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ABSTRACT

A vision system for automated parts
inspection is proposed. The system is equip-
ped with learning capabilities such that it
automatically selects from a set of sample
parts a minimum, but effective inspection
region within the camera's field of view for
parts discrimination. A binary template is
formed within the inspection region which is
then used for parts inspection by template
matching. The inspection speed is enhanced
by keeping the inspection region small and by
making the matching task uncomplicated. A
simple learning algorithm based on statisti-
cal pattern recognition theory is employed,
which only requires the system to be taught
by a training set of good and defective
parts without specific defect identification
or location. The system is applicable to
most 2-D industrial parts inspection.

1. INTRODUCTION

The limitations of traditional human
inspection in industrial situations are
well~known. Consequently, many automatic
visual inspection systems for industrial parts
have been proposed and developed.l'

The main purposes of these systems include
increased production, increased inspection
accuracy, and reduced manufacturing costs.
However, most inspection systems developed

thus far are one-of-a-kind, each capable of
only a specific inspection task. When the

part to be inspected varies, a new system
usually has to be developed. This need arises,
in part, because the system is devoid of
automated learning capabilities. 1In this

paper we propose a versatile automatic visual
inspection system which is adaptible to various
parts inspection tasks through self-learning.

In two-dimensional industrial parts
inspection tasks, frequently, the criterion
for differentiating good and bad parts is
the position and the size of some types of
defects. Generally, only parts with fairly
large defects at specific locations within the
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parts are rejected. The inherent characteris—
tics of human observers in this kind of inspec-

tion task usually result in less than satisfac-
tory accuracy. Thus, the high degree of preci-
sion obtainable from analysis of high-resolution
images makes it attractive to construct inspec-
tion systems using video cameras. A central
issue surrounding such systems is the question
of how to train the system to ascertain in
advance, what, where, and how large are the
defects. Moreover, it is highly desirable to
equip the system with some degree of self-train-
ing (i.e., automated learning).

In this paper we describe a learning pro-
cedure by which the proposed vision system can
automatically determine, within the camera's
field of view, using a set of good and bad train-
ing parts, an inspection region which basically
includes all the critical defects. The procedure
is intelligent in that it is unnecessary to
provide information about defects associated
with each part in the training set. This frees
the system operator from the need to identify
defects during the training stage, as long as
all training parts are categorized as good or
bad in advance.

An appropriate inspection region also can
be formed simply as the union of all the _possi-
ble defective areas, as done in Perkins.8 The
present system proposes a teéchnique that reduces
the size of this roughly-formed inspection region
to a minimum, as long as the two sets of good
and bad parts can still be discriminated with
the minimum Bayes error probability. This redu-
ction is based on statistical pattern recogni-
tion theory and is useful for inspection speedup.
There is no limit on the number of defects that
may appear on a bad part.

2. SYSTEM DESCRIPTION AND INSPECTION PROCEDURE

The system is designed to inspect industrial
parts using two-~dimensional views. Only binary
images are processed. Back lighting is adopted
to produce clear parts pictures for image taking
with a video camera, and simple thresholding is
used to transform gray-valued images into binary
ones. Pixels representing background in the
binary images are assigned the value 0, while
those representing machine parts are assigned
the value 1, after thresholding.
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The system's inspection procedure is divid-
ed into two stages: the training stage and the
operation stage. During the training stage,
parts which are already labelled as ''good'" or
"bad," or which can be determined so by an
operator, are input into the system for image
taking and analysis. There is no need to indi-~
cate types, numbers, locations, and sizes, of the
defects associated with each input part. The
result of the training stage is a minimum-sized
ingspection region within the image field, accord-
ing to which all training parts can be discrimi-
nated as "good" or '"bad" with a minimum error.

An inspection template is formed within the ins-
pection region which will be used for parts ins-
pection by template matching in the subsequent
operation stage. Based on the inspection tem-—
plate, a match-measure threshold is selected

for later use in template matching.

During the operation stage, each part to
be inspected is passed through the camera’s
field of view for image taking and thresholding.
The resulting binary picture is then matched
with the inspection template, and the number of
mismatched pixels is counted and compared with
the match-measure threshold for decision making.
Parts with the resulting number of mismatched
points larger than the threshold are rejected
as bad. Since the inspection steps in the
operation stage are straightforward, in the
following sections we will only describe in
detail the training stage.

3. TRAINING STAGE

The training stage can be divided into
several steps: image registration and summation,
inspection region and template formulation, sam-—
ple testing and inspection region reduction.

