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Abstract―Methods for 3D environment modeling and 

monitoring for video surveillance using an octago-

nal-shaped 9-KINECT imaging device are proposed. 

Firstly, an environment modeling method is proposed 

which converts KINECT images into 3D images. Then, a 

human tracking method is proposed, in which the handoff 

problem between KINECT devices is also solved. Finally, 

a human modeling method is proposed, by which se-

quences of 3D images constructed from KINECT images 

may be integrated to form human models. Human fea-

tures like body height, width, and thickness may be ex-

tracted from the model for use in security monitoring and 

off-line video search. Good experimental results are also 

shown to prove the feasibility of the proposed methods for 

real applications. 

Index Terms―KINECT, data conversion, calibration, 

human detection, human tracking, human modeling. 

I. INTRODUCTION 

In recent years, uses of 3D image-data sensing devic-

es like KINECTs become popular. Such devices can 

capture not only RGB color images and audio data but 

also depth information in the meantime. With the depth 

information, we can translate the captured data into 3D 

images which are beneficial to researches on topics like 

3D object detection, modeling, etc. So, in this study it is 

desired to design a 3D video surveillance system using 

multiple KINECT devices for indoor applications: (1) 

monitoring an indoor environment and displaying the 

captured images in 3D manners for users to inspect the 

recorded environment data from different viewpoints; (2) 

using the depth information to detect and track human 

activities and providing changes of viewpoints from 

different KINECT devices; (3) creating human models 
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when users browse the data acquired by KINECTs, and 

providing the features of the humans such as height, 

body width, body thickness, etc., for various purposes. 

Many modeling techniques have been proposed by 

using data acquired from KINECTs. Shahram [1] pro-

posed a technique, called KinectFusion, which uses the 

depth information acquired by moving the KINECT 

device to build up a high-quality and geometrical-

ly-precise 3D model quickly. Henry [2] proposed a 3D 

mapping system which uses visual features and a 

shape-joint optimization algorithm with RGB color im-

ages and depth information acquired with KINECTs. In 

addition, many algorithms have been proposed for mo-

tion detection and tracking. Chaiyawatana [3] con-

structed an automatic system for vehicle detection by 

frame subtraction. Xia [4] used depth information pro-

vided by KINECTs to conduct 2D chamfer matching 

and adopted some human features to figure out human 

shapes for human activity tracking. Meltem [5] pro-

posed a standard video tracking and person classifica-

tion system. Pantrigo [6] studied, by use of a video pro-

cessing system, human activities under different situa-

tions such as sports and video surveillance. 

To reach the goal of this study mentioned above, at 

first we construct a new device for use as a 3D video 

surveillance system, which is composed of nine KI-

NECTs, called an octagonal 9-KINECT imaging device. 

Then, KINECT data integration is conducted, including 

converting the depth information acquired by the device 

into 3D data form. Next, with the 3D data, calibration of 

the spatial relations between the KINECT devices is 

performed. And the calibration result is used to con-

struct an indoor environment model. Subsequently, de-

tection and tracking of human activities dynamically are 

conducted. Finally, the recorded data from KINECT 

devices are used to create human models and extract 

features from them. 

In the remainder of this paper, the design of the oc-

tagonal 9-KINECT imaging device will be described in 



                                                                             

Section 2, the conversion of KINECT data into 3D im-

ages, and correction of the conversion result presented 

in Section 3. The calibration of KINECT devices and 

indoor environment modeling will be introduced in Sec-

tion 4, and human detection and tracking methods in-

troduced in Section 5, followed by human modeling in 

Section 6. Some conclusions are given in Section 7. 

II. DESIGN OF AN OCTAGONAL 9-KINECT 

IMAGING DEVICE 

It is desired to use multiple KINECT devices 3D 

video surveillance, so an octagonal 9-KINECT imaging 

device is designed in this study, which is shown in Fig. 

1(a). Specifically, eight KINECTs are affixed around a 

octagonal-shaped steel cage to cover a full view of the 

surround with a certain degree of overlapping, and one 

additional downward-looking KINECT is added inside 

the steel cage to take care of the missing part of the en-

tire field of view (FOV), as illustrated in Fig. 1(b). 

 

  
(a) (b) 

Fig. 1 The octagonal 9-KINECT imaging device de-

signed for use in this study. (a) The exterior appear-

ance. (b) The placement of the 9 KINECT devices. 

