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ABSTRACT

An integrated approach to automatic model
learning and path generation for vision-based
autonomous land vehicle (ALV) guidance in building
corridors is proposed. Computer vision techniques are
utilized to locate an ALV in corridors. Used
environment features include baseline segments and
corners on walls. The ALV location work is
accomplished by a matching scheme for finding
possible matching corner pairs or baseline segment
pairs. Furthermore, strategies for model learning are
proposed in order to acquire automatically the
environment features that the ALV pass through in a
learning stage. And techniques of path generation are
also proposed to generate paths automatically for
guiding the ALV in indoor environments. Finally, a
real ALV was constructed as a testbed, and smooth
and safe navigation sessions can be achieved. Lots of
successful experiments confirm the feasibility of the
proposed approach.

Key Words . Environment learning, Path
generation, Automatic guidance.
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1. Introduction

1.1 Motivation

Guidance of autonomous land vehicles (ALV's)
by computer vision techniques has been intensively
studied in recent years. This tendency is due to the
fast development of computer vision techniques.
Furthermore, the vision-based method, which is more
similar to the human vision function, is a more
intelligent and flexible way for ALV guidance. The
goal of this research is to accomplish the works of
environment model learning, path generation, and
automatic guidance in an indoor environment using
computer vision techniques. It is desired that without
human involvement in the measurement of the
environment in which the ALV will navigate,
smooth paths can be generated and safe navigation
can be achieved

Several successful ALV systems have been
established for various purposes. A reactive robotic
control system which incorporates aspects of learning
momentum to improve the system's ability to
successfully navigate in dynamic environments was
proposed by Arkin, et al. [1,2]. The system
decompose actions into behaviors in order to produce
rapid real-time sensory responses. Schema-based
robotic control employed in such a system is one
form of reactive control systems. They are multiple
concurrent processes that operate in conjunction with
associated perceptual schemas and contribute to the
overa. The CMU mobile robot system[3,4] were
equipped with multiple sensors, including range
sensors, odometers, color TV cameras, etc. Outdoor
range data from a laser range scanner is used for 3-D
feature extraction , map building, and object
recognition. Vision algorithms including region
analysis and line tracking were successfully used in
outdoor navigation.

To conduct this research work, three ALV's have
been constructed by Tsai, et al. [5-9]. In Chang and
Tsai[5], a line following approach was proposed. The
baseline in a corridor which is the intersection of a
wall and the ground is extracted and used. A method
based on a principle similar to that of the cross ratio
is used to find the baseline location with respect to
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the vehicle. The ALV follows long basehnes to
perform indoor navigation. In Ku and Tsai[6], a
model-based navigation approach was proposed, and
the corridor contour is used to match the model and
the input patiern extracted from the video camera
image. So, the global location of the ALV can be
known. In Ke and Tsai[7], a comer tracking approach
was proposed, in which comers in the building are
stored as the model, and a method for rotating the
camera to track corners was proposed. The idea is to
select visible right-angle corners in indoor
environments as guiding marks. A new guidance
approach by modcl matching was proposed in Cheng
and Tsai[8]. Two laser hight sources were employed
to reduce the processing time for computing vertical
line positions by triangulation. A matching scheme
using distance weight correlation is proposed. The
vertical line position information was matched with
the model to locate the ALV accurately. In Su and
Tsai[9], an model-based navigation and collision
avoidance 1n building corridors and elevators was
proposed. The multiple corner position information
was matched with the model to locate the ALV
accurately, the reflex photoelectric sensors were used
for obstacle avoidance and a radio equipment was
employed to control the elevator operations of lifting
up, lifting down, door closing, and door opening so
that the ALV can accomplish elevator entering
automatically.

An ALV navigating in an unknown
environment in general must have the capabilities to
explore the environment with its sensors, construct
an abstract representation of the environment to
generate a path to the goal, and furthermore, navigate
smoothly and safely in the learned environment.
Vision-based model matching is a reasonable
approach to achieving this goal. Selecting stable
environment features and developing effective
methods to extract these features are the most
important key points to model-based ALV guidance.
In this study, the positions of the baseline segments
and corners in indoor environments are selected for
learning and guidance of ALV's in building corridors
because they are abundant and easily visible in
buildings and are convenient for use in reference
models.