3.1 IMAGE REGISTRATION AND SUMMATION

A basic requirement of the proposed system
is that all parts to be analyzed, either in the
training stage or in the operation stage,
should
Perkins proposed a so-called multisector search
technique for parts registration.
es also are possible. For example, jigs with
their positions fixed under the camera may be
used. Each part to be analyzed can be fed into
the jig for position registration before image
taking. As it will become clear later, the
partial image of a positioning jig will not have
any effect on the resulting inspection rate.
Necessarily, we assume that the boundaries of
training parts labelled "bad" are not so severely
damaged that they cannot be positioned stably
within the jig. Should such parts appear during
the operation stage, they can be declared simply
as "bad." This approach is appropriate for those
industrial parts made by casting or molding.
Another approach is to register parts images by
their shapes, especially their boundary shapes.
This requires that each bad part be sufficiently
undamaged on its boundary that it still can be

e properly registered before image taking.

Other approach-
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matched jor registered by any boundary matching
methods”with a reference shape boundary obtained
through averaging the images of all the good
training parts, or from the technical drawing of
a good part. This approach needs further test-
ing.

Now assume all the images of the training
parts have been taken, thresholded, and register-
ed. Let the size of each image be I by J, and
the number of good parts and bad parts be m and
n, respectively. Let M(i,j) denote the pixel
value (0 or 1) of an image M at position (i,j).
Each pixel with value 1 is said to be an object
point;otherwise, it is called a background point.
Imagine all the images are 'summed up' and count
the following various pixel frequencies for all
15i<T,1<3<3:

f (i.3) = total no. of object points at

g0 (i,j) in good parts images;

£, (1,3) = total no. of background points at

& (i,j) in good parts images;

fdo(i,j) = total no. of object points at
(1,3j) in defective parts images;

fdb(i,j) = total no. of background points

at (i,j) in defective parts
images.

Note that for each (i,j), we have fgo(i,j).+

fgb(i,j) =mand £, (1,j) + fdb(i,j) = n,

As an example, the parts shown in Fig. 1 are
used to illustrate how good parts and bad parts
are determined. The result of the previous
summation step is shown in Fig. 2. This example
will be continued through this paper to illus-
trate the steps of the training stage.

3.2 INSPECTION REGION AND TEMPLATE FORMULATION

The main purpose of this step is to select
one by one, those 'feature points' useful for
discriminating good parts from bad parts and then
to generate a template for the matching operation.
Obviously, at a point (i,j), where the background
or object point is found in all the good parts
images and the bad parts images, the information
at this point (i,3) becomes useless for parts
discrimination and should be ignored. That is,
we exclude any point (i,j) with the frequencies
satisfying

Fho(s3) g (D)

m n =1 (@]
or equivalently,
fgh (1,3) _ £4,(1,3) ) )
m n -

from further consideration as a point in the
desired inspection region.

Conversely, we may consider each (i,j) of
the remaining points as a candidate point in the
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desired inspection region if the frequency
values at this point contain enough information
for good and bad parts discrimination. If we
regard the binary value at (i,j) as the only
feature for discrimination, according to

statistical pattern recognition theorylo, then
the four terms in Eqs. (1) and (2) are just the
conditional probability values with respect to
the good and the defective parts "classes"
(denoted as g and d, respectively), i. e.,

piry; = e D pxyy =0le)=

fgb(i’j) ,
m
px.. = 1]d) =fdo(i’j) p(x,.=0|d)=
13 4
fdb(i’j).
n

If we assign the value 0 to this point (i,j) for
use in the template (i.e., the inspection tem-
plate has the value 0 at (i,j)) and reclassify
all the training parts, good or defective,
according to the value at this point (i.e., we
consider a part as "good" if it has the

value 0 at (i,j)), then exactly fgo(i’j) of the

originally-labelled good parts will be mis-
classified as "defective" and fdb (i,j) of the

originally-labelled defective parts will be
misclassified as "good." This results in the
following probability of error:

E;5(0) = P(e)p(x;=1ig) + P(@)p(x;;=01d)

-m f I n o fg (3D
whn” m mn n
£, (1) + £, (1,3)
mn (3)

where P(g) and P(d) are the a priori probabili-
ties of the two classes, respectively. Similar-
1y, if we assign the value 1 to the template at
position (i,j), then the probability of error
will be:

;) = P(g)P(Xij=OIg) + P(d)p(xij=1|d>

= Fp(3,3) + fdo(i,j)’
mhn (4)

