
New Data Hiding Techniques via BBS Articles
Using Special Big-5 Codes and Their Applications

Yi-An Wang Wen-Hsiang Tsai
Institute of Multimedia Engineering Department of Computer Science

National Chiao Tung University, Taiwan National Chiao Tung University, Taiwan
Email: yian.cs98g@nctu.edu.tw Email: whtsai@cs.nctu.edu.tw

Articles on the BBS belong to soft-copy texts [1].
In recent years, some methods of data hiding via
text documents have been proposed, like using file
headers [2], file structures, and file features [3].
However, the BBS is not of the format of
conventional media such as pictures, videos, and
text files, so controllable items like data structures,
special file syntax, and even file headers are not
found in them. It can only accept text-typed words.
Hence, one can implement data hiding techniques
on them only by embedding special character
codes.

Abstract―A new data hiding approach via the popular
Internet forum BBS (bulletin board system) is proposed.
Two data hiding techniques utilizing special Big-5 codes
are proposed. These special codes usable for data hiding
are obtained by continuous tests and observations on
common BBS browsers and many different BBS sites. Due
to users’ article publishing habits and special BBS
features, these codes, when hidden in BBS articles using
proposed techniques, become imperceptible. Each of the
proposed data hiding techniques may be used both for
covert communication and for article authentication,
creating four combinations of new data hiding techniques
and applications. Good experimental results show the
feasibility of the proposed techniques.

In the past, some data hiding methods using
character codes have been proposed. Wayner [4]
proposed a method to use the context-free grammar
to create secret text messages in cover files for
covert communication. Bender et al. [1] proposed
the use of infrequent additional spaces to form
secret data and transmitted them in soft-copy texts,
including inter-sentence spacing, end-of-line
spacing, and inter-word spacing in texts.

Index Terms―information hiding, BBS, Big-5 codes,
covert communication; authentication.

I. INTRODUCTION

With the progress of computer and networking
technologies, communication via the Internet has
become more and more popular nowadays, and so
security protection of communication messages on
the Internet becomes a necessity. The BBS is a kind
of Internet forum. Its screen view is presented
simply by monochrome or chromatic text. In
Taiwan, the number of users on the most popular
BBS site, PTT, can reach 60 to 150 thousand at any
time. Users can ask various questions, discuss any
matter, interact with one another, and even send
BBS mails mutually. Furthermore, journalists also
write reports by adopting some conspicuous articles
from the BBS. Because the data hiding technique is
a good way for safe exchanges of information, it is
desired to develop data hiding techniques via BBS
articles in this study. To our knowledge of the
literature about information hiding research, such
work has not been attempted so far.

Additionally, although many information hiding
techniques have been proposed in recent decades,
methods about hiding data in Internet applications
directly are very few. Lee and Tsai [5] and Huang
and Tsai [6] proposed some techniques for data
hiding by embedding special codes in HTML files
to substitute for the original white spaces in the
files. In these cases, message data were hidden in
HTML files so that these files became stego-media
for secret communication or secret sharing when
the HTML files are displayed on the Internet.
However, these methods are indirect data hiding
techniques for Internet applications. In another
paper, Lee and Tsai [7] proposed a direct data
hiding technique to embed secret data into email
text line ends using special ASCII control codes.

These special ASCII control codes are invisible
when displayed on the screen and so will not affect
a user’s reading of the resulting email.

Our goal in this study is to hide data secretly in
the popular Internet application, BBS, by
embedding some special character codes into BBS
articles without changing the article appearances.
The used character coding format is the Big-5. It is
a double-byte character set for traditional Chinese
characters coding and the main text coding format
for the BBS. The structure of the standard Big-5
format is shown in Fig. 1.

Fig. 1. Big-5 coding format.

The Big-5 format is compatible with the ASCII

format [8]. If the highest bit in a code is “1,” the
code will be regarded as of the standard 2-byte
Big-5 format; otherwise, if the highest bit is “0,”
then the code will be regarded as an ASCII code
without adopting the first byte. Furthermore, the
Big-5 format also can be transcoded to the Unicode
format and the transcoding table is listed in
Microsoft Windows Codepage 950 (CP950) [9].

