-camera. 

Therefore, for each detected vertical line F, we 

save the direction angles qfirst and qlast from which 

the system in the vehicle can detect F for the first 

time and for the last time, respectively, in the 

omni-image by a radial-line detection scheme 

proposed in this study. In other words, we “learn” 

the range qfirst ~ qlast of the direction angles (in 

degrees) in which the vertical line F can be seen 

by the omni-camera. As to data item 3) above, a 

process is designed in this study which we will 

describe in the next section. 

Finally, AR information for each building seen 

along the path is “learned,” which includes: 1) the 

geometry of the building drawn as line segments; 2) 

the name of the building; and 3) the geometric 

relation between the building and the path. 

Specifically, to learn such building information, 

we drive the vehicle on the path and check visually 

if the buildings appear in the created passenger-

view image: if yes, we stop the vehicle, mark each 

“visible” building corner on the real-world map. 

Then, we connect every two building corners by a 

line segment to form a side of the building on the 

real-world map. Only visible building sides from 

the passenger viewpoint are kept; those invisible 

ones are removed. Finally, we save the building 

name into the environment map. These steps are 

repeated until the end of the path is reached. 

After learning the above three types of map 

data, environment map construction is completed. 

Accordingly, the proposed system can calculate 

the position of a nearby building with respect to 

any line segment of each path on the map. 

B. Learning of Vertical-line Features 
The task of learning the data of each along-path 

vertical line includes two parts: learning of a 

single vertical-line feature at a time and learning 

of multiple line features simultaneously. The aim 

is to calculate the orientation angles of the 

vertical-line features observable from each line 

segment of the path for use in vehicle localization. 

(a) Learning of single vertical-line feature  

In the 1st part of the learning task, we drive the 

vehicle along the path and detect one by one 

vertical lines appearing in the acquired omni-

image. Each time a vertical line F is detected along 

a line segment p of the path, we stop the vehicle, 

and carry out the works of 1) measuring manually 

the position P of F; 2) computing orientation angle 

qf of F; 3) associating F with p; and 4) marking F 

as a point on the map. We repeat this process until 

the end of the path is reached. Here, the orientation 

angle qf of F, as illustrated in Fig. 3(c), is 

computed by: 

 qf = qg  qp (3) 

where qp is computed according to (1) and θg is the 

orientation angle of P of the vertical-line feature F 

with respect to the horizontal direction of the map. 

Note that though qg is the real-world orientation 

angle of the vertical line, it can be obtained from 

the orientation angle of the vertical line in the 

omni-image according to the derived vertical-line 

property mentioned previously. 

(b) Learning of multiple vertical-line features 

In the 2nd part of the vertical-line learning task, 

multiple features are learned simultaneously 

automatically by simulation at each spot on each 

line segment along the path, differently from the 

first part which is conducted by car driving and 

manual measurements. Specifically, for each line 

segment pi of the path in the map, and for each 

discrete point Pk on pi, we conduct the following 

steps: 1) from the data learned in the first part of 

vertical-line learning task as described in Sec. 

4.2(a), retrieve as a set Si those vertical lines Fj 

which are associated with pi; 2) pick out from Si 

those vertical lines Fj which are observable from 

point Pk where observableness from Pk means that 

the direction of the line from Pk to Fj falls into the 

range qfirst ~ qlast between the first-time and last-



 

 

time direction angles of vertical line Fj on pi; 3) 

calculate the orientation angle qf of each retrieved 

vertical line Fj by the following steps: 3a) use the 

“learned” position of Fj and that of Pk on the map 

to compute the orientation angle qg of Fj with 

respect to the horizontal direction of the map; 3b) 

compute the angle qp of the vehicle’s movement 

direction as that of path line segment pi with 

respect to the horizontal direction of the map using 

the map data; 3c) compute the orientation angle qf 

for Fj according to Eq. (3); 4) save qf into a table Ti 

for pi for uses in the navigation stage. 

C. Detection of Vertical Lines in Omni-images 
To detect vertical lines in an acquired RGB 

omni-image, we transform the image into a YUV 

version and apply edge detection to the Y-channel 

frame to extract the edge points. Then, based on 

the vertical-line property of the omni-image and 

starting from the omni-image center, unbroken 

radial lines are extracted as desired vertical lines 

by searching lines in all radial directions. A result 

of this process is shown in Figs. 3(a) and 3(b). 

