
 1

New Image Steganography via Secret-fragment-visible
Mosaic Images by Nearly-reversible Color

Transformation

Ya-Lin Li1, Wen-Hsiang Tsai2, 3
1 Institute of Computer Science and Engineering, National Chiao Tung University, Taiwan

2 Department of Computer Science, National Chiao Tung University, Taiwan
3 Department of Information Communication, Asia University, Taiwan

Abstract. A new image steganography method is proposed, which creates
automatically from an arbitrarily-selected target image a so-called secret-
fragment-visible mosaic image as a camouflage of a given secret image. The
mosaic image is yielded by dividing the secret image into fragments and
transforming their color characteristics to be those of the blocks of the target
image. Skillful techniques are designed for use in the color transformation
process so that the secret image may be recovered nearly losslessly. The
method not only creates a steganographic effect useful for secure keeping of
secret images, but also provides a new way to solve the difficulty of hiding
secret images with huge data volumes into target images. Good experimental
results show the feasibility of the proposed method.

1 Introduction
Steganography is the science of hiding secret messages into cover media so that no
one can realize the existence of the secret data [1-2]. Existing steganography
techniques may be classified into three categories ⎯ image, video, and text
steganographies, and image steganography aims to embed a secret message into a
cover image with the yielded stego-image looking like the original cover image.
Many image steganography techniques have been proposed [1-4], and some of them
try to hide secret images behind other images [3-4]. The main issue in these
techniques is the difficulty to hide a huge amount of image data into the cover image
without causing intolerable distortions in the stego-image.

Recently, Lai and Tsai [5] proposed a new type of computer art image, called
secret-fragment-visible mosaic image, which is the result of random rearrangement of
the fragments of a secret image in disguise of another image called target image,
creating exactly an effect of image steganography. The above-mentioned difficulty of
hiding a huge volume of image data behind a cover image is solved automatically by
this type of mosaic image. In more detail, as illustrated by Fig. 1, a given secret image
is first “chopped” into tiny rectangular fragments, and a target image with a similar
color distribution is selected from a database. Then, the fragments are arranged in a
random fashion controlled by a key to fit into the blocks of the target image, yielding
a stego-image with a mosaic appearance. The stego-image preserves all the secret
image fragments in appearance, but no one can figure out what the original secret
image looks like. The method is a new way for secure keeping of secret images.
However, a large image database is required in order to select a color-similar target
image for each input secret image, so that the generated mosaic image can be

 2

sufficiently similar to the selected target image. Using their method, a user is not
allowed to select freely his/her favorite image for use as the target image.

Fig. 1. Illustration of creation of secret-fragment-visible mosaic image proposed in [5].

Accordingly, we propose in this study a new method that creates secret-fragment-
visible mosaic images with no need of a database; any image may be selected as the
target image for a given secret image. Fig. 2 shows a result yielded by the proposed
method. Specifically, after a target image is selected arbitrarily, the given secret
image is first divided into rectangular fragments, which then are fit into similar blocks
in the target image according to a similarity criterion based on color variations. Next,
the color characteristic of each tile image is transformed to be that of the
corresponding block in the target image, resulting in a mosaic image which looks like
the target image. Such a type of camouflage image can be used for securely keeping
of a secret image in disguise of any pre-selected target image. Relevant schemes are
also proposed to conduct nearly-lossless recovery of the original secret image.

(a) (b) (c)

Fig. 2. A result yielded by proposed method. (a) Secret image. (b) Target image. (c) Secret-fragment-visible
mosaic image created from (a) and (b).

In the remainder of this paper, the idea of the proposed method is described in
Sections 2 and 3. Detailed algorithms for mosaic image creation and secret image
recovery are given in Section 4. In Section 5, experimental results are presented to
show the feasibility of the proposed method, followed by conclusions in Section 6.

2 Basic Idea of Proposed Method
The proposed method includes two main phases: mosaic image creation and secret
image recovery. The first phase includes four stages: (1) stage 1.1 － fitting the tile
images of a given secret image into the target blocks of a pre-selected target image; (2)
stage 1.2 － transforming the color characteristic of each tile image in the secret
image to become that of the corresponding target block in the target image; (3) stage

 3

1.3 － rotating each tile image into a direction with the minimum RMSE value with
respect to its corresponding target block; and (4) stage 1.4 － embedding relevant
information into the created mosaic image for future recovery of the secret image.
The second phase includes two stages: (1) stage 2.1 － extracting the embedded
information for secret image recovery from the mosaic image; and (2) stage 2.2 －
recovering the secret image using the extracted information.