If Eij(O) < Eij(l), obviously we should select

0 as the template value at position (i,j), and

then Eij(o) is the Bayes error probability.
Otherwise, if Ei' (0) > Eij(l), we select 1 as

the template value at (i,j) and the Bayes error
probability instead is Ei.(l). Again, for
points where Eij(o) = (1), or equivalently,

according to Eqs. (3) and (4),
oo (3) + £ (,3) = £ (1,3) + £4(5,3),(5)
we may ignore them (i.e., exclude them from the

final inspection region) because they are not
useful for parts discrimination. Actually, either
(1) or (2) implies (5). 1In short, we can precise-
ly specify an inspection region R and the pixel

To (i,j) of the corresponding inspection template

Toat each point (i,j) as follows:

={(1,5) | 1215 I,123<J, and
Ego(1od) + £, (1,3 # £, (1,3) + £, (1,1)},(6)

and for all (i,3) ¢ R R
To(i,3) = 0 if £ (1,3) + fap(Lh3) < £ (4,04
do(i,J)-
1 4if fgo(l,J) + fd-b(ls:l) > fgb(i’j) +
408530 (7}
Also, define Eij to be
Eij = min (Eij(o)’ Eij(l)) (8)
which we call the point error probability at
(i,3).
Continuing the illustrative example, we show

the sums, £ (left-hand side of (5)) and

fgb + £y ( 1ght—gand side of (5)), in Fig. 3.

Values for E,.(0) and E..
1] 1]

(1) are shown in Fig. 4,

and the point error probabilities E1 are shown in
Fig. 5. The inspection region R ana template
To are shown in Fig. 6.

3.3 SAMPLE TESTING AND INSPECTION REGION REDUCTION
The inspection template T , obtained in the
last step, can be used to match all the training
parts to ascertain its utility. We call this
step sample testing within the inspection region
Ro. The match-measure we use is simply the
number of mismatched points. For a given training
sample image M, this may be simply and precisely
defined as

y:

[M@G,3) - T G- @

%
(i,3) R

Matching each training sample image M with T
results in a y value, which can be considered
as a feature extracted out of M. Therefore, after
all matchlngs are done, we can compute the prob-
ability densities p(y!g) and p(y|d) for all y
values for both classes (good and defective) (see
Fig. 7 for an illustration). From these functions
and according to statistical pattern recognition,
we can determine an optimal decision value y with
minimum Bayes error probability E_ which we call
the picture error probability. E_ is just the
overlapping portion of the two conditional density
functions as shown in Fig. 7. This error results
from the use of R and T obtained in the last step.
Can this ervor be reduced by changing R , or more
concretely, by reducing the size of R 8o that
template matching is enhanced? Furth8r considera-
tion reveals this is indeed possible, although not
always.

Recall that each point (i,j)} in R has a point
error probability E, 5 which can be considered as
the effectiveness o% using (i,j) for class
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" discrimination. In fact, the smalier the

value of E,., the more effective the point (i,j)
for dlscrlminatlon Therefore, if we delete
those points with large E,, values, it is
possible that the remainif points could be made
more effective for discriminatin, or equivalent-
ly, the corresponding picture error probability
EO would become smaller after template matching.

Since the frequency values of fgo(i,j), fgb(i,j),

(i,3), and £, (i,j) are discrete with known
maximums of m of n, the number of possibkle Eij

values , which can be computed from the frequency
values, will be finite. Therefore, we can
successively perform a sequence of inspection
region reductions, each time simply deleting

from the former inspection region Ri ( with RO

as the initial one), those points with the
largest but identical Eij values, until all

points in R are deleted. Within the resulting
inspection fegion sequence, there must exist
one region, , with the minimum corresponding
picture error probability E This means that
can be regarded as a set of points which are
most effective for parts discrimination. Let
T, be the corresponding template and y,, the
optimal decision value (match-measuring thre-
shold), then during the later operation stage,
the image of each input part to be inspected
is matched with template TN just within the
Region . The part is accepted as good if the
resulting mismatch points are fewer than Iy

As a continuation of the illustrative
example, the sequence of inspection regions
R to R. (non "x" points) with reducing sizes,
togethet with thelr inspection templates To to

TS’ and probability density function (pdf)
diagrams (including the optimal decision values Vs
and picture error probabilities Ei) are shown in

Figs. 7-12. As can be seen from this sequence
of illustrations, when R0 is used as the

inspection region, some picture error probability

EO # 0 is produced. As Ro is reduced to R4, which

includes only the four central points in the 4 x
4 picture, the two sets of parts can be fully
discriminated without any error (E, = 0) at the
decision value y, =1. The fact that the four
middle points alone are sufficient for parts
discrimination can be verified by checking the
good parts one by one. Each of the good parts
includes all four middle points, but none of the
bad parts include all four middle points. How-
ever, this fact is not obvious at the beginning
of the learning stage.