In the remainder of this part, we investigate the
location of environment features, baseline segments
and corners, in building corridors in Section 2. The
ALV location and model learning techniques are
described in Section 3. Techniques for path
generation are described in Section 4. The ALV
location and guidance techniques are described in
Section 5. Image processing techniques and
experimental results are described in Section 6.
Conclusions and suggestions for further study can be
found in Section 7.
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2. Locating Environment Features
for Model Learning and ALV
Guidance

2.1 Coordinate Systems and
Transformations

Several coordinate systems and coordinate
transformations will be defined here for use in the
following sections. The coordinate systems are
shown in Figure 2. The camera coordinate system
(GCS), denoted as u-v-w, is attached to the camera
lens center. The vehicle coordinate system (VCS),
denoted as x-y-z, is attached to the contact point of
the front wheel of the vehicle and the ground. The x-
axis and the y-axis are placed on the ground and are
parallel to the short and long sides of the vehicle
body, respectively. To describe the model, we need a
third coordinate system, called the global coordinate
system (GCS), which is denoted as x-y'-z’. The x"-
axis and y'-axis are defined to lie on the ground.

The GCS is assumed to be fixed all the time,
while the VCS is moving with the vehicle during
navigation. The location of the vehicle can be assured
once the relation between the VCS and the GCS is
found. Since the vehicle is on the ground all the
time, the z-axis and the z'-axis can be ignored. That
is, the relation between the 2-D coordinate systems
x-y and x™-" is sufficient for determining the position
and-orientation of the vehicle.

The transformation between the two 2-D
coordinate systems x-y and x'-3' can be written as
follows:

simw 0]| 1 0 0
(x' y' 1) - (xy 1) —sinw cosw O|| 0 1 0
0 0 1 x'p y'p 1

oosw

21

where (x',,,y',,) is the translation vector from the

origin of x'-y' to the origin of x-y and W is the
relative rotation angle of x-y with reS{ect to x'-y', as
shown in Figure 3. The vector (<»%) and the angle

W determine the position and the direction of the
vehicle in the GCS, respectively.

The transformation between the CCS and the
VCS can be written in terms of homogenous
coordinates[8] as

(uvwl)
(1) ‘1) g 3’11’12’130
..(xyz]) 0 0 1 0 21 T2 23 -
31 723 733 O
-xg -yg -z 1 0 0 0 1
2.2)



= cosBcosy + sinBsingsiny,
- sinfcos¢,
= sinBsingcosy — cosBsiny,
= sinBcosy - cosBsingsiny,
= cosBcos¢,
= -cosBsingcosy — sinBsiny,
T3, = cosgsiny,
= sing,
= cos¢cosip.

(2.3)

and 6 is the pan angle, 9 s the tilt angle, @
is the swing angle, of the camera with respect to the

VCS; (zd,yd,zd) is the transformation vector from
the origin of the CCS to the origin of the VCS.
Image plane
Lens center
Front wheels o Optical axis
O 4.
y *" Gcs
A ves
Figure 2: The camera coordinate system u-v-w,

the vehicle coordinate system x-y-z,
and the global coordinate system x'-y'-
z'

y

. \

The relation between 2-D coordinate
systems x-y and x'-y’ represented by a
translation vector (x,,y,) and a

relation angle w.

Figure 3:
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2.2 Locating Baseline Segments and
Corners

In this study, the features of baseline segments
and comers in building environments are used to
achieve the proposed approach to model learning,
pathgeneration and ALV guidance. In this section,
the geometric properties of the baseline, whose
height is fixed, are used to calculate the VCS
coordinates of thebaseline segments detected in an
input image. The formula for calculating the VCS
coordinates of a corner point which is located on a
baseline is derived in the following.

As shown in Figure 4, after backprojecting a
point P in the image into the VCS, we can get a line
L which passes the lens center and P. The
intersection point of the line L and the horizontal
plane going through the baseline is the corresponding
space point of P which is what we desire. Denote the
point as P'.

Configuration of the system for
finding the back-projection point for
an image pixel.