3 Problems and Proposed Solutions for Mosaic Image Creation
The problems encountered in generating mosaic images by the proposed method are
discussed in this section, and the proposed solutions to them are also presented.
(A) Color Transformations between Blocks
Suppose that in the first phase of the proposed method, a tile image T in a given
secret image is to be fit into a target block B in a pre-selected target image. Since the
color characteristics of T and B are different from each other, how to change their
color distributions to make them look alike is the main issue here. Reinhard et al. [6]
proposed a work about color transfer in this aspect, which converts the color
characteristic of one image to be that of another in the lαβ color space. This idea is an
answer to the issue and is adopted in this study. But instead of conducting color
conversion in the lαβ color space, we do it in the RGB space to reduce the volume of
the generated information which should be embedded in the created mosaic image for
later recovery of the original secret image.

More specifically, let T and B be described as two pixel sets {p1, p2, …, pn} and
{p1′, p2′, …, pn′}, respectively, assuming that both blocks are of the same dimensions
with size n. Let the color of pixel pi in the RGB color space be denoted by (ri, gi, bi)
and that of pi′ by (ri′, gi′, bi′). First, we compute the means and standard deviations of
T and B, respectively, in each of the three color channels R, G, and B by the following
formulas:

1 1

1 1,
n n

c i c i
i i

c ' c '
n n

μ μ
= =

= =∑ ∑ ; (1)

2 2
1 1

(1/) () , (1/) ()n n
c i c c i ci i

n c ' n c ' 'σ μ σ μ
= =

= − = −∑ ∑ (2)

where ci and ci′ denote the C-channel values of pixels pi and pj′, respectively, with c
denoting r, g, b. Next, we compute new color values (ri′′, gi′′, bi′′) for each pi in T by:

()()i c c i c cc '' ' / c 'σ σ μ μ= − + with c = r, g, and b. (3)
This results in a new tile image T ′ with a new color characteristic similar to that of
target block B. Also, we use the following formula, which is the inverse of Eq. (3), to
compute the original color values (ri, gi, bi) of pi from the new ones (ri′′, gi′′, bi′′):

(/)()i c c i c cc ' c'' 'σ σ μ μ= − + with c = r, g, and b. (4)
Furthermore, we have to embed into the created mosaic image sufficient

information about the transformed tile image T ′ for use in later recovery of the
original secret image. For this, theoretically we can use Eq. (4) to compute the
original pixel value of pi. But the mean and standard deviation values are all real
numbers, and it is not practical to embed real numbers, each with many digits, in the
generated mosaic image. Therefore, we limit the numbers of bits used to represent a

 4

mean or a standard deviation. Specifically, for each color channel we allow each of
the means of T and B to have 8 bits with values 0 ~ 255, and the standard deviation
quotient qc = σc′/σc to have 7 bits with values 0.1 ~ 12.8. We do not allow qc to be 0
because otherwise the original pixel value cannot be recovered back by Eq. (4) for the
reason that σc/σc′ = 1/qc in Eq. (4) is not defined when qc = 0, where c = r, g, b.
(B) Choosing Appropriate Target Blocks and Rotating Blocks to Fit Better
In transforming the color characteristic of a tile image T to be that of a corresponding
target block B as described above, how to choose an appropriate B for each T (i.e.,
how to fit each T to a proper B) is an issue. If two blocks are more similar in color
distributions originally, a better transformation effect will result. For this, we use the
standard deviation of block colors as a measure to select the most similar target block
B for each tile image T. First, we compute the standard deviations of every tile image
and target block for each color channel. Then, we sort all the tile images to form a
sequence, Stile, and all the target blocks to form another, Starget, according to the mean
of the standard deviation values of the three colors. Finally, we fit the first tile image
in Stile to the first target block in Starget; fit the second in Stile to the second in Starget, etc.

