
AUTOMATIC GENERATION OF LINE-BASED CUBISM-LIKE ART
IMAGES AND THEIR APPLICATION TO DATA HIDING

1Shan-Chun Liu (劉珊君) and

2
Wen-Hsiang Tsai (蔡文祥)

1
 Institute of Computer Science and Engineering

National Chiao Tung University, Hsinchu, Taiwan
E-mail: shan.cs98g@nctu.edu.tw

2
 Dept. of Computer Science

National Chiao Tung University, Hsinchu, Taiwan
E-mail: whtsai@cs.nctu.edu.tw

ABSTRACT

A new type of computer art, called line-based Cubism-
like image, is proposed, which keeps a characteristic of
the Cubism art ⎯ multiple viewpoints ⎯ by the use of
line and region features. In the creation process with an
input source image, prominent line segments in the
image are detected and rearranged to form an abstract
region-type art image of the Cubism flavor. In a process
of re-coloring the regions in the generated art image, a
data hiding technique for covert communication is
designed skillfully to embed secret message bits in the
pixels’ colors by keeping the average region color
unchanged. Experimental results show the feasibility of
the proposed method.

Keywords: art image; line-based Cubism-like image;
data hiding; cover image; stego-image; secret message.

1. INTRODUCTION
In recent years, the topic of creating art images via the
use of computers arouses interests of many people.
Many methods have been proposed to create art images
automatically [1]-[9].

Hertzmann [1] surveys many ideas of creating art
images by stroke-based rendering (SBR), which is
defined to be an automatic approach to creating non-
photorealistic imagery by placing discrete elements, like
paint strokes and stipples, in the resulting image. He
also surveyed several SBR algorithms and styles such as
painting, pen-and-ink drawing, tile mosaics, and so on.
The common goal of creating these image styles is to
make generated art images look like some other types of
images. For example, two images created by watercolor
painting and oil painting in Hertzmann [2] and
Hertzmann [3], respectively, are shown in Fig. 1. Some
other types of art images are shown in Fig. 2, where Fig.
2(a) is an image created by pen-and-ink illustration

proposed by Salisbury [4], Fig. 2(b) is a stipple image
created by a stipple placement method proposed by
Mould [5], and Fig. 2(c) shows a stain-glass image
created by an image filtering scheme presented in
Mould [6].

(a) (b)

(c) (d)

Fig. 1: The images created by Hertzmann [2] and
Hertzmann [3]. (a) and (b) Effect of watercolor painting
[2]. (c) and (d) Effect of oil painting [3].

(a) (b) (c)

Fig. 2: Some types of art images. (a) A pen-and-ink
drawing from Salisbury [4]. (b) A stipple image from
Mould [5]. (c) A stained glass image from Mould [6].

Another type of art image is mosaic image. Each

mosaic image is composed of small shapes, such as
squares, circles, triangles, and so on. Different from
using fixed orientations for tile arrangements in
traditional mosaic generation schemes, Hausner [7]
creates a new type of tile mosaic image by placing tiles

to follow the edges in the input image to make the
created art image smoother. Fig. 3 shows some
examples from Hausner [7]. Another important criterion
for art image creation is to limit the number of strokes
so that the resulting image looks like an abstract
painting, such as the images shown in Fig. 4 which
come from Haeberli [8]. Besides, Song, et al. [9]
produces an abstract synthetic art by fitting shapes like
triangles or rectangles to the regions in segmented
images, like the ones shown in Fig. 5.

Fig. 3: Tile mosaic images created by Hausner [7].

Fig. 4: Images created by Haeberli’s method [8].

Fig. 5: Images created by Song, et al. [9].

In this study, we try to use the line feature used in

Cubism paintings to create an abstract type of line-
dominated art image, called line-based Cubism-like
image. Two examples of such images created in this
study are shown in Fig. 6.