In this study, two new data hiding techniques via
BBS articles are proposed. One uses invisible Big-5
codes, and the other special Big-5 space codes. We
call generally these two kinds of codes special
Big-5 codes. Each of the two techniques may be
used for covert communication and article
authentication, creating four new combinations of
new data hiding techniques and applications.

In the remainder of this paper, the major idea of
the proposed approach and the test procedures to
obtain the special Big-5 codes used for data hiding
in this study are described first in Section II. The
proposed data hiding techniques for covert
communication and BBS article authentication are
described next in Sections III and IV, respectively.
In these sections, experimental results are also
included respectively to show the feasibility of the
two proposed techniques. Finally, conclusions are

made in the last section.

II. MAJOR IDEAS OF PROPOSED METHODS
BY USE OF SPECIAL BIG-5 CODES

A. Data Hiding by Invisible Big-5 Codes
To achieve the goal of data hiding in BBS

articles, it seems that the invisible ASCII codes
proposed by Lee and Tsai [7] mentioned previously
may be used because the ASCII codes are
compatible with the Big-5 codes as the kernel set.
However, this idea was found infeasible because
these invisible ASCII control codes are utilized to
implement some system functions on the BBS.
Instead, we use some invisible Big-5 codes for data
hiding which were found in this study.

In Taiwan, many BBS’s like the PTT and the
school BBS sites are built on the servers with the
Big-5 coding format, so uses of them for data
hiding is appropriate. On the other hand, nowadays
most of the popular operating systems such as
Windows XP and Windows 7 use the Unicode
format as their text coding systems, because the
Unicode is a universal and complete standard
format. No matter what coding formats are used for
text, they will be transformed into the appearance
of the Unicode format by these operating systems
when they are displayed on the screen. Taking
Windows XP as an example. In this operating
system which contains many different conversion
tables for transcoding between various text coding
formats and the Unicode, all the text with the Big-5
format on the BBS will be displayed on the screen
with the Unicode format by referring to the
CodePage 950 which is a transcoding table
between the Big-5 and the Unicode [9].

For this reason, we tried to find the mapping
relationship between all the Big-5 codes and the
Unicode codes, and discovered that some special
Big-5 codes, which originally represent certain
rarely-used Chinese characters or Japanese
characters, are invisible, and look just like white
spaces when these codes are transcoded into the
Unicode format and displayed on the BBS. This
phenomenon resulted from the fact that these
corresponding Unicode codes are located in the
Unicode Private Use Area, which ranges from code
E000 to code E8FF and does not contain any

http://www.microsoft.com/globaldev/reference/dbcs/950.htm

character assignment so that no character code
chart is provided for this area.

However, on some popular BBS browsers such
as PCMan and Pietty, to facilitate users to read and
type some special characters, certain special Big-5
codes mentioned previously are presented in their
original appearances through the simulated
Unicode compensation plan implemented by the
BBS browser software. So, by continuous tests and
observations in our experiments on many different
BBS sites through popular BBS browsers including
PCMan, KKMan, Pietty, and the basic Windows
XP telnet connection program, we found 185
special Big-5 codes useful for our study. In addition,
we supplemented the 185 codes to a total of 256
symbols by padding a white space after each of the
first 71 ones of them. The procedure of these tests
and observations is shown in Fig. 2.

Fig. 2. Tests and observation procedure.

Two examples of the appearances of embedding

some of these symbols in BBS articles on the
aforementioned browsers are shown in Fig. 3. And
some of the codes are listed in Table 1. We have
also created an end signal which is composed of a
special Big-5 code, FEAE, and the original white
space. This signal is used in the data hiding process
to identify the end of a text line in which data are
embedded.
B. Data Hiding by Special Big-5 Space Codes

We have also proposed another data hiding
technique for the BBS by the use of some special
Big-5 space codes. In this technique, two kinds of
Big-5 codes are used, one being the original white
space code and the other a Big-5 space code.
Because the two codes are both included in the
Big-5 standard, and appear to be invisible when

they are displayed on BBS browsers, we can use
them to achieve the aim of data hiding in the BBS
article under most general operating systems by
assembling them in a proper order.