Figure 4:

The equation of the horizontal plane can be set
to be z = h by measuring height / of the baseline of
the wall before navigation. Assume that point P in

the image has the coordinates (“p» -f, "p) in the CCS

where (up,vp) indicates its position in the image and

fis the focal length. Using Eq. 2.2, we get the VCS

coordinates ( %ol Zp) of point P in the image as

xp = up(wsﬂaos Y+ sin85in¢st'm,v) + f(sin@cosqp) +
v,,(sinest'rwcostp - wsGsimp) + Xy

Yp = u.P(siansw— cosGsin¢simp) - j{cos@wscp) -
vp(oost)sin¢wstp + sinGsinw) +Yy

Zp = up(oos¢sin1p) - fsing + v,,(cosd)coszp) +2z,

where (xd,yd,zd) are the coordinates of the
lens center in the VCS. On the other hand, the

equation of line L is
X-x; Y-y, _z-—zi'
X Yo Y HBTH (2.4)
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Since point P'is a corner point, by substituting
z = h into Eq. 2.4, the desired VCS coordinates

(r’p,y'p‘z'p) of point P’ can be solved to be:

h-z
:rp,-xd-o» Lp_zd(;\'p—zd)

h-z,,
yp-yd+z.p—z{y7’ yd)
z,=h

(2.5)

2.3 Matching Corners with Learned
Model

Applying the formulas derived in Section 2.2,
the VCS coordinates of the corners detected from the
input image can be calculated by Eq. 2.2, and the
GCS coordinates of these corners can also be
calculated according to the estimated ALV location
(described in Section 5.2) by Eq. 2.1. Since the
estimated ALV location is not very accurate due to
machine errors, the GCS coordinates of the detected
corners are not very accurate, either. Proposed in this
section is a method that matches these detected
corners with the learned model to get accurate GCS
coordinates of these corners.

More specifically, let the estimated GCS
coordinates of the input corners constitute an input
pattern, which we denote by a corner set K =

{kx’kZ’”"kp}’ where each corner k; =

1
(ksi,kli,kT,-) consists of its location (ks;), the
angle of its left line segment (kli), and the angle of

its right line segment (kr;). When a neighboring
line segment of a corner does not exist, a pseudo

angle is created for it and is set to 10 (>2 7r). Within
a reasonable angle difference tolerance range to the

neighboring line segments of a corner, for each ki a

corresponding learned model pattern M can be
extracted from the entire learned model Furthermore,
the distance tolerance range can be determined
according to the inaccuracy of the mechanical devices.

Now, consider any input corner ki in K. There exists
a corresponding set of corners in the learned model
denoted by M = {ml,mz,-“,mq}, where each corner
m; = (msj,ml}-,mrj), consisting of three elements
(similar to (ks,-,klz-,kri)), is possible to match k;

to form a pair of (ki,,ﬂj). Each corner m; in M is

within the area of a circle whose center is k; and the

radius is the distance tolerance.

Let M and K be two corner-type patterns to be
matched in a two-dimensional space. The Cartesian
product K x M which gives all possible match pairs
is the set of all pairs of the form (k,’:m,‘) where
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k;EK and m;EM. After M and K are
supenimposed, for each pair (k,»,m]-) in KxM, if the
angle difference dl,-j between kli and ml]- 1s larger

than a preselected value V that defines an angle
difference limit within the tolerance range or if the

angle difference dT,'j between kT,- and mr i is larger
than the value V, then we discard the pair (k,-,m)-) in
K xM. Afterwards, for each pair (k,v,m,-) in KxM, let
dC,»j denote the Euclidean distance between k,» mm K
and m

J

defined to be
c, - 1{)(dc,.2j+1) if de, <U,

in M. Then the correlation measure Cij 18

, (2.6)
otherwise,

where U is an experimental constant value that
defines a distance limit within which the closest

feature comer mj in M of ki 1s searched for.

P

----______-_m
k,
(a

— : learnedmodd pattern

————— B : Input pattern
®)

Possible match pairs :

{ (kymy) , (kgmy) ,(kym3) ,(kpmy) /(kymz) Ak, ms) }
©

The result of the best match pair :

(Fepm3)
@

The steps of the corner matching

procedure(Algorithm(1).

(a) Two corners are detected.

(b) The sensed pattern {k;,k,} and the
model pattern {m;,m3,m3}.

(c) Possible match pairs.

(d) The matching result.