On the other hand, data hiding is a technique which
embeds data imperceptibly into cover images, so that
people will not perceive the existence of the hidden data.
Data hiding techniques often utilize the weaknesses of
the human visual system in differentiating small color or
grayscale differences. A well-known method is least
significant bit (LSB) modification which changes the
LSBs of the pixels of an image to embed information,
like Chan and Cheng [10]. Another is the contrast-
keeping data embedding scheme proposed by Wu and
Tsai [11]. Also, to achieve recoverability of the cover
image from the stego-image, which requires lossless
data embedding, the most common approach is to
compress a portion of the cover image and embed the
result with the intended payload into the cover image,

such as Fridrich, et al. [12] and Awrangjeb and
Kankanhalli [13]. Another approach is to manipulate a
group of pixels as a unit to embed a bit of information,
like Tian [14] and Vleeschouwer, et al. [15]. A third
approach is to use the technique of histogram shifting
which can embed large volumes of data, e.g., Ni, et al.
[16] and Lee and Tsai [17]. In this study, we use a new
scheme of keeping average region colors unchanged to
achieve the goal of lossless data hiding. Note that there
exist very few lossless data hiding techniques so far.

(a) (b)

(c) (d)

Fig. 6: Two examples of line-based Cubism-like images created
in this study.

Moreover, the combination of data hiding and art

image creation techniques is a new idea for information
hiding applicatios. Techniques based on this idea utilize
the characteristics of the creation process of the art
image to embed extra information in the generated
image. Attracted by the art exhibited by the image,
people will pay no attention to the hidden secret data in
the art image. Due to this way of camouflage, secret
data can be kept or transmitted covertly and securely. In
this study, we hide secret message in the proposed
Cubism-like image during the image creation process by
changing the colors of the pixels in image regions
slightly while keeping the average colors of the regions
unchanged. The color differences in the resulting image
are difficult to be found by attackers because of the
weaknesses of the human visual system in
discriminating small color changes.

In the remainder of this paper, we describe the
proposed technique for creating the line-based Cubism-
like art image in Section 2, the proposed data hiding
technique in Section 3, followed by conclusions in
Section 4. Experimental results are also shown in
Sections 2 and 3 to demonstrate the feasibility of the
proposed method.

2. PROPOSED LINE-BASED CUBISM-LIKE
IMAGE CREATION PROCESS

2.1. Idea of Line-based Cubism-like Image Creation
Cubism artists transform a natural scene into geometric
forms by breaking up, analyzing, and re-assembling
objects in the scene. In addition, with the scene objects
rearranged to intersect at random angles, each painting

of Cubism appears to be composed of intersecting lines
and fragmented shapes in an abstract style. The idea of
the proposed art image creation method is inspired by
these concepts of Cubism, as mentioned previously.

In the creation process of a line-based Cubism-like
image from a given source image, at first we find the
prominent line segments in the image by edge detection
and the Hough transform. Then, we connect the line
segments and extend them to reach the image
boundaries. Finally, we generate the desired art image
via the operations of line segment merging and region
re-coloring. This process accomplishes the goal of
transforming the input image into an abstract form since
the lines of the created Cubism-like image tend to
constitute the skeleton of the objects in the source image
as observed from our experimental results.

2.2. Creation of Line-based Cubism-like Image
The proposed art image creation process is composed of
two major procedures. Basically, in the process of line
detection, we find edges in the source image by Canny
edge detection [18] and the Hough transform [19]. Then,
we filter out short line segments, as well as line
segments which are too close to other longer lines. Then
we extend and recombine the remaining prominent line
segments to form the skeleton of the objects in the
source image. Finally, a desired Cubism-like image is
created by coloring the resulting regions. The detail is
described in the following algorithm.

Algorithm 1: line-based Cubism-like image creation.
Input: a source image S, and two threshold values ⎯

the minimum line segment length Lmin and the
minimum between-line distance Dmin.

Output: a line-based Cubism-like image C.
Steps.
Stage 1 --- creating crossing-image lines.
Step 1. Perform Canny edge detection to find the edge

points in source image S, resulting in a new
image S′.

Step 2. Perform the following steps to find prominent
line segments in S′.
2.1 Find line segments L1, L2, …, Lm, in S′ by

applying the Hough transform on S′,
yielding a second new image S′′ of the line
type.

2.2 Select those line segments in S′′ with
lengths larger than threshold Lmin.

2.3 Compare every line pair Li and Lj with i ≠ j
in S′′ and if the distance Dij between Li and
Lj is smaller than Dmin, then delete Li if the
length of Li is smaller than that of Lj; or
delete Lj, otherwise.

