
DATA HIDING IN PDF FILES AND APPLICATIONS BY IMPERCEIVABLE
MODIFICATIONS OF PDF OBJECT PARAMETERS

1Jiun-Tsung Wang (王竣聰) and 2Wen-Hsiang Tsai (蔡文祥)

1
Institute of Multimedia Eng., National Chiao Tung University, Hsinchu, Taiwan

2
Dept. of Computer Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan

E-mail: jtwang@cs.nctu.edu.tw, whtsai@cs.nctu.edu.tw

ABSTRACT

The PDF file is very popular nowadays, and so a

good choice as cover media for covert communication.
A data hiding method for this purpose is proposed,
which hides secret data by slight modifications of the
values of various PDF object parameters, yielding a
difference of appearance very difficult to notice by
human vision. Because digital files are easy to duplicate
and modified, a method for authentication of PDF files
by the proposed data hiding technique is also proposed.
Secret keys are used to enhance the security of the
embedded data. Experimental results show the
feasibility of the proposed methods.

1. INTRODUCTION

Because of the rapid development of broadband
networks and personal computers, transmissions of
digital documents and images through the Internet
become easier and easier. Some properties of the PDF
file, such as high-quality printing and cross-platform
applicability, promote the popularity of the PDF file.
Furthermore, PDF files can be transmitted on the
Internet quickly, so they become good examples of
cover media to carry secret information. Because their
file sizes usually are large and they are rich-text
documents, we can design methods to embed data into
PDF files. For this application, we also need a special
decoding scheme to extract the secret information
embedded in the PDF files. In this study, it is desired to
design a covert communication method via PDF files.
On the other hand, since PDF files may be modified
illegally, it is also desired to design a method for
authenticating PDF files whenever necessary.

Zhong and Chen [2] proposed an information
steganographic algorithm based on the PDF file, which
hides secret data by embedding them in the space
between the objects in a PDF file. Zhong, et al. [3]
proposed another covert communication method for
PDF files, which hides secret messages by tuning the
distances between the texts in a PDF file. Liu and Tsai
[4] proposed an active quotation authentication method

for Microsoft Word documents by hiding the block
signature in the document.

In this paper, we propose new data hiding
techniques for PDF files by using different objects in
the PDF. Two applications of the proposed techniques,
namely, covert communication via PDF files and
authentication of PDF files, are also investigated.
Algorithms for them are proposed. Experimental results
show the feasibility of the proposed techniques. In the
remainder of this paper, we give first a general
introduction to the PDF in Section 2. In Section 3, we
describe the first proposed technique of hiding data in
the page parameter. And in Section 4, we describe
another technique of hiding data in text matrices. These
two techniques may be used for covert communication
directly. In Section 5, we propose a PDF file
authentication method. Some experimental results are
shown in Section 6, followed by a conclusion and some
suggestions for future research.

2. INTRODUCTION TO PDF

The PDF was designed as a cross platform for

document exchange by Adobe Systems [1]. It is a
mixture of text and binary formats, and its content is
described by a page description language which is
modified from PostScript®. There are three parts
generally in a PDF file, and the first part is the magic
header which is constructed by a comment and it is
optional. The second part is the set of PDF objects
which are used to describe the content and the
appearance of the PDF file. The final part is the cross
reference table and the trailer of a document which are
used to locate the entry point and the objects of a PDF
file.

According to the cross reference table and the
trailer, a PDF parser can find the entry point of a PDF
file and build a hierarchal tree. Basic components in a
PDF file are called objects, for example, pages, contents,
images, fonts, and numbers. The most interesting object
is content object, in which there is much syntax, such as
text matrix, text-showing operator, coordinate
transformation matrix, image-showing operator, and

font-specifying operator. A matrix in a content object is
used to describe the scale, orientation, and translation
parameters of a destination object. A text matrix is
composed by six distinct numbers a, b, c, d, e, f and a
“Tm” operator. The structure of a text matrix is
illustrated in Figure 1. Numbers a, b, c, and d are
elements of a rotation matrix which are used to describe
the scale and orientation of a text object, and the
numbers e and f are translation parameters which are
used to describe the position of a text. In this paper, we
propose a method to embed secret data in such numeric
objects of a PDF file.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

1
0
0

fe
dc
ba

TT LMm

Figure 1 The structure of a text matrix.