Additionally, after a target block B is chosen for fitting a tile image T and after the
color characteristic of T is transformed to be that of B as described above, we conduct
a further improvement on the color similarity between the transformed T (denoted as
T ′) and B by rotating T′ into one of the four directions 0o, 90o, 180o and 270o, which
yields a rotated version T ′′ of T′ with the minimum RMSE value with respect to B
among the four directions for final use to fit T into B. Fig. 3 shows an example of the
result of applying this scheme to the secret image and target image shown in Figs. 3(a)
and 3(b), respectively. Fig. 3(c) is the mosaic image created without applying this
block rotation scheme and Fig. 3(d) is that created instead. We can see that Fig. 3(d)
has a better fitting result with a smaller RMSE value than that of Fig. 3(c).

(a) (b)

(c) (d)

Fig. 3. Illustration of effect of rotating tile images before fitting them into target blocks. (a) Secret image. (b)
Target image. (c) Mosaic image created from (a) and (b) without block rotations (with RMSE = 36.911 with
respect to (b)). (d) Mosaic image created from (a) and (b) with block rotations (with RMSE = 32.382).

(C) Handling Overflows/Underflows in Color Transformation
After the color transformation process between a tile image T and a target block B

is conducted as described before, some pixel values in the transformed block T ′ might
have overflows or underflows. To deal with this problem, we convert such values to
be non-overflow/non-underflow ones and record the value differences as residuals for

 5

use in later recovery of the exact pixel values. Specifically, we convert all the
transformed pixel values in T ′ not smaller than 255 to be 255, and all of those not
larger than 0 to be 0. Next, we compute the differences between the original pixel
values and the converted ones, 255 or 0, as the residuals and record them as
information associated with T′. But as can be seen from Eq. (3), the bounds of
possible residual values are unknown, and this causes a problem in deciding how
many bits should be used to record a residual. To solve this problem, we record the
residuals in the un-transformed color space rather than in the transformed one. That is,
by using the following two formulas we compute first the smallest possible color
value cS (with c = r, g, and b) in tile image T that becomes larger than 255 as well as
the largest possible value cL in T that becomes smaller than 0, after the color
transformation process has been conducted, as:

(1/)(255)S cc q c ' cμ μ⎡ ⎤= − +⎢ ⎥ ; (1/)(0)L cc q c ' cμ μ⎢ ⎥= − +⎣ ⎦ , (5)

respectively, where qc = σc′/σc as defined before. Then, for an un-transformed value ci
which becomes an overflow after the color transformation, we compute its residual as
|ci − cS|; and for an un-transformed ci which becomes an underflow, we compute its
residual as |cL − ci|. Now, the possible values for the residuals of ci are all in the range
of 0 ~ 255, therefore we can simply record each of them with 8 bits.
(D) Embedding Secret Image Recovery Information
In order to recover the secret image from the mosaic image, we have to embed
relevant recovery information into the mosaic image. For this, we adopt a technique
of reversible contrast mapping proposed by Coltuc and Chassery [7], which is applied
to the least significant bits of the pixels in the created mosaic image to hide data. The
information required to recover a tile image T which is mapped to a target block B
includes: (1) the index of B; (2) the optimal rotation angle of T ; (3) the means of T
and B and the related standard deviation quotients of all color channels; and (4) the
overflow/underflow residuals. These data are coded by binary strings respectively as
t1t2…tm, r1r2, m1m2…m48, q1q2…q21, and r1…rk, which together with the binary strings
for encoding the values m and k are concatenated into a bit stream M for tile image T.
Then, such bit streams of all the tile images are concatenated in order further into a
total bit stream Mt for the entire secret image. Moreover, in order to protect Mt from
being attacked, we encrypt it with a secret key to obtain an encrypted bit stream Mt′,
which finally is embedded into pixel pairs in the mosaic image using the method
proposed in [7]. A plot of the statistics of the numbers of required bits for embedding
Mt′ into the generated mosaic images shown in this paper is shown in Fig. 6(b).

After embedding the bit stream Mt′ into the mosaic image, we can recover the
secret image back. But some loss will be incurred in the recovered secret image (i.e.,
the recovered image is not all identical to the original one). The loss occurs in the
color transformation process using Eq. (3) where each pixel’s color value ci is
multiplied by the standard deviation quotient qc = σc/σc′ and the resulting real value
ci′′ is truncated to be an integer in the range of 0 through 255. However, because each
truncated part is smaller than the value of 1 when no overflow or underflow occurs,
the recovered value of ci using Eq. (4) is still precise enough. Even when
overflows/underflows occur at some pixels in the color transformation process, we
record their residual values as described previously and after using Eq. (4) to recover

 6

the pixel value ci, we can add the residual values back to the computed pixel values ci
to get the original exact pixel data, yielding a nearly-lossless recovered secret image.
According to our experimental results, each recovered secret image has a high PSNR
value in the range of 45~50 db with respect to the original secret image, or
equivalently, has very a small RMSE value around just 1.0 with respect to the
original secret image, as will be shown later in Section 5.