Step 3. Extend each of the remaining line segments in
S′′ to the boundaries of S′′, and regard the
source image S as being partitioned by these
extended lines to form regions.

Stage 2 --- re-coloring image regions.

Step 4. Create a binary image T of the size of S with
initial pixel values all set to be 0.

Step 5. Fill the value of 1 into those pixels in T which
correspond to those lying on each of the
extended line segments in S′′.

Step 6. Perform following steps to re-color the regions
in S.
6.1 Perform region growing in the binary image

T in a raster-scan order, and segment out 0-
valued regions, R1, R2, …, Rk, each of
which is enclosed by a group of 1-valued
line segments in S′′.

6.2 Compute the area Ai of each segmented
region Ri in T and the average RGB color
values (Cir, Cig, Cib) of the corresponding
region Ri′ in S using Ai, and re-color each
pixel in Ri′ of S by the color values (Cir, Cig,
Cib), i = 1, 2, …, k.

6.3 Re-color all lines in S corresponding to the
1-valued extended lines in T by the white
color.

Step 7. Take the final S as the desired line-based
Cubism-like image C.

2.3. Experimental Results
According to the above discussions, we see that
different selections of the two threshold values Lmin and
Dmin will result in totally different effects in the created
art images. However, it is difficult to decide which
result is better than the others because the decision is
obviously dependent on people’s different feelings of
art. Therefore, in this study we just offer a series of
results yielded by the use of different sets of thresholds
for the user to inspect and choose. Specifically, we use
the three values of 0.5/10, 1/10, and 2/10 times the
length of the longer image boundary as the values for
each of the thresholds Lmin and Dmin. As a result, each
threshold has three choices, resulting in nine choices of
the two threshold values. Then, we generate nine art
images, each corresponding to one of the nine threshold
combinations, for the user to choose his/her favorite one.
An example is shown in Fig. 7.

3. PROPOSED DATA HIDING TECHNIQUE

3.1. Idea of Proposed Technique
In the proposed Cubism-like image creation process as
presented by Algorithm 1 above, the main idea is to re-
color the pixels in each image region with the average
color of all the pixels in the region with the resulting
image visually looking like the original one.

About the proposed data hiding technique, it is
pointed out first that due to the nature of the human
visual system, people cannot sense small changes in the
appearance of a color image, such as color alternations
or edge shiftings. Therefore, the proposed data hiding
technique is designed to hide a secret message into a
cover image ⎯ a line-based cubism-like image
generated by the proposed creation method described

previously ⎯ by changing slightly the rgb color values
of the pixels in each region of the cover image. As a
result, people will not be able to distinguish the
difference between the cover image and the stego-one.
It is in this way that we achieve the goal of data hiding
in the proposed line-based Cubism-like art image
without arousing suspicions from hackers.

(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

(l)

Fig. 7: Experimental results. (a) A source image with size
1024×768. (b) Initial Dmin = 102 and initial Lmin = 102. (c) (Dmin,
Lmin) = (51, 51). (d) (Dmin, Lmin) = (51, 102). (e) (Dmin, Lmin) = (51,
204). (f) (Dmin, Lmin) = (102, 51). (g) (Dmin, Lmin) = (102, 102). (h)
(Dmin, Lmin) = (102, 204). (i) (Dmin, Lmin) = (204, 51). (j) (Dmin, Lmin)
= (204, 102). (k) (Dmin, Lmin) = (204, 204). (l) A better choice of 9
images to fit the abstract style of Fig. 1(a) is Dmin=102 and Lmin=51.

Furthermore, for the reason of achieving

reversibility in the hidden data extraction process, a
reversible region re-coloring technique, which keeps the
average color of each region unchanged, is proposed.
Consequently, we can restore the color information of
the pixels in the stego-image perfectly after extracting
the secret messages embedded in them. More
specifically, in the proposed data hiding process, after
the step of hiding message bits into a color channel, the
pixel colors in a region will be changed via color
shifting, and the average color of the region will also be
influenced. In order to keep the average color
unchanged as desired, we limit the number of message
bits embedded into the region. For this purpose, it is
found in the study that the property of rounding-off of

integer computation may be utilized. Specifically, when
computing the average color C of a region, all the
computed results in the range between C − 0.5 and C +
0.5 will be rounded to be an identical value since color
values used in this study are integer numbers.
Accordingly, we can acquire the maximum number of
embedded bits in a region as derived in the following.