4. LEARNING ALGORITHM

The following learning algorithm is presented
to consolidate description of the proposed learn-
ing and to facilitate understanding and program-—
ming. The notations have already been defined in
the previous sections.

Algorithm LEARNING

'InEut Sample good parts images G,, G, ,...,
G and pad parts images Dl’DZ"'Dn with
m

size I x J. All images are assumed to be
registered and thresholded. M(i,j) is the binary
value of image M at (i,j).

Output Minimum inspection region RN with
corresponding template T and optimal match-
measure threshold vy

Steps (1) '"Sum up" all good parts images
and count the frequencies f (1,3) and f (i,j)
as follows for all 1 < i < I 1<
i -tz
fgo(l,J) =iElGi(1,3),

£p(d) = m- £ (..

(2) "Sum up" all bad parts images
and count the frequencies fdo(i,j) and fdb(i,j)

as follows for all 1 < i< I,1< 3 < J:

n
£ (i,3) =T D;(,30),
do i=1

fdb(i’j) =n- fdo(i,j)~

(3) Set up intial inspection region
Roand template To according to Eqs. (6) and (7),

respectively.

(4) Perform sample testing by matching
each sample image M with T within R and compute
the number of mismatches y according to Eq. (9).

(5) Compute optimal decision value
v, and picture error probability, EO by the

following substeps:

2
(5.1) Let Y {y s ¥V ,...,yg} be the

g
set of all y values for good parts and let #yg

denote the total number of yk values, 1 < k < K.
Note that &
K
Tty % = m.
k=1

Assume y;< yé if 1 <3, 1<1, <K,

(5 2) Similarly, let Y, =

d
{ yd, yg } be the set of all y values for
bad parts w1th yd < yé if 1 < 3, 1 < 1, j < L.
Let Y = YgUiYd = {yl, yz...,yQ} with y < y if
i< j.
Note that

Tty =m + n.
=1
(5.3) For each 1 < q < Q, compute a
corresponding picture error probability E9 which

o)
results from using yq as the decision value (i.e.,
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reject a part as bad if its corresponding y
value is not less than yq);

q k, 9
E° = T (yg/m) + z (Yd/n)-
°© 1z2k<K 1< <L
L4
k
s ¢ Y4 <Y
g

(5.4) Set the desired picture error prob-
ability Eo as

: q
= 5t = min E
Eo 71 <qz<qQ ©°

. .. r
and the optimal decision value, vy, as v

(6) Perform inspection region reduction
by the following substeps:

(6.1) Compute point error probabilities,
E..for all (i,j) € R_ according to egs. (3),
- ° 1.2 P
(4), and (8). TLet E={ E", E°...,E ] denote |
the resulting set of such probabilities with E*
<plif1<3,1<1, <P,

(6.2) Associate each EP ¢ E with a sub-
region R’ and a subtemplate TP:

RP = { (i,1) | By EPY,

(5,3 = T, (1,3), (1,3 ¢’

(6.3) For t = 1 to P - 1, perform Substeps
(6.4) and (6.5) below.

t
e -1 " R~ as the new

inspection region with corresponding new template
Tt(i,j) = To(i,j) for all (i,j) € Rt'

(6.4) Compute Rt = R

(6.5) Compute new optimal decision value

Ve and picture error probability Et according

to Step (5) above.
(6.6) TFind E_ such that Es =
min Et and set
o<t<p-1
the desired outputs as follows:
RN = Rs’
TN(i’j) = To(iaj)’ (laj) £ R-Ns
Yy = Vs
(7) End.

5. SUMMARY AND DISCUSSTION

We have described a computer vision system
with learning ability for automated parts
inspection applications. The learning algorithm,
as illustrated by example, has the capability of
selecting the smallest but most effective

inspection region within the image field for
parts discrimination. This is accomplished by
considering each pixel value as a feature, and
through a feature selection process that reduces
the viable inspection region. The system is
versatile and does not require an opeartor to
identify defects in the input parts during the
learning stage. Because the approach is based on
statistical pattern recognition theory, a
sufficient number of parts should be supplied
for learning so that the final inspection

region is reliable. The inspection procedure
during the operation stage is relatively
untroublesome in that only template matching of
binary pictures is required. This greatly en-
hances the speed of inspection, one of the most
important concerns in automated industrial
inspection applications.

It should be emphasized that in addition
to simplified system operations, the proposed
visual inspection system promises to enhance the
inspection accuracy and production .throughout.
Moreover, the system is sufficiently general to
be adaptable to a wide range of industrial parts
inspection tasks. The proposed learning algori-
thm should be extendable to gray~valued images
as well.
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