4 Mosaic Image Creation and Secret Image Recovery Algorithms
Based on the above discussions, detailed algorithms for mosaic image creation and
secret image recovery may now be described.
Algorithm 1. Secret-fragment-visible mosaic image creation.
Input: a secret image S with n tile images of size NT; a pre-selected target image T of
the same size of S; and a secret key K.
Output: a secret-fragment-visible mosaic image F.
Steps:
Stage 1.1 － fitting tile images into target blocks.
1. Divide secret image S into a sequence of n tile images of size NT, denoted as Stile =

{T1, T2, …, Tn}; and divide target image T into another sequence of n target blocks
also with size NT, denoted as Starget = {B1, B2, …, Bn}.

2. Compute the means (μr, μg, μb) and the standard deviations (σr, σg, σb) of each Ti
in Stile for the three color channels according to Eqs. (1) and (2); and compute the
average standard deviation σΤi = (σr + σg + σb)/3 for Ti where i = 1 through n.

3. Do similarly to the last step to compute the means (μr′, μg′, μb′), the standard
deviations (σr′, σg′, σb′), and the average standard deviation σBj = (σr′ + σg′ +
σb′)/3 for each Bj in Starget where j = 1 through n.

4. Sort the blocks in Stile and Starget according to the average standard deviation
values of the blocks; map in order the blocks in the sorted Stile to those in the
sorted Starget in a 1-to-1 manner; and reorder the mappings according to the indices
of the tile images into a mapping sequence L of the form of T1 → Bj1, T2 → Bj2, etc.

5. Create a mosaic image F by fitting the tile images of secret image S to the
corresponding target blocks of target image T according to mapping sequence L.

Stage 1.2 － performing color conversion between the tile images and target blocks.
6. For each pair Ti → Bji in mapping sequence L, let the means μc and μc′ of Ti and Bji

respectively be represented by 8 bits with values 0~255 and the standard deviation
quotients qc = σc′/σc by 7 bits with values 0.1~12.8 where c = r, g, b.

7. For each pixel pi in each tile image Ti of mosaic image F with color value ci where
c = r, g, b, transform ci into a new value ci′′ by Eq. (3); and if ci′′ is not smaller
than 255 (i.e., if an overflow occurs) or if it is not larger than 0 (i.e., if an
underflow occurs), assign ci′′ to be 255 or 0, respectively, and compute a residual
value for pixel pi by the way described in Section 3(C).

Stage 1.3 － rotating the tile images.
8. Compute the RMSE values of each color-transformed tile image Ti in F with

respect to its corresponding target block Bji
 after rotating Ti into the directions 0o,

90o, 180o and 270o; and rotate Ti into the optimal direction θo with the smallest
RMSE value.

 7

Stage 1.4 － embedding the secret image recovery information.
9. For each tile image Ti in F, construct a bit stream Mi for recovering Ti as described

in Section 3(D), including the bit-segments which encode the data items of: (1)
the index of the corresponding target block Bji; (2) the optimal rotation angle θο of
Ti ; (3) the means of Ti and Bji and the related standard deviation quotients of all
color channels; (4) the overflow/underflow residual values in Ti; (5) the number m
of bits to encode the index of a block; and (6) the number k of residual values.

10. Concatenate the bit streams Mi of all Ti in F in a raster-scan order to form a total
bit stream Mt; use the secret key K to encrypt Mt into another bit stream Mt′; and
embed Mt′ into F by reversible contrast mapping [7].

Algorithm 2. Secret image recovery.
Input: a mosaic image F with n tile images and the secret key K used in Algorithm 1.
Output: the secret image S embedded in F using Algorithm 1.
Steps:
Stage 2.1 － extracting the secret image recovery information.
1. Extract from mosaic image F the bit stream Mt′ for secret image recovery by a

reverse version of the reversible contrast mapping scheme proposed in [7] and
decrypt Mt′ using the secret key K into a non-encrypted version Mt.