Assume that A is the total number of pixels in a
region R (in unit of pixel), Cr1, Cr2, …, Crn are the r-
color values of the n pixels in region R, and Cr is the
average r-color value of region R. Also, let N0 and N1
denote the total numbers of bits of 0’s and 1’s
embedded in R. At first, the average r-color value Cr of
all the pixels in R may be computed by

Cr = (Cr1 + Cr2 + … + Crn)/A.
Therefore, we have

CrA = Cr1 + Cr2 + …+ Crn.
Furthermore, we hide the secret message bits by shifting
the average r-color value of each pixel in this study. We
assume that when hiding a bit of 0 into a pixel P in
region R with average r-color value Cr, the pixel’s color
Cr is decreased by 1; and when hiding a bit of 1 into P,
the pixel’s color Cr is increased by 1. Therefore, if N0
0’s and N1 1’s are embedded into the pixels of region R,
then it can be figured out that the average r-color value
Cr of R will increase for the amount of N1 – N0 (or
equivalently, decrease for the amount of N0 – N1), so
that the new average color Cr′ becomes:

Cr′ = (Cr1 + Cr2 + …+ Crn + N1 – N0)/A
= (CrA + N1 – N0)/A.

To keep the new average color Cr′ equal to the original
one Cr, we have to limit the values of the two numbers
N1 and N0 according to the above-mentioned rounding-
off property, resulting in the following formula:

Cr – (1/2) ≤ Cr′ = (CrA + N1 – N0)/A < Cr + (1/2)

which can be reduced to be
 –A/2 ≤ N1 – N0 < A/2. (1)

As a summary, the values of N1 and N0 together are
limited by the total number A of pixels in the region,
implying that the data hiding capacity is also restricted
by it. In the best case, we know that the maximum
number of embeddable bits in a region is just the
number A of pixels in the region, that is,
 N1 + N0 = A. (2)
Now, according to Equations (1) and (2), we can derive
the ranges of N1 and N0 to be as follows (the details
omitted):
 A/4 ≤ N0 < 3A/4, (3)
 A/4 ≤ N1 < 3A/4. (4)
In the extreme case where the digit sequence is
composed of all 0’s or all 1’s, the upper bound of the
data hiding capacity will be reached, which is ⎣A/2⎦ − 1,
as can be figured out from Equation (1).

In this study, we keep the average region color
unchanged for two reasons. The first, as mentioned
previously, is to make possible recovery of the region
information in the data extraction process, where we use
the average color as a basis to extract the hidden secret
message. The other reason is to yield a visually mosaic
effect so that the region color that people see is almost
the same, despite of the color shifting inside the region.

3.2. Proposed Data Hiding Process
The proposed data hiding process, which is based on the
creation process of the line-based Cubism-like image, is
described in detail in this section. As described in the
last step of Algorithm 1, we re-color each region of the
input image by the average color of the region to
generate the desired Cubism-like image. For the
purpose of hiding data in the generated Cubism-like
image, we try to modify this re-coloring process to
achieve secret message hiding.

Specifically, the data hiding process is composed of
two main stages. First, we transform the secret massage
into a digit sequence and append an ending pattern
(with at least one digit) at the end of the digit sequence
to keep the sequence length a multiple of three. By the
ending pattern, we can determine where the massage
ends in a sequence of extracted bits in the message
extraction process. Next, we try to obtain the
information of two parameters of each region, namely,
the region area and the average rgb color values in the
region, by performing Algorithm 1. Furthermore, we
use a secret key to randomize the order of re-coloring of
the regions in the input image, and take the resulting
new sequence as the order for data hiding. For each
region, we compute the maximum data hiding capacity.
In order to keep the average rgb color of the region
unchanged, we limit the embedded amount of message
bits in each region as described previously. After
getting the maximum data hiding capacity, we embed
the message bits by shifting the color values of the
pixels in each region according to the above-mentioned
data hiding order. After the digit sequence is exhausted,
there might exist regions in which no message bit is
embedded. We deal further with these intact regions to
keep the coloring style of all regions consistent. By
creating a new binary string whose size is the upper
bound of the data hiding capacity and constituting
randomly a string with 0’s and 1’s by the secret key, we
use the same process to re-color the pixels in these
regions according to the resulting binary string. At the
end, a stego-image is generated with the secret message
embedded. The detailed algorithm to implement these
steps is given as follows.
Algorithm 2: embedding a secret message into a line-