(a)

(b)

Fig. 3. Stego-articles with some embedded invisible
Big-5 symbols on (a) PCMan and (b) KKMan.

Table 1. Encoding table of invisible Big-5

codes (partially shown).
0 8F 53 22 92 65 44 9D 78
1 90 F6 23 98 FB 45 9D 79
2 90 F7 24 98 FD 46 9D A1
3 90 F9 25 98 FE 47 9D A2
4 90 FA 26 99 FB 48 9D A3
5 91 C7 27 9B DE 49 9D A4
6 91 C8 28 9B DF 50 9D A5
7 91 CF 29 9B E3 51 9D A6
8 91 D0 30 9C D7 52 9D A7
9 91 D8 31 9C D9 53 9D A8

10 91 D9 32 9C E4 54 9D A9
11 91 DA 33 9C E7 55 9DAA
12 91 DF 34 9D 5F 56 9D AB
13 91 E1 35 9D 60 57 9D AC
14 91 E2 36 9D 61 58 9DAD
15 91 E3 37 9D 62 59 9D AE

 … … …

On the BBS, many users are accustomed to
publishing articles with alternate blank lines and
this habit facilitates us to hide secret messages after
the line feed code of each line end. So, we tried to
devise an appropriate scheme to efficiently utilize
the two mentioned invisible codes for the largest
utilization ratio of the blank spaces in each line.

More specifically, there are two kinds of
character lengths on the BBS. One occupies a unit
which is the length of a code displayed on BBS
browsers, like the original white space; and the
other is two-unit long, like the special Big-5 space
code. For the variability and efficiency of using the
Big-5 symbols for data hiding, we allow them to be
arranged in three ways: (1) a special Big-5 code, (2)
a combination of a special Big-5 code and a white
space, or (3) a combination of a special Big-5 code
and several white spaces, as shown in Table 2,
which we mention as an encoding table for the
used special Big-5 space codes. Here, efficiency is
judged by the average required number of units for
hiding one bit.

Table 2. Encoding table for used special Big-5

space codes.

C. The Proposed Coding Scheme and Coding
Efficiency

In our study, we only use four types (except the
end signal) of symbols for coding of message bits,
including:

type 1: , type2: , type3: , and type4: .

Specifically, the four types in order are used to
encode the bits 00, 01, 10, 11, respectively. Though
we can create more types of symbols following the
same symbol-creating logic by padding more white
space codes after the symbol , yet we can prove
that the 4-symbol codes created in Table 2 have the
largest efficiency of symbols, as discussed next.

Assume that the probability for each symbol to
appear is identical, and that a symbol can represent

n embedded bits. And let ui and pi specify the
occupied units and the appearance probability of
the i-th type of symbols like those defined in Table
2, respectively. Then, the efficiency E of the
symbols is defined by the following equation in this
study:

 E = np . (1) u i
i

i

n

/)(
2

1
×∑

=

Also, under the assumption that all the symbols
have equal appearance probabilities, we may
substitute ui and pi in (1) above with their real
values to obtain

1 1 1() [2 3 (2 1)] /
2 2 2

n
n n nE f n n= = × + × + + + ×… (2)

which can be reduced easily to be

 f(n) = (2n + 3)/2n (3)

and differentiated to get

1 1() () [(2) (2) 2 6]/ 4n ndf n 2g n n n

dn
+ += = × × − −A n (4)

where An is the natural logarithm function. Setting
g(n) = 0 in (4) above results in the following
equation:

1 1(2) (2) 2 6 0n nn n+ +× × − − =A (5)

which can be solved to get the extreme value for n.
However, because the number of bits must be an
integer and such an integer satisfying Eq. (5) is
inexistent, we must take n to be 2 for g(n) to be
closest to zero. Alternatively, from Eq. (3) we have
f(n) = 5/2, 7/4, and 11/6 for n = 1, 2, and 3,
respectively. Since 5/2 ≥ 7/4 and 7/4≤ 11/6, we see
that n = 2 indeed is an optimal value to make f(n)
minimum, i.e., to yield the smallest average
required number of units, 7/4, for hiding one bit.
This completes the proof that the 4-symbol codes
(except the end signal) listed in Table 2 are optimal,
and yield the largest efficiency of coding. By the
way, we created the end signal to be composed of a
special Big-5 space code and a line feed code,
rather than a white space code and a line feed code,
since all white spaces between any other code and
the line feed will be removed when an article is
published on the BBS.