2. Decompose Mt into n bit streams Mi for the n to-be-constructed tile images Ti in S,
respectively, where i = 1 through n.

3. Decode the bit stream Mi of each tile image Ti to obtain the following data: (1) the
index ji of the block Bji in F corresponding to Ti; (2) the optimal rotation angle θο
of Ti; (3) the means of Ti and Bji and the related standard deviation quotients of all
color channels; (4) the overflow/underflow residual values in Ti; (5) the number m
of bits to encode the index of a block; and (6) the number k of residual values.

Stage 2.2 － recovering the secret image.
4. Recover one by one in a raster-scan order the tile images Ti, i = 1 through n, of the

desired secret image S by the following steps: (1) rotate the block indexed by ji,
namely Bji, in F through the optimal angle θο and fit the resulting content into Ti to
form an initial tile image Ti; (2) use the extracted means and related standard
deviation quotients to recover the original pixel values in Ti according to Eq. (4);
(3) use the extracted means, standard deviation quotients, and Eqs. (5) to compute
the two parameters cS and cL; and (4) scan Ti to find out pixels with values 255 or
0 which indicate that overflows/underflows have occurred there, and add
respectively the values cS or cL to the corresponding residual values of the found
pixels, resulting in a final tile image Ti.

5. Compose all the final tile images to form the desired secret image S as output.

The time complexity of Algorithm 1 is O(nlogn) because the running time is
dominated by Step 4: sorting the blocks in Stile and Starget. And the time complexity of
Algorithm 2 is O(nNT) because it just extracts the embedded information and recovers
the secret image back with the extracted data.

5 Experimental Results
An experimental result is shown in Fig. 4, where 4(c) shows the created mosaic
image using Fig. 4(a) of size 1024×768 as the secret image and Fig. 4(b) of the same

 8

size as the target image. The tile image size is 8×8. The recovered secret image using
a correct key is shown in Fig. 4(d) which is quite similar to the original secret image
shown in Fig. 4(a). It has PSNR = 48.597 and RMSE = 0.948 with respect to the
secret image. In fact, it is difficult for a human to feel the difference between two
images when the PSNR is larger than 30 or when the RMSE is close to 1.0. It is noted
by the way that all other experimental results shown in this paper have PSNR values
larger than 47 and RMSE values close to 1.0, as seen in Figs. 6(c) and 6(d). Back to
discussions on the results shown in Fig. 4, Fig. 4(e) shows the recovered secret image
using a wrong key, which is a noise image. Figs. 4(f) through 4(h) show more results
using different tile image sizes. It can be seen from the figures that the created mosaic
image retains more details of the target image when the tile images are smaller. Fig.
6(a) also shows this fact in a similar way ⎯ mosaic images created with smaller tile
image sizes have smaller RMSE values with respect to the target image. However,
even when the tile image size is large (e.g., 32×32), the created mosaic image still
looks quite similar to the target image. On the other hand, the number of required bits
embedded for recovering the secret image is increased when the tile image becomes
smaller, as can be seen from Fig. 6(b).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. An Experimental result of secret-fragment-visible mosaic creation. (a) Secret image. (b) Target
image. (c) Mosaic image created with tile image size 8×8. (d) Recovered secret image using a correct key
with PSNR = 48.597 and with RMSE =0.948 with respect to secret image (a). (e) Recovered secret image
using a wrong key. (f)-(h) Mosaic images created with different tile-image sizes 16×16, 24×24, 32×32.

Fig. 5 shows a comparison of the results yielded by the proposed method and by

the method proposed by Lai and Tsai [5], where Figs. 5(a) and 5(f) are the input
secret images and Figs. 5(b) and 5(g) are the selected target images; Figs. 5(c) and
5(h) were created by Lai and Tsai [5]; and Figs 5(d) and 5(i) were created by the
proposed method. Also, Figs. 5(e) and 5(j) show the recovered secret images. It can

 9

be seen that the created mosaic images yielded by the proposed method have smaller
RMSE values with respect to the target images, implying that they are more similar to
the target images. And more importantly, the proposed method allows users to select
their favorite images for uses as target images. This provides great flexibility in
practical applications without the need to maintain a target image database which
usually is very large if mosaic images with high similarities to target images are to be
generated. By the way, it is noted that both the recovered secret images shown in Figs.
5(e) and 5(j) also have RMSE values close to 1.0 with respect to the respective secret
images, saying they are very close to the original secret images in appearance.