based Cubism-like image.
Input: a cover image S, a secret key K, a secret message

M in character form, and two threshold values
⎯ the minimum line segment length Lmin and
the minimum between-line distance Dmin.

Output: a stego-image I into which M is embedded.
Steps.
Stage 1 --- embedding a secret message M.
Step 1. Transform the secret massage M in character

form into a bit sequence M′, and randomize the
bits in M′ by the secret key K.

Step 2. Transform each bit of M′ into a digit, resulting
in a digit sequence M′′, and append an ending
pattern with at least one and no more than three
identical digits de other than 0’s and 1 at the end
of M′′ to form a new digit sequence with its
length being a multiple of three.

Step 3. Divide M′′ into a sequence of 3-digit segments
m1, m2, …, mn.

Step 4. Perform Algorithm 1, using the input cover
image S as the source image, to obtain the
information of two parameters of the regions R1,
R2, …, Rk in S, namely, the areas A1, A2, …, Ak
and the average rgb color values (C1r, C1g, C1b),
(C2r, C2g, C2b), …, (Ckr, Ckg, Ckb) of the regions
R1, R2, …, Rk, respectively.

Step 5. Rearrange randomly the coloring order of the
regions by the secret key K, resulting in a new
coloring sequence Cs = {R1′, R2′, …, Rk′}; and
change accordingly the corresponding orders of
the areas and the average rgb color values,
resulting in the new orders of A1′, A2′, …, Ak′
and (C1r′, C1g′, C1b′), (C2r′, C2g′, C2b′), …, (Ckr′,
Ckg′, Ckb′), respectively.

Step 6. Calculate the maximum data hiding capacity Qi
of each region Ri′ in accordance with the new
coloring sequence Cs by the following steps
with the initial value of Qi being set to be zero.
6.1 Assign each 3-digit segment mt = drdgdb of

the digit sequence M′′ into one of six
groups Nr0, Nr1, Ng0, Ng1, Nb0, and Nb1 in the
following way:
(a) increase Nr0 by 1 if dr = 0; and increase

Nr1 by 1 if dr = 1;
(b) increase Ng0 by 1 if dg = 0; and increase

Ng1 by 1 if dg = 1;
(c) increase Nb0 by 1 if db = 0; and increase

Nb1 by 1 if db = 1.
6.2 Compute the maximum data hiding

capacity Qi of each region Ri′ by the
following operations.
(a) If Nr1 – Nr0 ≥ Ai′/2 or Nr1 – Nr0 < –Ai′/2,

take the current Qi to be the maximum
data hiding capacity.

(b) If Ng1 – Ng0 ≥ Ai′/2 or Ng1 – Ng0 < –Ai′/2,
take the current Qi to be the maximum
data hiding capacity.

(c) If Nb1 – Nb0 ≥ Ai′/2 or Nb1 – Nb0 < –Ai′/2,
take the current Qi to be the maximum
data hiding capacity.

(d) Increase the data hiding capacity Qi by 3
if Qi has not been set to be the
maximum data hiding capacity.

6.3 Repeat Steps 6.1 and 6.2 until Qi has been
taken to be the maximum data hiding
capacity or until the digit sequence M′′ is
exhausted.

Step 7. Perform the following steps to embed the secret
message digits into each region Ri′.
7.1 Reorder randomly the pixels in Ri′, which is

initially in a raster-scan order, into a hiding
sequence Hs = {p1, p2 , …, pt}, by using the
secret key K and the index i of Ri′ in the
coloring sequence Cs as the seed for the
randomization process.