 

Each KINECT device can change its vertical tilt an-

gles from 27o to 27o. So the vertical tilt angle of the 

outer 8 KINECT devices on the interchangeable bases 

ranges from 3o to 57o. The maximum sensing dis-

tance to acquire a depth image is 4 meters which is de-

cided by the Kinect-for-Windows SDK provided by 

Microsoft. An illustrative diagram of the coverage of 

views is shown in Fig. 2. 

 

 
Fig. 2 The coverage of views by the depth image seen 

from the side view. 

 

Secondly, about the imaging speed, we acquire image 

data by the 9 KINECT devices sequentially. When we 

acquire the data of a video frame consisting of a color 

image and a depth image by a single KINECT device, 

the frame rate is 30 fps. So the overall frame rate to ac-

quire all the color and depth images of the nine KI-

NECT devices is 3.37 fps. But we assume that the mon-

itored object or human does not move too fast, so it will 

not be a problem to our processing work. 

III. CONSTRUCTION OF 3D IMAGES FROM KI-

NECT IMAGES 

The data acquired by a KINECT device consists of a 

color image and a depth image, which are called KI-

NECT images. The KINECT images are not 3D in na-

ture, so we construct a corresponding 3D image from 

each pair of such KINECT images. The 3D image con-

tains three kinds of data. One is color data which come 

from the color image. Another is 3D data which is ob-

tained by converting the depth image into a 3D version. 

The third is a mapping array, which is obtained by using 

the Kinect-for-Windows SDK provided by Microsoft 

and is used as a tool for combining the former two parts. 

A. Construction of 3D Data from Depth Image 

We use the pinhole camera model [7] to convert depth 

image into 3D data. The pinhole camera model de-

scribes the mathematical relationship between the coor-

dinates of a 3D point and its projection on the image 

plane of the pinhole camera, as shown in Fig. 3. From 

Fig. 3(b), we can derive the following equation accord-

ing to the similar-triangle principle: 
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When we look in the negative direction of the X1-axis, 

the following equation can be derived similarly: 
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Summarizing these two equations, we get: 
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which describes the relation between the space coordi-

nates (x1, x2, x3) of a 3D point P and the image coordi-

nates (y1, y2) of the corresponding 2D projection point 

Q. 

 

  

(a) (b) 

Fig. 3 The geometry of a pinhole camera model. (a) Seen 

from a 3D point. (b) Seen from the X2-axis. 



                                                                             

From Eq. (3), we get: 
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and from Fig. 3(a) and by the similar-triangle principle 

again, we have the equation: 
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where    
2 2 2

1 2y y f     is the length of the line segment 

OQ , and 2 2 2

1 2 3x x x   is the length of the line segment 

OP which is the depth captured by KINECT device, and 

is denoted as d in the sequel. Let R present the center of 

the depth image. It is located at coordinates (320, 240) 

in a depth image of resolution 640480 acquired by the 

KINECT device. And let Q be located at image coordi-

nates (xp, yp) and let y1 and y2 represent the distances to 

the center Q in the vertical and horizontal directions, 

respectively. The letter f denotes the focal length of the 

KINECT device with its value being 600. The equations 

(4), (5), (6), and (7) can be rewritten, according to the 

mentioned parameter values, to be: 
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With the above equations, we can convert the depth im-

age into 3D data and convert the KINECT images to a 

3D image with color data and the mapping array. An 

example of constructed 3D images is shown in Fig. 4. 

B. Geometric Correction of 3D Images 

After constructing 3D images, a bending phenome-

non can be seen to exist in the constructed 3D image. To 

remedy this, a paraboloid equation is adopted to ap-

proximate the curved surface formed in the 3D image. 

Then, by using equation, the curved surface can be cor-

rected. 

In more detail, let the paraboloid equation be: 

2 2

paraboloidz A x B y C     . (12) 

The sum of square errors (SSE) using Eq. (12) as an 

approximation of the input data is: 

 
2640 480

2 2

0
i i i

i

SSE z A x B y C




        
 (13) 

where xi, yi and zi are the coordinates of a set of the in-

put 3D data of the curved surface. To find the coeffi-

cients A, B, and C which minimize the SSE value, we 

compute the partial derivatives of Eq. (13) with respect 

to variables A, B, and C, respectively, and solve those 

equations. By ignoring the value C, we get the correc-

tion equation as follows: 
2 2

correlationz A x B y    . (14) 

We use different curved surfaces with different dis-

tances to the KINECT device to get several correction 

equations. Then, we use these correction equations to 

get some correction results, which are used to conduct 

interpolation to get the final geometric correction result. 

An example of such results is shown in Fig. 5. 