Moreover, we conducted experiments on a large data set with 127 different secret
image and target image pairs, and the result is included in Fig. 6 (as orange curves).

(a) (b)

(c) (d) (e)

(f) (g)

(h) (i) (j)

Fig. 5. Comparison of results of Lai and Tsai [5] and proposed method. (a) Secret image. (b) Target image.
(c) Mosaic image created by method proposed by Lai and Tsai [5] with RMSE=47.651. (d) Mosaic image
created by proposed method with RMSE = 33.935. (e) Recovered secret image with RMSE=0.993 with
respect to secret image (a). (f) Secret image of another experiment. (g) Target image. (h) Mosaic image
created by Lai and Tsai [5] with RMSE=38.036. (i) Mosaic image created by proposed method with
RMSE=27.084. (j) Recovered secret image with RMSE=0.874 with respect to secret image (f).

6 Conclusions
A new image steganography method has been proposed, which not only can be used
for secure keeping of secret images but also can be a new option to solve the
difficulty of hiding images with huge data volumes behind cover images. By the use
of proper pixel color transformation as well as skillful handling of

 10

overflows/underflows in the converted pixels’ colors, secret-fragment-visible mosaic
images of high similarities to arbitrarily-selected target images can be created with no
need of a target image database, and the original secret images can be recovered
nearly losslessly from the created mosaic images. Good experimental results have
shown the feasibility of the proposed method. Future studies may be directed to
applying the proposed method to images of color models other than the RGB.

0
5

10
15
20
25
30
35
40
45
50

8x8 16x16 24x24 32x32

R
M

SE

Fig. 2

Fig. 3

Fig. 4

Fig. 5(a)

Fig. 5(f)

Large dataset

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

8x8 16x16 24x24 32x32

R
eq

ui
re

d
bi

ts Fig. 2

Fig. 3

Fig. 4

Fig. 5(a)

Fig. 5(f)

Large dataset

(a) (b)

46

46.5

47

47.5

48

48.5

49

49.5

50

8x8 16x16 24x24 32x32

PS
N

R

Fig. 2

Fig. 3

Fig. 4

Fig. 5(a)

Fig. 5(f)

Large dataset

0

0.2

0.4

0.6

0.8

1

1.2

8x8 16x16 24x24 32x32

R
M

SE

Fig. 2

Fig. 3

Fig. 4

Fig. 5(a)

Fig. 5(f)

Large dataset

(c) (d)

Fig. 6. Plots of trends of various parameters versus different tile image sizes (8×8, 16×16,
24×24, 32×32) with input secret images all shown previously and a large data set with 127
different secret image and target image pairs. (a) RMSE values of created mosaic images with
respect to target images. (b) Numbers of required bits embedded for recovering secret images.
(c) PSNR values of recovered secret images with respect to original ones. (d) RMSE values of
recovered secret images with respect to original ones.

References
1. Bender, W., Gruhl, D., Morimoto, N., Lu, A.: Techniques for Data Hiding. IBM System

Journal, Vol. 35, 313－336 (1996)
2. Petitcolas, F.A.P., Anderson, R.J., Kuhn, M. G.: Information Hiding － a Survey.

Proceedings of IEEE, Vol. 87, No. 7, 1062－1078 (1999)
3. Thien, C. C., Lin, J. C.: A Simple and High-hiding Capacity Method for Hiding Digit-by-

digit Data in Images Based on Modulus Function. Pattern Recognition, Vol. 36, 2875－
2881 (2003)

4. Wang, R. Z., Chen, Y. S.: High-payload Image Steganography Using Two-way Block
Matching. IEEE Signal Processing Letters, Vol. 13, No. 3, 161－164 (2006)

5. Lai, I.J., Tsai, W.H.: Secret-fragment-visible Mosaic Image － A New Computer Art and
Its Application to Information Hiding. Accepted and to appear in IEEE Transactions on
Information Forensics and Security (2011)

6. Reinhard, E., Ashikhmin, M., Gooch, B., Shirley, P.: Color Transfer between Images.
IEEE Computer Graphics and Applications, Vol. 21, No. 5 (2001)

7. Coltuc, D., Chassery, J.-M.: Very Fast Watermarking by Reversible Contrast Mapping.
IEEE Signal Processing Letters, Vol. 14, No. 4, 255－258 (2007)