V. PROPOSED AR-BASED TOUR GUIDANCE 

A. Vehicle Localization without Vertical Lines 

At path spots where vertical-line features are not 

available for vehicle localization, we estimate the 

vehicle speed and predict accordingly the vehicle 

location in the next navigation cycle. Vehicle 

speed estimation is accomplished by the use of 

motion vectors computed from the acquired omni-

image sequence. Because the vehicle is driven just 

in one direction, i.e., forward, on the path, we use 

vectors of that direction to simplify motion vector 

computation. Also, not all the motion vectors in 

the omni-image are useful for vehicle speed 

estimation; specifically, we cut out the road part in 

the omni-image for motion vector computation, as 

illustrated in Fig. 4. The computed directions of 

the motion vectors in this part are all the same as 

the movement direction of the vehicle. The motion 

vectors so computed are averaged finally for use as 

the desired vehicle speed. 

B. Use of Prior Knowledge for Tour Analysis 

During vehicle localization, some environment 

knowledge is utilized to speed up the process. The 

idea is just to detect the right feature at the right 

position. Firstly, we divide the omni-image into 

two parts, the left side and the right, as illustrated 

in Fig. 5, and vertical-line features in the two sides 

are detected respectively. Secondly, the vehicle is 

driven just forward, so the detected vertical-line 

features must move backward in the image 

sequence. Finally, by the estimated vehicle speed 

and the pre-learned database, the next positions of 

the vertical-line features can be predicted. 
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Fig. 4. Illustration of cutting a part of the omni-image (the area 

enclosed by red lines) to speed up motion vector computation. 
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Fig. 5. Illustration of using knowledge of omni-image. (a) Omni-

image which divided two parts. (b) Two parts of image. 
 

B. Proposed Algorithm for Vehicle Localization 

Based on the previous discussions and the 

mentioned prior knowledge, an algorithm for 

estimating the vehicle speed and another for 

implementing the idea of proposed vehicle 

localization are described in this section. Briefly 

speaking, in most areas along the path, the system 

uses vertical-line features to locate the vehicle; and 

at spots where appropriate vertical-line features 

are unavailable, the system uses the estimated 

vehicle speed to predict the next vehicle position. 

Algorithm 3. Estimation of the vehicle speed. 

Input: an image Ir of the last cycle, the image Ic 

taken of the visited spot in the current cycle, a 

kl search window W, the vehicle direction D(dx, 

dy), and two thresholds Tu and Td. 

Output: a value s of the current vehicle speed. 

Steps. 

1. Segment out the road parts in Ir and Ic as Ir' and 

Ic', respectively, as illustrated in Fig. 4. 

2. Use Ir', Ic', and the search window W to 

compute motion vectors by the following steps, 

and save the result into a set S: 2.1) divide Ic' 

and Ir' into blocks Bi of size zz with z < l and k; 

2.2) for each block Bi in Ic', conduct the 

following three operations to compute a motion 

vector Vi: a) let coordinates (ib, jb) specify the 

center of Bi, and (ir, jr) specify that of the block 

Ri in Ir' corresponding to Bi; b) search within 

the window W in the reference image Ir' to find 

a block Ri' centered at (ir', jr') which matches Bi 

best according to the measure of the average 

pixel-value difference between blocks Bi and Ri; 

c) compute the motion vector of Bi to be Vi(vix, 



 

 

viy) with vix = ib  ir'; viy = jb  jr'. 

3. Delete those motion vectors Vi in S which are 

not in the vehicle direction D(dx, dy). 

4. Delete those motion vectors Vi in S with lengths 

larger than Tu or smaller than Td. 

5. Compute the mean of the lengths vi = (vix
2 + 

viy
2)1/2 of all the remaining Vi in S by s = 

(vi)/N where N is the number of the remaining 

motion vectors; and take s as the output result. 
 

Algorithm 4. Vehicle localization. 

Input: the environment map Map, the last vehicle 

position Pl(xl, yl), the image Ir taken in the last 

cycle, the image Ic taken of the visited spot in the 

current cycle, a kl search window W, the vehicle 

direction D(dx ,dy), two thresholds Tu and Td, and 

a tolerance d for judging angle equality. 

Output: the current vehicle position Pv. 

Steps. 

1. Predict the vehicle position P(xc, yc) by using 

the last vehicle position Pl(xl, yl) and estimating 

the vehicle speed by the following steps: 1.1) 

with Ir, Ic, W, D(dx ,dy) and the two threshold 

values Tu and Td as inputs, perform Algorithm 3 

to estimate the speed s of the vehicle; 1.2) use s 

and Pl(xl, yl) to compute the next vehicle 

position P(xc, yc) with Xc = xl + scosq; yc = yl + 

ssinq, where θ is the direction angle of the 

currently-traversed line segment pi of the path 

obtained from the environment map Map. 