Input: a secret message S, a secret key K, and a
cover BBS article B.

Because secret information embedded by the two
proposed data hiding techniques is almost
imperceptible on the BBS even when a user
highlights BBS articles by a mouse, we can use the
techniques to achieve the goals of covet
communication and article authentication on the
BBS.

Output: a stego-article B′.
Steps.

III. COVERT COMMUNICATION VIA THE BBS

A. Proposed Algorithm for Data Embedding
When a stego-article is displayed on the BBS, it

is desired that the article body can fit the width of
the BBS article window to reduce the possibility of
arousing a hacker’s notice of the embedded
message data. For this aim, we adopt the following
strategy.

(1) First, we fold longer article lines into shorter
ones, leaving at least eight characters at each
line end as a data embedding slot;

(2) Next, we use a secret key as a seed to
randomize the content of a secret message
which we want to embed in a cover article for
covert communication;

(3) Then, we map the randomized message data to
corresponding invisible symbols according to
the user’s choice ⎯ if the first data hiding
technique as mentioned previously is chosen,
we conduct the mapping by referring to Table 1;
otherwise, we replace each special Big-5 space
code in the cover article with two original white
space codes (for the process of data extraction
described in the next section to be performed
correctly), and conduct the mapping by
referring to Table 2.

(4) Finally, we sequentially embed the symbols
obtained from the mapping into the folded
article to obtain a stego-article with the
randomized secret message data hidden
imperceptibly.

The algorithm for conducting this process is
described in the following, in which a line in a
BBS article means a number of characters in a row
with an LF appended to the end of the line.

1. Fold sequentially each text line li with a length
larger than 70 units in BBS article B into a
70-unit line by inserting a line feed, denoted as
LF and occupying zero unit, after the original
70th character in li to generate a folded article,
denoted as F.

2. Compute the size Li of the data embedding slot
at the end of each text line li in F by:

Li = 78 − the length of li,
which means that the maximum number of
characters that can be inserted at the end of li.

3. Use secret key K as a seed to generate a
sequence Q of random numbers.

4. Randomize the input secret message S with Q to
get a randomized message S′.

5. Choose a technique to hide S′ :
(1) If technique 1 is chosen, then perform Step

6.
(2) If technique 2 is chosen, then go to Step 9.

6. (Technique 1) Separate the bits of S′ into 8-bit
segments and map them to invisible symbols t1,
t2, …, tk, respectively, according to Table 1.

7. Let |l| be the total number of lines, |T| be the
total number of t1 through tk, and Ut1, Ut2, …,
Utk be the numbers of units occupied by t1
through tk, respectively.

8. Embed the invisible symbols t1 through tk
obtained in Step 6 sequentially into the folded
article F from the first line (that is, take the
index number i of li and the index number k of tk
both to be 1 initially), and then conduct the
following steps.
8.1 If i ≤ |l|, then perform one of the following

three operations at the end of li; otherwise,
perform Step 8.2.
(1) If k ≤ |T| and Li − Utk > 2, then embed tk

in the data embedding slot of li,
decrement Li by Utk, increment k by 1,
and repeat Step 8.1 again.

(2) If k ≤ |T| and Li − Utk ≤ 2, then scan li to
find the line feed LF, remove it, embed
an end signal in the data embedding
slot of li, increment i by 1, and repeat
Step 8.1 again.

Algorithm 1: message data embedding for covert
communication.

(3) If k > |T|, then embed an end signal in
the data embedding slot of li, and go to
Step 13.

