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Abstract. A new image steganography method is proposed, which creates 
automatically from an arbitrarily-selected target image a so-called secret-
fragment-visible mosaic image as a camouflage of a given secret image. The 
mosaic image is yielded by dividing the secret image into fragments and 
transforming their color characteristics to be those of the blocks of the target 
image. Skillful techniques are designed for use in the color transformation 
process so that the secret image may be recovered nearly losslessly. The 
method not only creates a steganographic effect useful for secure keeping of 
secret images, but also provides a new way to solve the difficulty of hiding 
secret images with huge data volumes into target images. Good experimental 
results show the feasibility of the proposed method. 

1   Introduction 
Steganography is the science of hiding secret messages into cover media so that no 
one can realize the existence of the secret data [1-2]. Existing steganography 
techniques may be classified into three categories ⎯ image, video, and text 
steganographies, and image steganography aims to embed a secret message into a 
cover image with the yielded stego-image looking like the original cover image. 
Many image steganography techniques have been proposed [1-4], and some of them 
try to hide secret images behind other images [3-4]. The main issue in these 
techniques is the difficulty to hide a huge amount of image data into the cover image 
without causing intolerable distortions in the stego-image. 

Recently, Lai and Tsai [5] proposed a new type of computer art image, called 
secret-fragment-visible mosaic image, which is the result of random rearrangement of 
the fragments of a secret image in disguise of another image called target image, 
creating exactly an effect of image steganography. The above-mentioned difficulty of 
hiding a huge volume of image data behind a cover image is solved automatically by 
this type of mosaic image. In more detail, as illustrated by Fig. 1, a given secret image 
is first “chopped” into tiny rectangular fragments, and a target image with a similar 
color distribution is selected from a database. Then, the fragments are arranged in a 
random fashion controlled by a key to fit into the blocks of the target image, yielding 
a stego-image with a mosaic appearance. The stego-image preserves all the secret 
image fragments in appearance, but no one can figure out what the original secret 
image looks like. The method is a new way for secure keeping of secret images. 
However, a large image database is required in order to select a color-similar target 
image for each input secret image, so that the generated mosaic image can be 
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sufficiently similar to the selected target image. Using their method, a user is not 
allowed to select freely his/her favorite image for use as the target image. 

 

 
Fig. 1. Illustration of creation of secret-fragment-visible mosaic image proposed in [5]. 

 

Accordingly, we propose in this study a new method that creates secret-fragment-
visible mosaic images with no need of a database; any image may be selected as the 
target image for a given secret image. Fig. 2 shows a result yielded by the proposed 
method. Specifically, after a target image is selected arbitrarily, the given secret 
image is first divided into rectangular fragments, which then are fit into similar blocks 
in the target image according to a similarity criterion based on color variations. Next, 
the color characteristic of each tile image is transformed to be that of the 
corresponding block in the target image, resulting in a mosaic image which looks like 
the target image. Such a type of camouflage image can be used for securely keeping 
of a secret image in disguise of any pre-selected target image. Relevant schemes are 
also proposed to conduct nearly-lossless recovery of the original secret image. 

 

   
(a) (b) (c) 

Fig. 2. A result yielded by proposed method. (a) Secret image. (b) Target image. (c) Secret-fragment-visible 
mosaic image created from (a) and (b).  

 

In the remainder of this paper, the idea of the proposed method is described in 
Sections 2 and 3. Detailed algorithms for mosaic image creation and secret image 
recovery are given in Section 4. In Section 5, experimental results are presented to 
show the feasibility of the proposed method, followed by conclusions in Section 6. 

2   Basic Idea of Proposed Method 
The proposed method includes two main phases: mosaic image creation and secret 
image recovery. The first phase includes four stages: (1) stage 1.1 － fitting the tile 
images of a given secret image into the target blocks of a pre-selected target image; (2) 
stage 1.2 － transforming the color characteristic of each tile image in the secret 
image to become that of the corresponding target block in the target image; (3) stage 
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1.3 － rotating each tile image into a direction with the minimum RMSE value with 
respect to its corresponding target block; and (4) stage 1.4 － embedding relevant 
information into the created mosaic image for future recovery of the secret image. 
The second phase includes two stages: (1) stage 2.1 － extracting the embedded 
information for secret image recovery from the mosaic image; and (2) stage 2.2 － 
recovering the secret image using the extracted information. 