3. HIDING DATA IN PARAMTERS OF PAGES

3.1 Concept of Proposed Method

According to the PDF standard, there are eight
basic types of objects in PDF files. One of them is the
page object, which includes parameters to describe the
properties of a page in a PDF file. For example, the
visible area of a page, named media box, is described by
four numbers, with the first two numbers specifying the
position of the left upper corner, and the last two
numbers specifying the position of the right lower
corner, both in terms of coordinates. These four
numbers decide the width and height of the visible area
of the page. A page object which includes a media box
is illustrated in Figure 2. Small changes on the page
width and height are not easy to be noticed, and so we
may embed secret message data in the media boxes of
pages.

11 0 obj
<</Type/Page
/Parent 1 0 R
/Resources 14 0 R
/MediaBox[0 0 595.2 841.68]
/Contents[12 0 R]
>>
Endobj

Figure 2 An example of a page object.

Another basic type of objects is number, including

integer and real numbers. Integers and real numbers are
exchangeable in PDF files under some conditions, and
there is no difference between 0 and 0.0. We may so
embed secret message data in a PDF file by
modification of such numbers. Modification of them
may be categorized into two forms:

Type 1: the original number is an integer and the
result is a real number.

Type 2: the original number is a real number and the
result is still a real number.

The former type can be divided further into two types:
Type 1.1: the modification makes a small change of

the magnitude of the number, for example,
modification of 20 to be 20.00457;

Type 1.2: the modification makes no change of the
magnitude of the number, for example,
modification of 20 to be 20.00000.

The later type can be divided further as well into two
types:

Type 2.1: the modification makes a small change of
the magnitude of the number, for example,
modification of 854.7 to be 854.700457;

Type 2.2: the modification makes no change of the
magnitude of the number, for example,
modification of 854.7 to be 854.700000.

We may design data hiding schemes with the
above four types of modifications. That is, we may
embed data in the number object. With Types 1.1 and
2.1, small changes can be used to embed multiple digits
into a digit, and there is no limitation on the length of
embedded digits. In the above example for Type 1.1, we
embed three digits 4, 5, and 7 into the integer 20 after
appending a separator of a pre-selected digit sequence,
00, to the integer. The use of such a kind of separator is
necessary in the message extraction process (described
later) to distinguish the digits of the original data from
the embedded ones. Of course, such a separator must be
selected to be unique to cause no ambiguity in digit
decoding in the extraction process. Similarly, in the
example for Type 2.1 above, we embed the secret digits
457 into 854.7 as its tail digits following the separator
00.

By Types 1.2 and 2.2 of number value
modifications, we can embed multiple 0’s into an
integer or a real number. However, to use these 0’s as
message digits, we need further an additional message
encoding scheme to transform the sequence of 0’s into
the message digits. Obviously, we have to use unary
coding for this purpose since only a symbol, namely, 0,
can be used here for data encoding. Therefore, to
encode the digits 13, for instance, we have to append a
sequence of 13 0’s to the end of the original data. Note
that no separator is required here. Though this scheme
of unary coding is feasible in our application of covert
communication, it will generate too many 0’s and so
increase the size of the resulting stego-PDF file.
Consequently, we do not use it in our experiments.

3.2 Proposed Data Hiding Process

In the proposed data hiding process, we apply
exclusive-OR operations to every byte in a secret
message and every corresponding byte in a user key

before hiding the message in a PDF file. After that, the
data are put into three-bit groups. If the number of bits
is not divisible by 3, then we pad 1 or 2 zeros after the
last group. We then map each 3-bit group to a decimal
digit by a coding table, for example, Table 1, and then
append it to the end of the original parameters in the
media box being processed with a separator “00”
between them. A corresponding detailed algorithm is
described in the following.

Algorithm 1: encoding a message and hiding it in a

media box
Input: a user key K, a secret message S, and a media

box B = (b1, b2, b3, b4).
Output: a media box B’ with data embedded F’.
Steps:
1. For every byte in S, apply exclusive-OR operations

to the i-th byte of K and the i-th byte of S to
generate the i-th byte of a new sequence of bytes S’
with the same length as that of S.

2. Divide S’ into 3-bit groups f1, f2…, fk.
3. Transform f1 through fk into decimal numbers

(digits) n1, n2…, nK by Table 1.
4. Concatenate n1, n2, …, nk in order as a digit string

and divide it into four parts N1, N2, N3, and N4.
5. Embed the data into B in the following way:

for i = 0, 1, 2, 3,
5.1 if the number in bi is an integer, then append

to it the number sequence of “.00” (a dot and
two zeros) followed by Ni to yield bi’;

5.2 otherwise, append to it “00” (two zeros)
followed by Ni to yield bi’.

6. Take B’ = (b1’, b2’, b3’, b4’) as the desired output.

Table 1 Mapping of groups of three bits to a digit.