8.2 Embed the remaining symbol/symbols
below F as one or more blank lines with an
end signal appended at each line end, and
go to Step 13.

9. (Technique 2) Replace each special Big-5 code
in the folded article F with two white space
codes.

10. Separate the bits of S′ into 2-bit segments and
map them to invisible symbols p1, p2, …, pk,
respectively, according to Table 2.

11. Let |l| be the total number of lines, |P| be the
total number of p1 through pk, and Up1, Up2, …,
Upk be the numbers of units occupied by p1
through pk, respectively.

12. Embed the invisible symbols p1 through pk
sequentially into the folded article F from the
first line (that is, take the index number i of li
and the index number k of pk both to be 1
initially), and then conduct the following steps.
12.1 If i ≤ |l|, then perform one of the following

three operations at the end of li; otherwise
perform Step 12.2.
(1) If k ≤ |P| and Li − Upk > 2, then embed

pk in the data embedding slot of li,
decrement Li by Upk, increment k by 1,
and repeat Step 12.1 again.

(2) If k ≤ |P| and Li − Upk ≤ 2, then scan li
to find the line feed LF, remove it,
embed an end signal in the data
embedding slot of li, increment i by 1,
and repeat Step 12.1 again.

(3) If k > |P|, then embed an end signal in
the data embedding slot of li, and
perform Step 13.

12.2 Embed the remaining symbols below F as
one or more blank lines with an end signal
at each line end, and continue.

13. Take the final version of F as the desired
stego-BBS article Β′.

B. Proposed Algorithm for Data Extraction
In the proposed message data extraction process,

first we extract the invisible symbols embedded in
a stego-article. Next, according to the adopted

different techniques (technique 1 or 2 mentioned
previously) for embedding the invisible symbols,
we conduct two different data extraction processes.
If technique 1 is used, we map the symbols into
8-bit segments by referring to Table 1; otherwise,
we map the symbols into 2-bit segments by
referring to Table 2. Then, we concatenate the
segments into a random message. Finally, by using
the same secret key which was used for embedding
the message, we can recover the correct secret
message. The details are described as an algorithm
below.

Algorithm 2: Data extraction for covert

communication.
Input: a stego-BBS article Β′ and the secret key K

used in Algorithm 3.1 to produce B′.
Output: a secret message S.
Steps.
1. Check each line li in the stego-BBS article B′

sequentially, starting from the first line; and
extract the invisible symbols embedded in front
of the end signal in li.

2. Transform the extracted symbols according to
the respective data hiding technique used for
embedding the secret message to be extracted.
(1) If technique 1 is used, map them into 8-bit

segments t1, t2, …, tk, respectively, by
referring to Table 1.

(2) If technique 2 is used, map them into 2-bit
segments p1, p2, …, pk,, respectively, by
referring to Table 2.

3. Concatenate the extracted segments into a
random message Q.

4. Use the secret key K to reorder Q to obtain a
result as the desired secret message S.

C. Experimental Results
We conducted experiments of covert

communication via BBS articles using our program
designed as a PCMan plug-in. Fig. 5 shows an
example of the experimental results where a
message “I want to tell you a secret” was
embedding by Algorithm 1 into a BBS article
shown in Fig. 5(a), resulting in the stego-BBS
article of Fig. 5(b). Fig. 6 shows message data
extraction results using Algorithm 2 with correct
and wrong keys. The experimental results show

that the proposed method is effective for covert
communication applications.

(a)

(b)

Fig. 5. An example of experimental results of message
data embedding. (a) Cover article publishing and secret
embedding process. (b) Stego-article with secret
message embedded on the PCMan.

IV. BBS ARTICLE AUTHENTICATION

The basic concept we follow to design BBS
article authentication techniques is to generate
authentication signals from a BBS article to be
protected and embed them into the article. Later, to
authenticate the article, the authentication signals,
presumably embedded in the article, are extracted
and matched with those computed from the current
content of the article; if matching fails, then it is
decided that the article has been tampered with.
More details are described in the following.