Figure 5:



An example of the matching result is shown in
Figure 5. Two corners are detected in the image, and
are shown in Figure 5(a). Note that only corners are
drawn with small circles. Within an tolerance error
range, the input pattern and the learned model pattern
are superimposed as shown in Figure 5(b). The
possible match pairs are shown in Figure 5(c). Note
that each corner in the input pattern is assigned to a
model pattern. The result of matching is shown in
Figure 5(d). Each corner in the input pattern is now
assigned to a single corner in the model pattern.

2.4 Matching Baseline Segments

with the Learned Model

As mentioned in Section 2.3, we can get the
VCS coordinates and the GCS coordinates of the
baseline segments detected from the input image by
Eq. 2.2, and Eq. 2.1. Similarly, the GCS coordinates
of the detected baseline segments are not very
accurate owing to machine errors. Therefore, what
proposed in this section is a method that matches
these detected baseline segments with the learned
model to get the accurate GCS coordinates of these
baseline segments.

More specifically, let the estimated GCS
coordinates of the input baseline segments constitute
an input pattern, which we denote by a line set L =

{l,,lz,n,-,lp}, where each [, = (lsi,la,') denotes the
location (ls,-) and the angle (la,-) of a line. Now,
consider a line segment l" in L. The line segments in
the learned model pattern N is denoted by a line set N
= {m’"z’”"”q}’ where each "j = (ns}-,naj),
consisting of two elements (similar to (is;,la,)), is
possible to match li to form a pair of (l,-,nj).

As mentioned in Section 2.3, let N and L be two
line-type patterns to be matched in a two-dimensional
space. After N and L are superimposed, for each pair

(1.7;) in LN, if the angle difference da; between

la,. and na; is larger than the experimental value V

that defines an angle difference limit within the
tolerance range , then we discard the pair (li’"j) n
L x N. Afterwards, for each pair (li,n].) in L x N, we
define the distance d;; of a middle point k; in [; to
be the distance from k,- to the line segment n; in N.

And define the correlation measure Lij to be

L; = {I/O(dizf”) if dg <D,

e
otherwise,
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where U is an experimental constant value that
defines a distance limit within which the closest line

segment 11, in N of k; in [, is searched for.

An example of the matching result is shown in
Figure 6. Two baseline segments are detected in the
input image, and are shown in Figure 6(a). Note that
only baseline segments are drawn with small circles.
Within tolerance error range, the input pattern and the
learned model pattern are superimposed as shown in
Figure 6(b). The possible match pairs are shown in
Figure 6(c). Note that each baseline segment in the
input pattern is assigned to a model pattern. The
result of matching is shown in Figure 6(d). Each
baseline segment in the input pattern is now assigned
to a single baseline segment in the model pattern.

m -
I
1
[} 11
I
|
1
@
B "
]
K
s —¢ : Learned model
= pattern
2
———-8 : Inputpattern
n

®)

Possible match pairs :

{ (l1rn1) ’ (l1ln2) /(l1ln3) 7 (12/"1) 7 (lynﬁ /(IZ/nS) }
©

The result of the best match pair :

(lyny)
@

Figure 6: The steps of the bascline segment
matching procedure (Algorithm 2). (a)
Two baseline segments are detected.
(b) The sensed pattern {/;,/5} and the
model pattern {n},n2,n3}. (c) Possible
match pairs. (d) The matching result.
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3. Strategies for Model Learning

3.1 Locating ALV by Matching
Result

The idea of our approach is illustrated in Figure
7, which says that if we can select some features
such that the VCS information and GCS information

can be
Vehicle «— — — — —» Global

Figure 7: Principle of ALV location.

known, then the relation between the VCS (vehicle)
and GCS (world) can be determined. For this, we
select the position of a corner as the feature to find
the position of the ALV, and select the position of a
baseline segment as the feature for finding the ALV
slant angle. Recall that the matching steps begin
with finding the VCS coordinates of features and end
with matching the features with the learned model to
find the GCS coordinates of these features. So the
position of the feature with respect to the VCS and
with respect to the GCS can be known, and this will
be discussed later.

3.1.1 Locating ALV by Matched
Corners

3.1.1.1 Determination of ALV slant angle

As mentioned in Section 2.1, the ALV location
is described by the ALV slant angle @ and the ALV

position (x, y). To derive the ALV location in the
GCS, we rewrite Eq. 2.1 as follows:

xl

xcosw — ysinw + x'
P

. 731
xsinw + yeosw + x',.