Bit stream digit Bit stream digit
000 1 100 5
001 2 101 6
010 3 110 7
011 4 111 8

3.3 Proposed Data Extraction Process

The extraction of a secret message from a media
box in a PDF file is conducted in the following way.
First, we scan the value of each parameter of the media
box from the last digit of it to the dot, if existent. If two
consecutive 0’s are obtained, we cut off the digits after
the two 0’s. We then concatenate all the cut digits to get
a string of digits, map them into 3-bits groups by Table
2, and concatenate the resulting groups into a bit stream.
After that, we apply exclusive-OR operations to the bit
stream and the user key, and regard the resulting bits as
ASCII codes to get the hidden secret message finally. A
detailed algorithm is described in the following.

Algorithm 2: Extraction of a message from a media
box

Input: a user key K, and a media box F = (x1, y1, x2, y2).
Output: a secret message S.
Steps:
1. For i = 1 and 2,

1.1 extract the digits after “00” in xi, and save
them in N2i-1; and

1.2 extract the digits after “00” in yi, and save
them in N2i.

2. Concatenate N1, N2, N3, and N4 into a digit string N
and transform N into a bit stream by Table 2.

3. Treat the bit stream as a binary stream of ASCII
codes, and transform them to a string A of ASCII
codes.

4. Truncate the user key K or pad numbers to it in the
following way:

4.1 if K is longer than the string A, truncate K to
be a string whose length is equal to that of A;

4.2 if K is shorter than A, pad to K the required
number of bytes copied from the beginning
ones of K.

5. For every byte in A, apply exclusive-OR operations
to the i-th byte of A and the corresponding byte of
K to generate the i-th byte of S, where S is a
sequence of bytes with the same length as A.

Table 2 Mapping a digit to 3 bits.

Digit Bit stream Digit Bit stream
1 000 5 100
2 001 6 101
3 010 7 110
4 011 8 111

4. HIDING DATA IN TEXT MATRICES

A content object in a PDF file contains many text
objects and text matrices which are used to describe the
orientation, scale, and position of the text in the PDF
file. The default resolution is 72 dpi, and small changes
of text matrices in a content object will not affect the
appearance of it obviously. Therefore, we may embed
data in text objects of PDF files as well.

4.1 Concept of Proposed Method

The contents of each PDF page are composed of
some text objects. The detail information of a text
object which includes the size, rotation, and position
should be specified before the text showing operators
are applied. See Figure 3 for an instance. Such text
object information is described by a text matrix which is
composed by two parts: the text-orientation and the text
position. The essential encoding scheme is the same as
the previously-described method for embedding data in
a media box, but since there are much more text

matrices than media boxes, we change some steps of the
encoding steps in the previously-described data hiding
method to adapt it for the purpose of data embedding in
text matrices.

Figure 3 An example of a content object of a PDF page.

4.2 Proposed Data Hiding Process Using Text

Matrices

Considering the large number of text matrices, we
embed secret digits in text matrices uniformly. Also, the
basic structure of the media box is different from that pf
the text matrix, so some steps in Algorithm 1 should be
refined, as described in the following.

Algorithm 3: encoding a message and hiding it in text

matrices
Input: a user key K, a secret message S, and text

matrices F1 = (a1, b1, c1, d1, x1, y1), F2 = (a2, b2,
c2, d2, x2, y2), …, FL.= (aL, bL, cL, dL, xL, yL).

Output: text matrices F1’, F2’, …, FL’ with data
embedded.

Steps:
1. For every byte in S, apply exclusive-OR operations

to the i-th byte of K and the i-th byte of S to
generate the i-th byte of a new sequence of bytes,
S’, with the same length as that of S.

2. Divide each 3 bits of S’ into groups of bitstream f1,
f2…, fk.

3. Transform f1 through fk into decimal numbers
(digits) n1, n2…, nk by Table 1.

4. Concatenate n1, n2…, nk as a digit string N and
divide it into 2L parts N1, N2, …, N2L.

5. Embed the data into text matrices in the following
way.
For i = 0 to L,

5.1 if the number in the parameter xi of the text
matrix Fi is an integer, then append to it the
number sequence of “.00” (a dot and two
zeros) followed by N2i. Otherwise, append to
it “00” (two zeros) followed by N2i.

5.2 if the number in the parameter yi of the text
matrix Fi is an integer, then append to it the
number sequence of “.00” (a dot and two

zeros) followed by N2i+1. Otherwise, append
to it “00” (two zeros) followed by N2i+1.

4.3 Proposed Data Extraction Process

Because we hide data in the text matrices
uniformly, we should scan all the text matrices in a PDF
file to extract the secret data. Some steps in Algorithm 2
should be tuned accordingly as described in the
following.