3   Problems and Proposed Solutions for Mosaic Image Creation 
The problems encountered in generating mosaic images by the proposed method are 
discussed in this section, and the proposed solutions to them are also presented. 
(A) Color Transformations between Blocks 
Suppose that in the first phase of the proposed method, a tile image T in a given 
secret image is to be fit into a target block B in a pre-selected target image. Since the 
color characteristics of T and B are different from each other, how to change their 
color distributions to make them look alike is the main issue here. Reinhard et al. [6] 
proposed a work about color transfer in this aspect, which converts the color 
characteristic of one image to be that of another in the lαβ color space. This idea is an 
answer to the issue and is adopted in this study. But instead of conducting color 
conversion in the lαβ color space, we do it in the RGB space to reduce the volume of 
the generated information which should be embedded in the created mosaic image for 
later recovery of the original secret image. 

More specifically, let T and B be described as two pixel sets {p1, p2, …, pn} and 
{p1′, p2′, …, pn′}, respectively, assuming that both blocks are of the same dimensions 
with size n. Let the color of pixel pi in the RGB color space be denoted by (ri, gi, bi) 
and that of pi′ by (ri′, gi′, bi′). First, we compute the means and standard deviations of 
T and B, respectively, in each of the three color channels R, G, and B by the following 
formulas:  
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where ci and ci′ denote the C-channel values of pixels pi and pj′, respectively, with c 
denoting r, g, b. Next, we compute new color values (ri′′, gi′′, bi′′) for each pi in T by: 

( )( )i c c i c cc '' ' / c 'σ σ μ μ= − +  with c = r, g, and b. (3) 
This results in a new tile image T ′ with a new color characteristic similar to that of 
target block B. Also, we use the following formula, which is the inverse of Eq. (3), to 
compute the original color values (ri, gi, bi) of pi from the new ones (ri′′, gi′′, bi′′): 

( / )( )i c c i c cc ' c'' 'σ σ μ μ= − +  with c = r, g, and b. (4) 
Furthermore, we have to embed into the created mosaic image sufficient 

information about the transformed tile image T ′ for use in later recovery of the 
original secret image. For this, theoretically we can use Eq. (4) to compute the 
original pixel value of pi. But the mean and standard deviation values are all real 
numbers, and it is not practical to embed real numbers, each with many digits, in the 
generated mosaic image. Therefore, we limit the numbers of bits used to represent a 
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mean or a standard deviation. Specifically, for each color channel we allow each of 
the means of T and B to have 8 bits with values 0 ~ 255, and the standard deviation 
quotient qc = σc′/σc to have 7 bits with values 0.1 ~ 12.8. We do not allow qc to be 0 
because otherwise the original pixel value cannot be recovered back by Eq. (4) for the 
reason that σc/σc′ = 1/qc in Eq. (4) is not defined when qc = 0, where c = r, g, b. 
(B) Choosing Appropriate Target Blocks and Rotating Blocks to Fit Better 
In transforming the color characteristic of a tile image T to be that of a corresponding 
target block B as described above, how to choose an appropriate B for each T (i.e., 
how to fit each T to a proper B) is an issue. If two blocks are more similar in color 
distributions originally, a better transformation effect will result. For this, we use the 
standard deviation of block colors as a measure to select the most similar target block 
B for each tile image T. First, we compute the standard deviations of every tile image 
and target block for each color channel. Then, we sort all the tile images to form a 
sequence, Stile, and all the target blocks to form another, Starget, according to the mean 
of the standard deviation values of the three colors. Finally, we fit the first tile image 
in Stile to the first target block in Starget; fit the second in Stile to the second in Starget, etc. 

Additionally, after a target block B is chosen for fitting a tile image T and after the 
color characteristic of T is transformed to be that of B as described above, we conduct 
a further improvement on the color similarity between the transformed T (denoted as 
T ′) and B by rotating T′ into one of the four directions 0o, 90o, 180o and 270o, which 
yields a rotated version T ′′ of T′ with the minimum RMSE value with respect to B 
among the four directions for final use to fit T into B. Fig. 3 shows an example of the 
result of applying this scheme to the secret image and target image shown in Figs. 3(a) 
and 3(b), respectively. Fig. 3(c) is the mosaic image created without applying this 
block rotation scheme and Fig. 3(d) is that created instead. We can see that Fig. 3(d) 
has a better fitting result with a smaller RMSE value than that of Fig. 3(c). 