7.2 Embed each 3-digit segment mt = drdgdb of
the digit sequence M′′ into a pixel pj of Ri′
according to the hiding sequence Hs in the
following way.
(a) Obtain new average rgb color values

(Cjr′′, Cjg′′, Cjb′′) of each pixel pj in S by
shifting in order the original average
rgb color values (Cjr′, Cjg′, Cjb′) of pj in
the following way, where h = r, g, and
b:
i. decrease Cjh′by 1 if dh = 0;
ii. increase Cjh′ by 1 if dh = 1;
iii. do nothing Cjh′ if dh = de (the ending

pattern digit).
(b) Re-color the pixel pj by the new rgb

color values (Cjr′′, Cjg′′, Cjb′′).
(c) Decrease the data hiding capacity Qi by

3.
(d) Repeat the above two steps until the

maximum data hiding capacity Qi is
exhausted.

Step 8. Repeat Steps 6 and 7 if the digit sequence of M′′
is not exhausted.

Stage 2 --- dealing with intact regions.
Step 9. Perform the following steps to deal with each

intact region Rl′ with area Al′ which has not
been used for message bit embedding so far.
9.1 Use the secret key K to create a binary

string B with size ⎣Al′/2⎦ − 1 for Rl′ , which
is composed of a random sequence of 0’s
and 1’s.

9.2 Perform Steps 6 through 8 to re-color the
pixels of Rl′ to embed the binary string B.

Step 10. Take the final S as the desired stego-image I.

In the above algorithm, wrap-around problems might
occur in Steps of 7.2(a)-i and 7.2(a)-ii when the average
color value in a color channel is 255 or 0. In this case,
we will obtain a bad stego-image with some noise
(black or white image points) after 1 is added to 255 or
1 is subtracted from 0. To avoid such extreme cases, we
adjust the extreme average color values of 255 and 0 to
be 254 and 1, respectively, before data hiding. Such
slight color alternations in the generated stego-image
cause nearly no visual effect to the human vision but
can solve the wrap-around problem.

3.3. Secret Extraction Process
In the proposed secret message extraction process, first
we recover the coloring sequence in the stego-image.
By a region growing scheme, we get the information of
the regions with an initial order sequence. Then, we
retrieve the coloring sequence by using the secret key.
Moreover, in the process of region growing, we also
obtain the area and the average color of each region in
the stego-image. Based on the average region color
values, we can retrieve accordingly the secret message
embedded in a region in the stego-image by comparing
the average region color and those of the pixels in the
region. The algorithm of secret data extraction is
described in detail as follows.
Algorithm 3: extracting a secret message from a

stego-image.
Input: a stego-image S, and a secret key K identical to

that used in Algorithm 2.
Output: the secret message M embedded in S.
Steps.
Stage 1 --- retrieving information of the stego-image.
Step 1. Perform region growing in a raster-scan order to

segment out regions, R1, R2, …, Rk, in S, and
obtain the information about the area A1, A2, …,
Ak and the average rgb color values (C1r, C1g,
C1b), (C2r, C2g, C2b), …, (Ckr, Ckg, Ckb) of the
regions, respectively.

Step 2. Retrieve the coloring order of regions by the
secret key K, denote the result as Cs = {R1′,
R2′, …, Rk′}, and change the corresponding
orders of the areas and the average rgb color
values of the regions, resulting in the new order
sequences of areas A1′, A2′, …, Ak′ and average
color values (C1r′, C1g′, C1b′), (C2r′, C2g′, C2b′), …,
(Ckr′, Ckg′, Ckb′), respectively.

Stage 2 --- extracting the embedded data.
Step 3. Create an empty digit sequence Q initially.
Step 4. Perform the following steps to extract the secret

message M from S.
4.1 Randomize the pixel order in Ri′, which

initially is in a raster-scan order, and denote
the result as a recovered sequence Hs = {p1,
p2 , …, pT}, using the secret key K and the
index of Ri′ in the coloring sequence Cs
together as the seed of the randomization
process.