 

  
(a) (b) 

  
(c) (d) 

Fig. 4 An example of constructed 3D images. (a) The color 

image. (b) The depth image. (c) Constructed 3D image seen 

from the top. (d) The 3D image seen from a lateral side. 

 

  
(a) (b) 

Fig. 5 A geometric correction result. (a) Original data before 

correction. (b) Data seen after correction. 
 

IV. CONSTRUCTION OF 3D ENVIRONMENT 

MODEL FROM MULTIPLE KINECT IMAGES 

A. Calibration of KINECT Devices 

Before constructing the indoor environment model, 

we should calibrate KINECT devices at first. We use the 

iterative closest point (ICP) algorithm [8] and 3D imag-

es acquired from the nine KINECT devices to calibrate 



                                                                             

the spatial relations between the nine KINECT devices. 

Before starting calibration, we prepare some calibration 

targets to assist the calibration process and define a cal-

ibration order for the nine KINECT devices. An illustra-

tion of the calibration order is shown in Fig. 6 by which 

we calibrate two neighboring KINECT devices using 

the ICP algorithm every time. This process is repeated 

for eight times, resulting in eight transformations. 

 

 
Fig. 6 The calibration order for the nine KINECT devices. 

 

B. Environment Model Construction 

After calibration, we start to construct the indoor en-

vironment model. We let the central KINECT device as 

a pivot and the other KINECT devices being merged to 

the result of the pivot. By an order identical to the 

above-mentioned calibration order, we merge two 3D 

images from two neighboring KINECT devices with 

corresponding transformation from the calibration re-

sults every time. After this process is repeated for eight 

times, we get the desired model construction result. An 

example of such results is shown in Fig. 7, which is a 

top view of a rest area of a lab environment. 

 

 
Fig. 7 A result of indoor environment model construction. 

 

V. HUMAN TRACKING BY TILTING KINECTS 

A. Human Detection 

Before human tracking can be conducted, we should 

detect human activities at first. Because the depth image 

can be considered as a gray-level image, we apply the 

background subtraction technique to detect human re-

gions in the depth image under two assumptions: (1) the 

indoor environment does not change all the time; and (2) 

the motion objects in the environment are humans. 

To conduct background subtraction, we should 

“learn” the background at first. Because it is desired to 

track human activities dynamically and because the ver-

tical tilt angle of the KINECT device may change from 

25o to 55o from time to time, the background ap-

pearing in the captured image will change sometimes as 

well. Accordingly, we conduct background learning by 

increment steps of 2 degrees of the vertical tilt angle 

from 25o to 55o for the outer eight KINECT devices. 

After background learning, we start to detect hu-

man regions in the images. For every KINECT device, 

when a new depth image comes, we subtract it from the 

background depth image and get a difference depth im-

age. Next, we apply mathematical morphology opera-

tions to the difference depth image to get a result which 

still has many fragments. Then, we apply region grow-

ing with a suitable threshold to it to find human regions 

in it. If one of the nine KINECT devices detects human 

activities by this way, then the device will be marked as 

a tracking KINECT device; else, the nine KINECT de-

vices are kept to continue the human detection task. An 

example of the intermediate results of human detection 

is shown in Fig. 10. 

 

   
(a) (b) (c) 

  

 

(d) (e)  
Fig. 8 An example of human detection results. (a) Back-

ground depth image. (b) A new incoming depth image. (c) 

Result of background subtraction. (d) Result of mathematical 

morphology operations. (e) Result of region growing. 

 

B. Human Tracking 

After human detection, we get a tracking KINECT 

device. When we use the tracking KINECT device to 

track human activities, we get a series of multiple depth 

images. Then, we remove the background from these 

images and convert the results into 3D data. Then, we 

analyze these 3D data in accordance with the frame rate 

of the tracking KINECT device to get the moving ve-

locity and direction of the human. With such infor-

mation, we can predict the next position of the human, 

and the tilt angle of the tracking KINECT device can be 

adjusted accordingly to track the human or to conduct 

handoff to any of the other eight KINECT devices if the 

human goes out of the FOV of the tracking KINECT 

device. An example of human tracking is shown in Fig. 

9. 

More details of the tracking process are as follows. 



                                                                             

1. If the predicted position is still in the FOV of the 

tracking KINECT device (abbreviated as TKD sub-

sequently), then let the TKD keeps the tracking task. 

2. If the predicted position is in the FOV of the TKD 

with a different tilt angle, then change the tilt angle 

of the TKD to keep tracking of the human. 