 

  
(a) (b) 

  
(c) (d) 

Fig. 3. Illustration of effect of rotating tile images before fitting them into target blocks. (a) Secret image. (b) 
Target image. (c) Mosaic image created from (a) and (b) without block rotations (with RMSE = 36.911 with 
respect to (b)). (d) Mosaic image created from (a) and (b) with block rotations (with RMSE = 32.382). 

(C) Handling Overflows/Underflows in Color Transformation 
After the color transformation process between a tile image T and a target block B 

is conducted as described before, some pixel values in the transformed block T ′ might 
have overflows or underflows. To deal with this problem, we convert such values to 
be non-overflow/non-underflow ones and record the value differences as residuals for 
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use in later recovery of the exact pixel values. Specifically, we convert all the 
transformed pixel values in T ′ not smaller than 255 to be 255, and all of those not 
larger than 0 to be 0. Next, we compute the differences between the original pixel 
values and the converted ones, 255 or 0, as the residuals and record them as 
information associated with T′. But as can be seen from Eq. (3), the bounds of 
possible residual values are unknown, and this causes a problem in deciding how 
many bits should be used to record a residual. To solve this problem, we record the 
residuals in the un-transformed color space rather than in the transformed one. That is, 
by using the following two formulas we compute first the smallest possible color 
value cS (with c = r, g, and b) in tile image T that becomes larger than 255 as well as 
the largest possible value cL in T that becomes smaller than 0, after the color 
transformation process has been conducted, as: 

(1/ )(255 )S cc q c ' cμ μ⎡ ⎤= − +⎢ ⎥ ; (1/ )(0 )L cc q c ' cμ μ⎢ ⎥= − +⎣ ⎦ , (5) 

respectively, where qc = σc′/σc as defined before. Then, for an un-transformed value ci 
which becomes an overflow after the color transformation, we compute its residual as 
|ci − cS|; and for an un-transformed ci which becomes an underflow, we compute its 
residual as |cL − ci|. Now, the possible values for the residuals of ci are all in the range 
of 0 ~ 255, therefore we can simply record each of them with 8 bits. 
(D) Embedding Secret Image Recovery Information 
In order to recover the secret image from the mosaic image, we have to embed 
relevant recovery information into the mosaic image. For this, we adopt a technique 
of reversible contrast mapping proposed by Coltuc and Chassery [7], which is applied 
to the least significant bits of the pixels in the created mosaic image to hide data. The 
information required to recover a tile image T which is mapped to a target block B 
includes: (1) the index of B; (2) the optimal rotation angle of T ; (3) the means of T 
and B and the related standard deviation quotients of all color channels; and (4) the 
overflow/underflow residuals. These data are coded by binary strings respectively as 
t1t2…tm, r1r2, m1m2…m48, q1q2…q21, and r1…rk, which together with the binary strings 
for encoding the values m and k are concatenated into a bit stream M for tile image T. 
Then, such bit streams of all the tile images are concatenated in order further into a 
total bit stream Mt for the entire secret image. Moreover, in order to protect Mt from 
being attacked, we encrypt it with a secret key to obtain an encrypted bit stream Mt′, 
which finally is embedded into pixel pairs in the mosaic image using the method 
proposed in [7]. A plot of the statistics of the numbers of required bits for embedding 
Mt′ into the generated mosaic images shown in this paper is shown in Fig. 6(b). 

After embedding the bit stream Mt′ into the mosaic image, we can recover the 
secret image back. But some loss will be incurred in the recovered secret image (i.e., 
the recovered image is not all identical to the original one). The loss occurs in the 
color transformation process using Eq. (3) where each pixel’s color value ci is 
multiplied by the standard deviation quotient qc = σc/σc′ and the resulting real value 
ci′′ is truncated to be an integer in the range of 0 through 255. However, because each 
truncated part is smaller than the value of 1 when no overflow or underflow occurs, 
the recovered value of ci using Eq. (4) is still precise enough. Even when 
overflows/underflows occur at some pixels in the color transformation process, we 
record their residual values as described previously and after using Eq. (4) to recover 
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the pixel value ci, we can add the residual values back to the computed pixel values ci 
to get the original exact pixel data, yielding a nearly-lossless recovered secret image. 
According to our experimental results, each recovered secret image has a high PSNR 
value in the range of 45~50 db with respect to the original secret image, or 
equivalently, has very a small RMSE value around just 1.0 with respect to the 
original secret image, as will be shown later in Section 5. 