4.2 Obtain the rgb color values of each pixel pj
of Ri′ according to sequence Hs and denote
them by (Cjr′′, Cjg′′, Cjb′′).

4.3 Acquire three digits Qjr, Qjg, and Qjb from
the differences between the rgb color values
(Cjr′′, Cjg′′, Cjb′′) of each pixel pj and the
average rgb color values (Cir′, Cig′, Cib′) of
region Ri′, respectively, by the following
way:
(a) if any of the color values (Cjr′′, Cjg′′,

Cjb′′) is smaller than the corresponding
average color value in (Cir′, Cig′, Cib′),

then set the corresponding value Qjr, Qjg,
or Qjb to be 0;

(b) if any of the color values (Cjr′′, Cjg′′,
Cjb′′) is larger than the average color
(Cir′, Cig′, Cib′), then set the
corresponding value Qjr, Qjg, or Qjb to
be 1;

(c) if any of the color values in (Cjr′′, Cjg′′,
Cjb′′) is equal to the corresponding
average color value in (Cir′, Cig′, Cib′),
then set the corresponding value in (Qir,
Qig, Qib) to be de (the ending pattern
digit).

4.4 Store the three digits Qir, Qig, and Qib into Q
in order.

4.5 Repeat Steps 4.1 through 4.4 until a value in
Q equal to de (the ending pattern digit) is
encountered.

Step 5. Use the secret key K to reorder Q.
Step 6. Transform Q into character form as the desired

secret message M.

3.4. Experimental Results
Figs. 8 through 13 show some experimental results of
applying the proposed data hiding method to two
images. Figs. 8(a) and 11(a) are the source images. Figs.
8(b) and 11(b) are the generated Cubism-like images
with no secret message embedded. Fig. 8(c) is a stego-
image into which a secret message “Meet me at 21:30.
See you.” has been embedded with the secret key “test.”
Fig. 11(c) is a stego-image into which a secret message
“Hi, I am Helen. Nice to meet you!” has been embedded
with the secret key “door.” The secret message can be
retrieved only when the right key is used in the secret
message extraction process, like the results of Figs. 9
and 12. If a wrong key is used in the secret extraction
process, the extraction work will fail, as shown by the
examples in Figs. 10 and 13.

4. CONCLUSIONS

In this paper, a new method of combining art image
generation and data hiding to enhance the camouflage
effect for various information hiding applications is
proposed. At first, a new type of computer art, called
line-based Cubism-like image, and a technique to create
it automatically from a source image have been
proposed. The method finds line segments in the source
image by the Canny edge detection technique and the
Hough transform, combines nearby line segments,
extends the remaining lines to the image boundaries,
and re-color the created regions by their average colors,
to create an abstract type of the original source image as
the desired art image. Then, by utilizing the
characteristics of the Cubism-like image creation
process, a data hiding technique has been proposed.
Based on the minimum color shiftings of the values of
±1, the technique embeds message data into the pixels

of the regions of the generated art image while keeping
the average region colors unchanged. The data
embedding process is proved to be lossless by theorems
so that the cover image can be recovered perfectly after
the embedded message data are extracted.

The proposed method has several merits. First, it
generates Cubism-like images as stego-images to
distract the hacker＇ s attention to the message data
embedded in them. Also, by using the minimum color
shiftings of ±1 to embed data bits, the resulting pixels’
color differences between the generated Cubism-like
image and the stego-image are so small that a hacker
will take no notice of the existence of the hidden data.
Consequently, the proposed data hiding technique is
very suitable for use in covert communication or secret
keeping. Furthermore, four measures of randomization
of the input message data and the processing order of
them with a secret key and several random-number
generating functions have been adopted in the proposed
method. This enhances greatly the security of the
proposed method.

(a)

(b) (c)

Fig. 8: An experimental result. (a) Source image. (b) A
Cubism-like image without secret message embedding. (c) A
stego-image of (a) into which secret messages are hidden.

Fig. 9: Extracting secret message with the right secret key.

[2] A. Hertzmann, “Painterly rendering with curved brush
strokes of multiple sizes,” Proc. SIGGRAPH 1998,
Orlando, Florida, USA, pp. 453-460, July 1998.

Fig. 10: Extracting incorrect message with a wrong key.