!

y

In our approach, the ALV slant angle @ will be
solved first, and the ALV position (x'p,y'p) is

solved accordingly.

After a corner detected from the input image is
matched with the learned model, the baseline segment
which intersects this corner is used to determine the
slant angle of the ALV. Assume that the VCS
coordinates of the two points are computed to be
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(xl,yl) and (xz’.‘/z) (ignore the z coordinates),

then the slope m; of the baseline segment in the

VCS can be computed by

y -

X 1~ xz

Because the GCS coordinates of each corner and

both of its neighboring line segments have been
stored in the learned model, if the corner is matched
with the ith corner in the learned model, then we can
find the matched line segment which is the left or
right line segment of the corner in the learned model
and the GCS coordinates of the two end points of
this line segment can be determined. Assume that the
GCS coordinates of the two end points are

(x'1 ,y'l) and (x'2 ,y'z) (ignore the 7' coordinates),
then the slope 71, of the baseline segment in the
GCS can be solved to be

’ ’
Y.~ Y%,

!

.
X - X
| 2

m2=

After the slopes of the baseline segment in the
VCS and in the GCS are determined, the slant angle
of the ALV can be derived. This is illustrated in

Figure 8. The angle 0; between the baseline
segment and the positive x-axis of the VCS and the
angle 0, between the bascline segment and the
positive x"-axis of the GCS can be derived to be

4
0; = tan"my,

0, = tan'lmz,
respectively. Then the slant angle @ of the
ALV can be solved to be

3.1.1.2 Determination of ALV global
position

The position of a detected corner in the VCS and

in the GCS are used to determined the ALV position.

Note that the VCS coordinates (x,y) of the corner

can be determined as discussed in Sec. 2.2. After
matching with the model as discussed in Sec. 2.3,

the GCS coordinates (x',y') of the corner are also

determined, and the ALV slant angle @ has been
solved as mentioned above. By substituting o,

(x,y), and (x',y') into Eq. 3.1, the position of
the ALV can be determined to be



x', = x' - xcosw + ysinw,

y’p = y' - xsinw - ycosw.

Figure 8: The slopes of baseline segment in the

GCS and in the VCS are used to solve
the slant angle of ALV.

3.1.2 Locating ALV by Matched
Baseline Segments

3.1.2.1 Determination of ALV slant angle

Similarly, as mentioned in Section 3.2.1.1, after
the slopes of the baseline segment in the VCS and in
the GCS are determined, the slant angle of the ALV

can be derived. The angle 6; between the baseline
segment and the positive x-axis of the VCS and the
angle 0, between the baseline segment and the
positive x-axis of the GCS can be derived to be

6, = tan'm,
02 - tan.lmz,

respectively. Then the slant angle @ of the
ALV can be solved to be

3.1.2.2 Determination of ALV global
position

The position of a detected baseline segment in

the VCS and in the GCS are used to determined the

ALV position. As shown in Figure 9, assume that
we have found the slant angle @ of the ALV at A,

and after a cycle time the slant angle @' of the ALV
at B is also known. Then, the difference of the two
slant angles A can be determined to be

Aw = 0' - ®
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and the actual turn angle of the front wheels & can
be computed to be
_1/ dAa)\

)

where d is the distance between the front wheels and
the rear wheels.
The distance S can be detected from the odometer

in this cycle. Once the values of & and S, and the
location (x,y) of the ALV at A are known, the

current actual location (x',y’) of the ALV at B can

be determined and the detail is described in Section
5.2.

0 = sin

By, @)

AEyo)

Figure 9: Illustration of determination of ALV
global position, where &' denotes the
desired turn angle of front wheel and
O denotes the actual turn angle of
front wheel

3.2 Adjustment of Global Model by
Learned Local Model

Applying the approach proposed in Section 3.2,
the actual ALV location can be determined. The local
environment features can also be derived by the
strategies described in Section 2.2, so we can adjust
the learned global model by this current learned
model
Once the actual ALV location is determined, we can
recompute the more precise global coordinates of the
local features detected from the input image. For
example, as shown in Figure 10, some features, such
as f1, fh, f3, f4, f5, and fg, can be obtained.
Furthermore, there are some features that do not
match any feature in the learned global model, and we
want to add these features to the global model. The
adjustment of the global model means to insert
knowledge about neighboring environment features
into the ALV. For example, as shown in Figure 11,
some features, such as 5, f3, f3, f5, and fg, that do
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not match any feature in the global model are found
by using the strategies which described in Section
2.3, and we want to add these features to the global
model in order to achieve the objective of ALV

learning.