A. Proposed Authentication Signal Generation and
Embedding Process

In the phase of authentication signal generation,

first we fold the longer text lines in a BBS article,
which we want to protect, into shorter ones, leaving
at least eight characters at the end of each line as a
data embedding slot. Then, assuming that technique
2 mentioned previously, which uses special Big-5
space codes, is selected to hide authentication
signal data, we replace each Big-5 space code in
the cover article with two white space codes. Next,
we remove from the folded BBS article all the line
feed signals so that the verification process
described in the next section will not be interfered
by redundant line feed signals. The modified BBS
article and a secret key then are used to generate an
authentication signal using a hash function and the
exclusive-OR operation. Finally, we regard the
signal as a secret message and hide it in the folded
article using the proposed data embedding process
described in Algorithm 1 with the same secret key
to obtain a protected BBS article. By the way,
technique 2 may also be used in the above process.

(a)

(b)

Fig. 6. Data extraction results from a stego-BBS article.
(a) Extraction result with a correct message using a
correct key. (b) Extraction result with a noise message
using a wrong key.

Algorithm 3: Authentication signal generation
and embedding.

Algorithm 4: Authentication signal extraction and
BBS article verification.

Input: a secret key K, a hash function f (such as
MD5), and a cover BBS article B.

Input: a secret key K and a hash function f both
being the same as those used in Algorithm
5.1; and a protected BBS article B′. Output: a protected BBS article B′.

Output: an authentication report R. Steps.
Steps. 1. Fold sequentially each text line li with a length

larger than 70 units in BBS article B into a
70-unit line by inserting a line feed, denoted as
LF and occupying zero unit, after the original
70th character in li to generate a folded article,
denoted as F.

2. Choose one of the two previously-described data
hiding techniques to embed secret data in the
folded article by one of the following ways:
(1) if technique 1 is selected, then perform Step

4;
(2) if technique 2 is selected, then perform Step

3.
3. Replace each special Big-5 code in the folded

article F with two white space codes.
4. Remove all the line feed signals in F, use the

result and the secret key K as inputs to the hash
function f to generate two 128-bit digests F′ and
K′, respectively, and return all the removed LF
signals back into their original positions in F.

5. Compute the exclusive-OR value F′⊕K′ to
obtain a 128-bit authentication signal S.

6. Regard S as a secret massage and embed it in the
cover article using the proposed data hiding
process in Algorithm 1 to obtain a protected
BBS article as output.

B. Proposed Authentication Signal Extraction and
Verification Process

To authenticate a protected BBS article, first we
take it as input to the proposed data extraction
process in Algorithm 2 with the secret key used in
Algorithm 3 to obtain a secret massage, and regard
it as the authentication signal S of the article. Next,
we use the same key and the same hash function to
transform the article, after all the secret symbols
and the line feed signals in it are removed, into a
verification signal T. Finally, we decide whether the
protected article has been modified or not by
comparing the two signals S and T. The details are
described as an algorithm in the following.

1. Use the protected BBS article B′ as input to the
proposed data extraction process in Algorithm 2
with the secret key K to obtain a secret massage,
and regard it as the authentication signal S of the
article.

2. Remove all the secret symbols and line feed
signals from the BBS article, and use the result,
as an input to the hash function f to generate a
128-bit digest B′′.

3. Use the secret key K as an input to the hash
function f to generate a 128-bit digest K′.

4. Compute the exclusive-OR value B′′♁K′ to get
a 128-bit verification signal T.

5. Compare the authentication signal S and T,
resulting in the following two cases.
(1) If S = T, then regard the input B′ as

unmodified and mark it so in the
authentication report R.

(2) If S ≠ T, then regard B′ as modified and
mark it so in R.

6. Output the authentication report R.

C. Experimental Results

Some experimental results of BBS article
authentication are shown here. In Fig. 7(a), we
show par of the process of generating a protected
BBS article using a secret key as input to
Algorithm 3, and the appearance of the generated
protected article displayed on the PCMan is shown
in Fig. 7(b). A successful verification result with
Fig. 7(b) and a right secret key as inputs to
Algorithm 4 is shown in Fig. 8(a), in which an
authentication report “authentication is successful”
is seen. After we tampered with the protected
article by replacing a number “500” of the content
with another “900,” and conducted the verification
process using Algorithm 4 with the tampered
article and the right key as inputs, we obtained an
authentication result with a report of failure, as
shown in Fig. 8(b).