4   Mosaic Image Creation and Secret Image Recovery Algorithms 
Based on the above discussions, detailed algorithms for mosaic image creation and 
secret image recovery may now be described. 
Algorithm 1. Secret-fragment-visible mosaic image creation.  
Input: a secret image S with n tile images of size NT; a pre-selected target image T of 
the same size of S; and a secret key K. 
Output: a secret-fragment-visible mosaic image F. 
Steps: 
Stage 1.1 － fitting tile images into target blocks. 
1. Divide secret image S into a sequence of n tile images of size NT, denoted as Stile = 

{T1, T2, …, Tn}; and divide target image T into another sequence of n target blocks 
also with size NT, denoted as Starget = {B1, B2, …, Bn}. 

2. Compute the means (μr, μg, μb) and the standard deviations (σr, σg, σb) of each Ti 
in Stile for the three color channels according to Eqs. (1) and (2); and compute the 
average standard deviation σΤi = (σr + σg + σb)/3 for Ti where i = 1 through n. 

3. Do similarly to the last step to compute the means (μr′, μg′, μb′), the standard 
deviations (σr′, σg′, σb′), and the average standard deviation σBj = (σr′ + σg′ + 
σb′)/3 for each Bj in Starget where j = 1 through n. 

4. Sort the blocks in Stile and Starget according to the average standard deviation 
values of the blocks; map in order the blocks in the sorted Stile to those in the 
sorted Starget in a 1-to-1 manner; and reorder the mappings according to the indices 
of the tile images into a mapping sequence L of the form of T1 → Bj1, T2 → Bj2, etc. 

5. Create a mosaic image F by fitting the tile images of secret image S to the 
corresponding target blocks of target image T according to mapping sequence L. 

Stage 1.2 － performing color conversion between the tile images and target blocks. 
6. For each pair Ti → Bji in mapping sequence L, let the means μc and μc′ of Ti and Bji

 
respectively be represented by 8 bits with values 0~255 and the standard deviation 
quotients qc = σc′/σc by 7 bits with values 0.1~12.8 where c = r, g, b. 

7. For each pixel pi in each tile image Ti of mosaic image F with color value ci where 
c = r, g, b, transform ci into a new value ci′′ by Eq. (3); and if ci′′ is not smaller 
than 255 (i.e., if an overflow occurs) or if it is not larger than 0 (i.e., if an 
underflow occurs), assign ci′′ to be 255 or 0, respectively, and compute a residual 
value for pixel pi by the way described in Section 3(C). 

Stage 1.3 － rotating the tile images. 
8. Compute the RMSE values of each color-transformed tile image Ti in F with 

respect to its corresponding target block Bji
 after rotating Ti into the directions 0o, 

90o, 180o and 270o; and rotate Ti into the optimal direction θo with the smallest 
RMSE value. 



 7

Stage 1.4 － embedding the secret image recovery information. 
9. For each tile image Ti in F, construct a bit stream Mi for recovering Ti as described 

in Section 3(D), including the bit-segments which encode the data items of: (1) 
the index of the corresponding target block Bji; (2) the optimal rotation angle θο of 
Ti ; (3) the means of Ti and Bji and the related standard deviation quotients of all 
color channels; (4) the overflow/underflow residual values in Ti; (5) the number m 
of bits to encode the index of a block; and (6) the number k of residual values. 

10. Concatenate the bit streams Mi of all Ti in F in a raster-scan order to form a total 
bit stream Mt; use the secret key K to encrypt Mt into another bit stream Mt′; and 
embed Mt′ into F by reversible contrast mapping [7]. 

Algorithm 2. Secret image recovery. 
Input: a mosaic image F with n tile images and the secret key K used in Algorithm 1. 
Output: the secret image S embedded in F using Algorithm 1. 
Steps: 
Stage 2.1 － extracting the secret image recovery information. 
1. Extract from mosaic image F the bit stream Mt′ for secret image recovery by a 

reverse version of the reversible contrast mapping scheme proposed in [7] and 
decrypt Mt′ using the secret key K into a non-encrypted version Mt. 

2. Decompose Mt into n bit streams Mi for the n to-be-constructed tile images Ti in S, 
respectively, where i = 1 through n. 