[3] A. Hertzmann, “Fast paint texture,” Proc. SIGGRAPH
2002, Annecy, France, June 3-5, pp. 91-96, 2002.

[4] M. P. Salisbury, M. T. Wong, J. F. Hughes, and D. H.
Salesin, “Orientable textures for image-based pen-and-
ink illustration,” Proc. SIGGRAPH 1997, Los Angeles,
California, USA, pp. 401-406, 1997.

(a)

(b) (c)

Fig. 11: Another experimental result. (a) Source image. (b) A
Cubism-like image without secret message embedding. (c) A
stego-image of (a) into which secret messages are hidden.

[5] D. Mould, “Stipple placement using distance in a
weighted graph,” Proc. Int’l Symp. on Computational
Aesthetics in Graphics, Visualization & Imaging, Banff,
Alberta, Canada, pp. 45-52, 2007.

[6] D. Mould, “A stained glass image filter,” Proc. of 14th
Eurographics Workshop on Rendering, Leuven,
Belgium, pp. 20-25, 2003.

[7] A. Hausner, “Simulating decorative mosaics,” Proc.
SIGGRAPH 2001, Los Angeles, California, USA, pp.
573-580, August 2001.

[8] P. Haeberli, “Paint by numbers: abstract image
representations,” Proc. SIGGRAPH 1990, Dallas, Texas,
USA, pp. 207-214, 1990.

[9] Y. Z. Song, P. L. Rosin, P. M. Hall, and J. Collomosse,
“Arty shapes,” Proc. Computational Aesthetics in
Graphics, Visualization & Imaging, Lisbon, Portugal, pp.
65-72, 2008.

[10] C. K. Chan and L. M. Cheng, “Hiding data in images by
simple LSB substitution,” Pattern Recog., vol. 37, pp.
469-474, March 2004.

[11] D. C. Wu and W. H. Tsai, “Embedding of any type of
data in images based on a human visual model and
multiple-based number conversion,” Pattern Recog.
Letters, vol. 20, pp. 1511-1517, August 1999.

 [12] J. Fridrich, M. Goljan and R. Du, “Lossless data
Embedding—new paradigm in digital watermarking,”
EURASIP J. on Applied Signal Processing, vol. 2, pp.
185–196, 2002.

Fig. 12: Extracting secret message with a right key.

[13] M. Awrangjeb and M. S. Kankanhalli, “Reversible
watermarking using a perceptual model,” J. of Electron.
Imag., vol. 14, no. 013014, Mar. 2005.

[14] J. Tian, “Reversible data embedding using a difference
expansion,” IEEE Trans. on Circuits Syst. & Video
Technol., vol. 13, no. 8, pp. 890–896, Aug. 2003.

[15] C. de Vleeschouwer, J. F. Delaigle and B. Macq,
“Circular interpretation of bijective transformations in
lossless watermarking for media asset management,”
IEEE Trans. on Multimedia, vol. 5, no. 1, pp. 97–105,
Mar. 2003.

Fig. 13: Extracting incorrect message with a wrong key.

[16] Z. Ni, Y. Q. Shi, N. Ansari and W. Su, “Reversible Data
Hiding,” IEEE Trans. on Circuits Syst. & Video
Technol., vol. 16, no. 3, pp. 354-362, March 2006.

[17] C. W. Lee and W. H. Tsai, “A lossless large-volume
data hiding method based on histogram shifting using an
optimal hierarchical block division scheme,” J. of
Inform. Sci. & Eng., vol. 27, no. 4, pp. 1265-1282, 2011.

[18] J. Canny, “A computational approach to edge
detection,” IEEE Trans. Pattern Analysis & Machine
Intelligence, vol. 8, no. 6, pp. 679-698, 1986.

[19] R. C. Gonzalez and R. E. Woods, Digital image
processing. 2nd ed., Prentice Hall, Upper Saddle River,
New Jersey, USA, 2002.

REFERENCES

[1] A. Hertzmann, “A survey of stroke-based rendering,”
IEEE Computer Graphics and Applications, vol. 23, no.
4, pp. 70-81, July-Aug. 2003.

	ABSTRACT