Algorithm 4: extracting a message from text matrices
Input: a user key K and text matrices F1, F2, …, FL.
Output: a secret message S.
Steps:
1. For i = 1, 2, …, L,

1.1 extract the x and y coordinates from the text
matrix Fi;

1.2 extract the digits after “00” in xi, and save
them in N2i-1;

1.3 extract the digits after “00” in yi, and save
them in N2i.

2. Concatenate N1, N2, …, and NL+1 into a digit string
N, and transform N into a bit stream by Table 2

3. Treat the bit stream as a binary stream of ASCII
codes, and transform them into a string A of ASCII
codes.

4. Truncate the user key K or pad numbers to it in the
following way:
4.1 if K is longer than the string A, truncate K to

be a string whose length is equal to that of A;
4.2 if K is shorter than A, pad to K the required

number of bytes copied from the beginning
ones of K.

5. For every byte in A, apply exclusive-OR operations
to the i-th byte of A and the corresponding byte of
K to generate the i-th byte of S, where S is a
sequence of bytes with the same length as A.

5. AUTHENTICATION OF PDF FILES FOR

FIDELITY AND INTEGRITY VERIFICATION

5.1 Concept of Authentication Method

In the previous sections, we have proposed new
techniques for data hiding in PDF files using several
kinds of objects in the PDF. They may be used for the
purpose of covert communication. In this section, the
proposed authentication method which is implemented
also by applying the -proposed data hiding techniques
will be described.

In order to achieve the goal, we propose to embed
an authentication signal in the text matrix of each text
object. The authentication signal is generated from the
contents of the string in each text block as well as the
user key. Verifying the fidelity and integrity of a PDF
file to achieve the authentication purpose then is just to
extract the authentication signals from the text

matrices and match them with the signals which are
generated from the strings in the currently-processed
text blocks. Advantages of hiding authentication
signals in text matrices are multifold. First, if any text
object is moved, the authentication signal in the text
matrix will be destroyed. So our method can detect
illegal movements of text objects. Second, if the
strings in the text objects are modified, the embedded
authentication signals and the signals generated from
the modified strings will not match. So, our method
can also detect illegal text modification. Third, if a
PDF file is regenerated by another PDF generator, the
authentication signals in the PDF file will be destroyed
as well, and so our method can detect regeneration of
PDF files as well. Furthermore, we may protect the
security of the authentication signals by exclusive-
ORing the signals with a user key, as done in our
method. This ensures that an illicit user, who does not
have the user key, cannot create fake authentication
signals to cheat other users.

5.2 Authentication Signal Embedding Process

Before embedding authentication signals, we need
to scan all the text blocks and their corresponding text
matrices. For each text block, we extract the string in it,
sum up the values of the ASCII codes of the characters
in the string, and take the modulo-256 value of the sum
to get a digest of the string. Then, we apply exclusive-
OR operations on the sum and the user key to generate
an authentication signal, which is then embedded into
the PDF file using the method proposed previously. The
details are described in the following.

Algorithm 5: embedding authentication signals in a

PDF file
Input: a user key K = (k1, k2, …, kN) with each ki being

a byte, and a PDF file P.
Output: an authentication signal-embedded PDF file.
Steps:
1. Find all the strings Ti in the PDF file P and their

corresponding text matrices Xi. Let the number of
text objects be M.

2. For i = 1, 2, …, M, perform the following steps.
2.1 Sum up all the bytes k1 through kN of K and

take the modulo-256 value D of the sum.
That is, compute

1 2 3(...) mod 256.ND k k k k= + + +
2.2 Apply exclusive-ORing operations on all the

bytes of Ti, where i = 1, 2, …, M, and take
the exclusive-OR value of the result E and D
as F. That is, for Ti = (t1, t2, t3…, tL),
compute

LttttE ⊕⊕⊕= ...321
;

EDF ⊕= .
3. Embed F in Xi by Algorithm 3.

5.3 Authentication Signal Extraction Process

After the above procedure are conducted, if the
PDF is tampered with, our program can find out where
the tampering occurs by verification of the
authentication signals which are hidden in the text
matrices. The verification, simply speaking, is a reverse
version of the above process.

Before extracting the authentication signal, we
have to generate the authentication verification signal
first. The authentication verification signal is generated
by the above procedure which is used to generate
authentication signal. Next, we match the authentication
signal so computed with the authentication signal
extracted from the stego-PDF file. If they are the same,
it is decided that the document is an unmodified one;
otherwise, the document must have been tampered with.
The details are described in the following.