3. If the predicted position is in the overlapping FOV 

area of the TKD and a neighboring KINECT device 

overlap, then let the neighboring KINECT device be 

the next tracking device by conducting a handoff 

procedure. 

4. If the predicted position is out of the FOVs of all the 

nine KINECT devices, then go back to the human 

detection process. 
 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 9 The 3D image sequences of tracking a human. 
 

VI. HUMAN MODELING AND DISPLAY OF 

HUMAN ACTIVITIES 

When we use the tracking KINECT device, we get 

many KINECT image sequences because of the handoff 

process. We store those sequences and the related map-

ping array sequences for human modeling as described 

next. 

A. Human Modeling from a Single KINECT Device 

For each KINECT image sequence, we remove the 

background from each depth image and leave only the 

human. Then, we convert the depth image sequence 

which includes the human into a 3D data sequence. Be-

cause the 3D data sequence is recorded with the time 

sequence, each human in the 3D data sequence is locat-

ed at a different position with a small distance from 

each other depth image. We want to find some trans-

formations which can be used to merge every two con-

secutive human regions in the 3D data sequence. And 

then, we can extend these transformations to merge all 

the human regions in the 3D data sequence to construct 

a complete human model. We use distance-weighted 

correlation (DWC) measure [9] and the k-d tree struc-

ture to assist the task of finding these transformations.  

After finding these transformations, we let the first 

human region in the 3D data sequence as a pivot and 

merge the others into the first human region. A merge 

example is shown in Fig. 10. 

 

  
(a) (b) 

Fig. 10 A human model construction result from a 3D data 

sequence. (a) A 3D data sequence containing a human 

where the arrow indicates the walking direction. (b) Hu-

man model constructed by merging human regions in the 

3D data sequence. 

 

B. Merging Human Models from Multiple KINECTs 

After we merge each 3D data sequence individually, 

we get several human models. Because each human 

model comes from a different KINECT device, we 

should calibrate the spatial relation between these hu-

man models. Luckily, we have calibrated the spatial re-

lation between the nine KINECT devices as described 

previously, so we can use the calibration results directly 

and convert those human models into an identical view. 

With the human models displayed in the same view, 

there still exists some distances between the models. So 

we use the DWC and the K-d tree structure again to as-

sist the task of finding transformations between these 

human models. Afterwards, we start to merge all human 

models. For this, we use the first human model as a piv-

ot and merge the other models into it. A result of this 

process is shown in Fig. 11. 

 

  
(a) (b) 

  
(c) (d) 

Fig. 11 An example of merging human models (a) and (b) are 

human model merged from different 3D data sequence. (c) 

Applying the calibration result to the two human models. (d) 

Merging result of the two human models. 



                                                                             

C. Merge of Human Model and 3D Background 

Because we assume that the indoor environment is 

always static, we can merge the background model and 

the human model directly. An example of the merging 

result is shown in Fig. 12. 
 

   
(a) (b) (c) 

Fig. 12 An example of human model and background merg-

ing result. (a) The human model. (b) The background model. 

(c) The merge result. 

 

D. Extraction of Human Features 

With the human model constructed, we can analyze 

the human model to get some features of the human 

such as height, body width, body thickness, etc. for var-

ious applications. Though these features may not be ac-

curate because of the moving actions of the human ac-

tivities, they are still useful for security monitoring and 

person identification purposes. An example for extract-

ing human features from the human model is shown in 

Fig. 13. 
 

 
Fig. 15 An example of human feature extraction from the 

human model. The red frames are used to compute the 

approximate human features like height, body width and 

body thickness. 
 

VII. CONCLUSIONS 

In this study, a system for 3D environment modeling 

and monitoring via KINECT images using an octagonal 

9-KINECT imaging device for video surveillance has 

been proposed. To implement such a system, several 

methods and strategies have been proposed, including: 

(1) a method based on the pinhole camera model for 

converting KINECT images into 3D images; (2) a 

method for geometric correction for removing the 

bending phenomenon existing in the 3D image con-

structed from KINECT images; (3) a method for cali-

bration of spatial relations between KINECT devices 

based on the concept of the ICP, whose results are used 

to build up indoor environment models; (4) a method 

for constructing indoor environment models, which uses 

the calibration results and the 3D images converted 

from the KINECT images to construct indoor environ-

ment; (5) methods for background learning, human de-

tection, and human tracking with the handoff problem 

solved; (6) a method for human modeling using the 

DWC measure and the k-d tree structure. The experi-

mental results shown have revealed the feasibility of the 

proposed methods. 
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