Figure 10: the accurate coordinates of these
environment features detected from the

input image.
A
|
g f
*— lﬂi
B B #
o p 2
I n
: Global Model

= == :Leamed Loal Model

Figure 11: Adjustment of global model by learned
local model

4. Strategies for Path Generation

After learning and before ALV navigation, we
have to generate a path so that the ALV can navigate
along it. In this Section, two strategies are proposed
to determine straight paths and circular paths that are
followed by the ALV.

4.1 Determination of Straight Paths

Based on the baseline segments determined by
the method described in Section 4.1 and the rough
path that the ALV passes through in the learning
phase, we may find some longer straight paths for
future ALV navigation. More specifically, the rough
path constitutes an input pattern, which we denote by

anode set N = { }, where each node 7;

denotes a location in this rough path. For example,
the relation between the slant angle of the ALV and
the angle of a baseline segment is shown in Figure
12, where the x-axis denotes the cycles in the

CRORIER 8
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learning phase and the y-axis denotes the angles
which determine the directions of the ALV or the
baseline segments in the GCS. The proposed
method is described as follows.

Ay
a2

-2

5 10 15 20 25 x
Figure 12: The relation between the slant angle of
the ALV and the angle of a baseline
segment in the model

First, an average value A is computed by taking
the sum of the angles of successive 4 nodes in N and
divide it by 4. Next, we find out all the baseline
segments such that the angle difference between the
angle of each baseline and the average value A is
smaller than a tolerance range V.

After the candidate baseline segments are found
out, we select the one to which the distance from the
average location of the 4 successive nodes in N is
smaller than a tolerance range U, and decide
accordingly a path segment such that the distance
from this path segment to the selected baseline
segment is the average distance from these nodes to
the baseline segment, as shown in Figure 12.

At last, the processed nodes are represented by
the path segments that we store in a set Pg, and we
use these path segments to be the desired straight
paths. An example of the result of determination of
straight paths is shown in Figure 13.

4.2 Determination of circular paths

After the straight paths in Pg are determined, it
is necessary to find the circular paths in a turning
area for ALV guidance. Without loss of generality,
we consider that a circular path exist between two
successive straight paths whose directions are
different. We will now derive a circular path from
two successive straight paths.

As shown in Figure 14, let any two successive
straight paths which are determined in Section 4.2 be
denoted by /7 and r/,. The intersection point Q of f1
and r/ can be solved. Then a line ¢/ as shown in the
figure from /7 and r/ can also be found. Furthermore,
let P be a point which is moved in ¢/ from the point
Q to a certain location in order to meet the condition
that the distance from P to f7 and the distance from P
to r/ are both a fixed constant. Once this condition is
satisfied, the point P is the center of a circle whose
radius R is known in advance. Let the point on f]



onto which is projected be denoted by fp and the
point on r/ onto which is projected be denoted by rp.
After the two points, fp and rp, are found, we can
acquire an arc whose radius is the distance from the
point fp to the point rp. This arc then is the desired
circular path. An example of the result of
determination of circular paths is shown in Figure
15.

A desired path
................. -

................ ..

............... e °:n
................. -
................... o
................... 40
................... -0
................. -

................. -
................... e

Figure 13: The desired path is decided by some

nodes in N.
Q p rl

a .
P

fp

d
f
Figure 14: The overview of the determination of a

circular path.
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Figure 15: An example of the result of path
generation.