Algorithm 6: extracting authentication signals from a

PDF file
Input: a user key K = (k1, k2, …, kN) where each ki is a

byte, and a PDF file P.
Output: a verification report of P.
Steps:
1. Find all the strings Ti in the PDF file and their

corresponding text matrices Xi. Let the number of
text objects be M.

2. For i = 1, 2, …, M, perform the following steps.
2.1 Sum up all the bytes k1 through kN of K and

take the modulo-256 value D of the sum.
That is, compute

256mod)...(321 NkkkkD +++= .
2.2 Apply exclusive-ORing on all the bytes of Ti,

where i = 1, 2, …, M, and take the exclusive-
OR value of the result E and D as F. That is,
for Ti = (t1, t2, …, tL), compute

LttttE ⊕⊕⊕= ...321 ;

EDF ⊕= .
2.3 Extract embedded data from Xi by Algorithm

4 as Ai.
2.4 If Ai ≠ F, then decide that the contents of Ti

have been modified and mark it so in P.

6. EXPERIMENTAL RESULTS

In our experiments, we designed a user interface
written in the language of Java to implement the
proposed message embedding and extracting algorithms.
Some results of our experiments are shown in Figures 3
through 9. Figure 4 shows a cover PDF document.
Figure 5 shows the corresponding stego-PDF document
after embedding a message into the media box of the
cover document, and Figure 6 shows the stego-PDF

document after embedding a message into the text
matrices of the cover document through the interface as
shown in Figure 7. Figure 8 shows correct extraction of
the hidden message using a correct key, and Figure 9
shows erroneous extraction of the message with an
incorrect key.

We also setup a server which can embed
authentication signals and verify the fidelity and
integrity of PDF files. Figure 10 shows the screenshot
of visiting the server with Mozilla Firefox 2.0. A
protected PDF file is shown in Figure 11, a modified
version of it is shown in Figure 12. Finally, a
verification report is shown in Figure 13.

7. CONCLUSIONS

In this paper, a covert communication method via
PDF files as cover media and a method for
authentication of the fidelity and integrity of PDF files
by data hiding techniques have been proposed. Because
we can hide a covert message in PDF files without any
side effects on the visual appearance of the files, the
secrets in these PDF files are not easy to observe and
access illicitly. Even if an illicit user knows that there is
a secret message in a PDF file, the covert message can
be protected by a user key, and the illicit user still
cannot extract the original secret message. The
proposed authentication method can detect various
types of PDF file tampering. The authentication signal
is randomized by a user key, so it is not easy to create
fake authentication signals. The proposed methods are
feasible, as proved by our experiments. Future works
may be directed to investigation of using other data
structures of the PDF to hide data, and other
applications of the proposed data hiding techniques.

ACKNOWLEDGEMENT

This work was supported partially by National Digital
Archives Program with Project No. NSC-96-2422-H-
009-001 and partially by the NSC under the Project of
Advanced Technologies and Applications for Next
Generation Information Networks (II) – Sub-project 5:
Network Security with Project No. NSC-96-2752-E-
009-006-PAE.

REFERENCES

[1]. Adobe Systems Incorporated, PDF Reference, Sixth

Edition, Addison-Wesley, California, USA, Nov. 2006.
[2]. S. Zhong and T. Chen, “Information steganography

algorithm based on PDF documents,” Computer
Engineering, Vol. 32, No. 3, pp.161-163, Feb. 2006.

[3]. S. Zhong, X. Cheng and T. Chen, "Data hiding in a kind
of PDF texts for secret communication", International
Journal of Network Security, Vol. 4, No. 1, pp. 17–26, Jan.
2007.

[4]. T. Y. Liu and W. H. Tsai, “Active quotation
authentication in Microsoft Word documents using

block signatures,” Proceedings of 3rd International
Conference on Information Technology: Research
and Education (ITRE 2005), Hsinchu, Taiwan, June
2005.

Figure 4 The view of the original PDF file in Adobe

Acrobat Reader window.

Figure 5 The view of the stego-PDF file in Adobe

Acrobat Reader window.

Figure 6 The view of the stego-PDF file in Adobe

Acrobat Reader window.

Figure 7 Window of user interface with a secret
message and a user key as input.

Figure 8 Window of user interface with embedded
message extracted.

Figure 9 Window of user interface with a wrong key as
input, resulting in erroneous extraction of
embedded message.

Figure 10 The window of visiting the document
management server by Mozilla Firefox 2.0.

Figure 11 The appearance of the original PDF document

with Adobe Acrobat Reader window.

Figure 12 The appearance of the tampered PDF

document with Adobe Acrobat Reader
window.

Figure 13 The appearance of the verified PDF document

with Adobe Acrobat Reader window