2. Use the predicted position P(xc, yc) to retrieve 

the vertical-line feature table Ti of the line 

segment pi of the path around P(xc, yc) kept in 

Map as mentioned in Sec. 4.2(b). 

3. If Ti is empty (meaning no vertical line is 

available for the current spot), then set the 

desired vehicle position Pv as P(xc, yc) and exit; 

else, continue. 

4. Detect the vertical lines in the current omni-

image Ic and compute their orientation angles to 

form a sequence Sx = <x1, x2, …, xn> according 

to (3), using a vertical-line detection process 

similar to that described in Sec. 4.3. 

5. For each discrete point Pk in pi, fetch from Ti 

the set Sf of the vertical lines corresponding Pk; 

and with Sx, Sf, and the threshold value d as 

inputs, perform Algorithm 2 to compute the 

position Pv of the vehicle as output. 

VI. PROPOSED AR-BASED TOUR GUIDANCE 

A. Construction of Passenger-view Images 

In this study, we use the passenger-view image 

to generate the desired AR image. The passenger-

view image is created to simulate what is seen by 

the passenger sitting aside the driver through the 

front window. Firstly, we assume that the 

viewpoint originates from the right-side passenger 

seat as illustrated in Fig. 6. Next, we use the 

method by Jeng and Tsai [11] to “unwarp” the 

acquired omni-image to be a perspective-view 

image as illustrated by Figs. 7(a) and 7(b). Then, 

we measure the positions of the four corners of the 

vehicle window and project them onto the 

perspective-view image from the passenger’s view 

to cut a part of the image as the result, as 

illustrated by Fig. 7(c). 
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(a) (b) 

Fig. 6. Illustration of viewpoint in vehicle. (a) Top-view of vehicle 

where blue star is the passenger’s viewpoint. (b) Side-view of vehicle. 

 

  
(a) (b) 

 
(c) 

Figure 7. Illustration of generating a passenger-view image. (a) Omni-

image acquired with the omni-camera. (b) Perspective-view image 

generated from (a). (c) Passenger-view image transformed from (b). 

B. Augmenting Building Names on Images 

After localizing the vehicle, we can obtain the 

position of the buildings observable by the 

passenger according to the environment map. Then, 

we can project the building positions onto the 

passenger-view image, on which we can finally 

augment the learned information of the building, 

including its name, to obtain the desired AR image 

for display on the mobile device. An example of 

the results is shown in Fig. 1(b). 

VII. EXPERIMENTAL RESULTS 

A result of environment learning, which is an 

environment map, is shown in Fig. 8. In the 

learning stage, we drove a vehicle as shown in Fig. 

9(a) on the path shown in Fig. 8. The system 

detected vertical lines like the example in Figs. 9(b) 

and 9(c), which were saved into a database.  

In AR-based tour guidance, the system detects 

vertical line features and conducts vehicle 



 

 

localization along the path. Two examples of the 

vertical-line detection results are shown in Fig. 10. 

After locating the vehicle, the system used the 

result to generate an AR image on the use-held 

mobile device like the result shown in Fig. 11. 
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Fig. 8. The environment map learned by the proposed system. 

 

 
(a) 

  
(b) (c) 

Fig. 9. A result of the learning stage. (a) An image of the vehicle 

driven on the path. (b) An omni-image acquired from the omni-

camera. (c) Vertical-line features detected by the system. 
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(c) (d) 

  
(e) (f) 

Fig. 10. Two results of detecting vertical lines and vehicle 

localization. (a) & (b) Acquired omni-images. (c) Line features 

detected from (a) & (b). (e) & (f) Vehicle locations computed by 

the system (indicated by red point) using (c) & (d), respectively. 

 

 
(a) 

  
(b) (c) 

Fig. 11. AR-based navigation. (a) An image of the vehicle on a 

path spot. (b) An omni-image acquired. (c) Passenger-view image 

generated from (b) with name of nearby building augmented. 

VIII. CONCLUSIONS 

AR and omni-vision based tour guidance for 

outdoor environments has been proposed, by 

which an augmented passenger-view image which 

simulates what is seen through the vehicle window 

by a right-side passenger is generated. The image 

is displayed on a mobile-device screen held by the 

passenger. To implement this, several techniques 

have been proposed: 1) learning of the 

environment map; 2) detection of vertical lines in 

omni-images; 3) vehicle localization using 

vertical-line features; 4) generation of passenger-

view images. The experimental results have 

revealed the feasibility of the proposed system. 
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