(a)

(b)

Fig. 7. Experimental results of authentication signal
generation and embedding. (a) Protected article
generation and publishing process. (b) Stego-article with
an embedded secret message displayed on PCMan.

V. CONCLUSIONS

A. Process for Private Region Concealment
In this study, we investigate the new problem of

data hiding via BBS articles and two techniques
have been proposed. One is based on the use of
invisible Big-5 codes, and the other on the use of
special Big-5 space codes. We use the two
proposed techniques to encode a secret message
and embed the resulting secret symbols into a
folded article to achieve covert communication via
BBS articles. According to the experimental results,
the secret message hidden in a BBS article is not
observable from the appearance of the resulting
stego-article. It has also been proposed to enhance
the security of the proposed method by adding a
user-defined secret key to randomize the content of
the secret message, so that a malicious user cannot
easily extract the secret even when he/she knows
the proposed algorithm.

Furthermore, we have also used the two

proposed techniques to accomplish BBS article
authentication by generating and matching
authentication signals. The experimental results
proved the feasibility of the proposed data hiding
techniques for real applications. Future studies may
be directed to investigating more applications by
use of the proposed techniques. For example, in
addition to using the proposed techniques to
authenticate protected BBS articles, it may also be
tried to capture the screen displaying a BBS article
by the “print screen” command, transform it to a
grayscale image, and hide it into the BBS article to
enhance protection of the BBS content.

(a)

(b)

Fig. 8. Experimental results of authentication signal
extraction and BBS article verification. (a) An
authentication result with a protected article untampered.
(b) An authentication result of a protected article
tampered by replacing a word.

REFERENCES

[1] W. Bender, D. Gruhl, N. Morimoto, and A. Lu,
“Techniques for data hiding,” IBM System Journal,
Vol. 35, Nos. 3 & 4, Feb. 1996.

[2] G. Cantrell and D. D. Dampier, “Experiments in
hiding data inside the file structure of common
office documents: a steganography application,”
Proceedings of 2004 International Symposium on
Information and Communication Technologies, pp.
146-151, Las Vegas, Nevada, U. S. A., 2004.

[3] T. Y. Liu and W. H. Tsai. "Quotation authentication:
a new approach and efficient solutions by data
hiding and cascaded hashing techniques," IEEE
Transactions on Information Forensics and Security,
Vol. 5, No. 4, pp. 945-954, Dec. 2010.

[4] P. Wayner, “Strong theoretical steganography,”
Cryptologia, Vol. XIX/3, pp. 285-299, 1995.

[5] I. S. Lee and W. H. Tsai, “Secret communication
through web pages using special space codes in
HTML files,” International Journal of Applied
Science and Engineering, Vol. 6, No. 2, pp. 141-149,
Nov. 2008.

[6] K. L. Huang and W. H. Tsai. “Secret sharing with
steganographic effects for HTML documents,”
Proceedings of 2004 Conference on Computer
Vision, Graphics and Image Processing, Hualien,
Taiwan, Aug. 2004.

[7] I. S. Lee and W. H. Tsai, “Data hiding in emails and
applications by unused ASCII control codes,”
Journal of Information Technology and Applications,
Vol. 3, No. 1, pp. 13-24, Sept. 2008.

[8] American National Standard for Information
Systems - Coded Character Sets - 7-Bit American
National Standard Code for Information Interchange
(7-Bit ASCII), ANSI X3.4-1986, American National
Standards Institute, Inc., March 26, 1986.

[9] CP950 to Unicode table:
http://www.unicode.org/Public/MAPPINGS/VEND
ORS/MICSFT/WINDOWS/CP950.TXT, Jul. 2000

	Yi-An Wang
	Wen-Hsiang Tsai