5. Strategies for ALV Guidance

5.1 Wheel adjustment for straight
path navigation

In general, a criterion for adjusting the driving
wheel direction O to a straight path is required so as
to keep the vehicle close to a desired path in each
navigation session. This assures safe and smooth
ALV navigation. The method is described as follows.
As shown in Figure 18, given a reasonable moving
distance S and the turn angle of the ALV front
wheels, the location of the ALV can be determined as
discussed above. Given a straight path Py, we define

D}F, (6) to be the distance from the ALV to the
giv::n path Pg after the ALV traverses a distance S
with the turn angle O, as shown in Eq. 5.4. So the
value of D}f'(é) is determined by the turn angle §.
A measure LP' of the ALV to the given path is
defined to be

Lp = Dy (8) + D5 (8). 1)

To find the turn angle of the front wheel to drive
the ALV as close to the path as possible, a range of
possible turn angles are searched. An angle is
hypothesized each time, and the value of Lp, is

calculated accordingly. The angle that produces the
minimal value of [, is then used as the turn angle

for safe navigation.

5.2 Wheel adjustment for circular
path navigation

Similarly, a criterion for adjusting the driving
wheel direction & to a circular path is also required
so as to keep the vehicle close to a desired path in
each navigation session. We propose a method for
this as follows. As shown in Figure 17, given a
reasonable moving distance S and the turn angle of
the ALV front wheels, the location of the ALV can
be determined as discussed above. Given a circular
path P, we define D{;c(a) to be the distance from

the ALV to the given path P after the ALV traverses
a distance S with the turn angle 6. A measure ch
of the ALV to the given path is also defined to be

L, = D; (8) + Dp (8). 52

c
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Similarly, we find the turn angle & that produces the
minimal value L, . Then we drive the ALV as close

and smooth to the path as possible according to & .

Figure 16: The adjustment of the front wheels in a
straight path.

'3 :
Figure 17: The adjustment of the front wheels in a
circular path.

6. Image Processing and
Experimental Results

6.1 Extraction of Baseline segments
and Corners

The purpose of image processing in this study is
mainly to extract comer points and baseline segments
going through the points, and to compute the
equations of the baseline segments.

When an input image is processed, the first
thing is to extract the candidate pixels on the black
basebands of the wall. A threshold value is
preselected to find candidate pixels in column
scanning. In practice, however, strong lighting near
the windows will cause the failure of scanning if
only a fixed threshold value is used for thresholding
the entire input image. So, we divide the image into
eight vertical strips and decide for each strip a
threshold value T'; computed to be the average gray

1

value G,- of the strip substracted by an experimental

value E, which is described as follows:

T'=Gi—E.

1
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At last, an example of baseline segment
extraction and corner extraction results is shown in
Figure 18.

Figure 18: An example of extraction result of
/ .
corners and baseline segments.

6.2 Experimental Results

ALV learning experiments were performed in a
building corridor in National Chiao Tung University.
And the environment model is used for our
experiments. Figure 19 shows the positions of the
features in the environment. Each corner is marked
by a small black spot. An experimental learning
session starts from a corner of the corridor and
continues by driving the ALV through a lefi-turn
corner of the corridor. Figure 20, shows the trace ofa
learning session, and each block dot in the figure
represents a vehicle location.

In the later stage of a learning session, a path
can be produced by the path generation method. One
learned model is shown in Figure 20 and the result of
path generation is shown in Figure 15. The trace of a
navigation session is shown in Figure 21..

Figure 19: The positions of environment features
in the experimental environment.



Figure 20: The original learned model

Figure 21: The trace of a navigation session.

7. Conclusions

An integrated approach have been proposed for
ALV learning and ALV navigation in indoor
environments by computer vision techniques. This
approach has been implemented on a prototype ALV
and satisfactory results have been obtained. A lot of
successful navigation sessions in real time confirm
the effectiveness of this approach. The main
contributions of this study are as follows. First, a
computer vision approach is proposed to locate an
ALV by the use of visible baseline segments and
corners. We use the location of an ALV and several
coordinate transformations to acquire the environment
features that the ALV pass through. Second, a
technique of path generation has been used to
generate a feasible path for guiding the ALV in
indoor environments automatically. Third, in order to
meet the varying speeds of the ALV due to the
varying weights of the on-board loading persons, we
use an odometer to measure the actual distance in a
process cycle. Forth, smooth and safe navigation has
been achieved by the use of the strategies for ALV
turn wheel angle adjustment. Finally, the proposed
approach is more convenient and flexible to users
because no human involvement is needed in the
measurement of the environment in which the ALV
will navigate. Lots of successful navigation

experiments confirm the effectiveness of the proposed
approach.
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