3. Decode the bit stream Mi of each tile image Ti to obtain the following data: (1) the 
index ji of the block Bji in F corresponding to Ti; (2) the optimal rotation angle θο 
of Ti; (3) the means of Ti and Bji and the related standard deviation quotients of all 
color channels; (4) the overflow/underflow residual values in Ti; (5) the number m 
of bits to encode the index of a block; and (6) the number k of residual values. 

Stage 2.2 － recovering the secret image. 
4. Recover one by one in a raster-scan order the tile images Ti, i = 1 through n, of the 

desired secret image S by the following steps: (1) rotate the block indexed by ji, 
namely Bji, in F through the optimal angle θο and fit the resulting content into Ti to 
form an initial tile image Ti; (2) use the extracted means and related standard 
deviation quotients to recover the original pixel values in Ti according to Eq. (4); 
(3) use the extracted means, standard deviation quotients, and Eqs. (5) to compute 
the two parameters cS and cL; and (4) scan Ti to find out pixels with values 255 or 
0 which indicate that overflows/underflows have occurred there, and add 
respectively the values cS or cL to the corresponding residual values of the found 
pixels, resulting in a final tile image Ti. 

5. Compose all the final tile images to form the desired secret image S as output. 

The time complexity of Algorithm 1 is O(nlogn) because the running time is 
dominated by Step 4: sorting the blocks in Stile and Starget. And the time complexity of 
Algorithm 2 is O(nNT) because it just extracts the embedded information and recovers 
the secret image back with the extracted data. 

5   Experimental Results 
An experimental result is shown in Fig. 4, where 4(c) shows the created mosaic 
image using Fig. 4(a) of size 1024×768 as the secret image and Fig. 4(b) of the same 
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size as the target image. The tile image size is 8×8. The recovered secret image using 
a correct key is shown in Fig. 4(d) which is quite similar to the original secret image 
shown in Fig. 4(a). It has PSNR = 48.597 and RMSE = 0.948 with respect to the 
secret image. In fact, it is difficult for a human to feel the difference between two 
images when the PSNR is larger than 30 or when the RMSE is close to 1.0. It is noted 
by the way that all other experimental results shown in this paper have PSNR values 
larger than 47 and RMSE values close to 1.0, as seen in Figs. 6(c) and 6(d). Back to 
discussions on the results shown in Fig. 4, Fig. 4(e) shows the recovered secret image 
using a wrong key, which is a noise image. Figs. 4(f) through 4(h) show more results 
using different tile image sizes. It can be seen from the figures that the created mosaic 
image retains more details of the target image when the tile images are smaller. Fig. 
6(a) also shows this fact in a similar way ⎯ mosaic images created with smaller tile 
image sizes have smaller RMSE values with respect to the target image. However, 
even when the tile image size is large (e.g., 32×32), the created mosaic image still 
looks quite similar to the target image. On the other hand, the number of required bits 
embedded for recovering the secret image is increased when the tile image becomes 
smaller, as can be seen from Fig. 6(b). 

 

  
(a) (b) (c) (d) 

  
(e) (f) (g) (h) 

Fig. 4. An Experimental result of secret-fragment-visible mosaic creation. (a) Secret image. (b) Target 
image. (c) Mosaic image created with tile image size 8×8. (d) Recovered secret image using a correct key 
with PSNR = 48.597 and with RMSE =0.948 with respect to secret image (a). (e) Recovered secret image 
using a wrong key. (f)-(h) Mosaic images created with different tile-image sizes 16×16, 24×24, 32×32. 

 
Fig. 5 shows a comparison of the results yielded by the proposed method and by 

the method proposed by Lai and Tsai [5], where Figs. 5(a) and 5(f) are the input 
secret images and Figs. 5(b) and 5(g) are the selected target images; Figs. 5(c) and 
5(h) were created by Lai and Tsai [5]; and Figs 5(d) and 5(i) were created by the 
proposed method. Also, Figs. 5(e) and 5(j) show the recovered secret images. It can 
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be seen that the created mosaic images yielded by the proposed method have smaller 
RMSE values with respect to the target images, implying that they are more similar to 
the target images. And more importantly, the proposed method allows users to select 
their favorite images for uses as target images. This provides great flexibility in 
practical applications without the need to maintain a target image database which 
usually is very large if mosaic images with high similarities to target images are to be 
generated. By the way, it is noted that both the recovered secret images shown in Figs. 
5(e) and 5(j) also have RMSE values close to 1.0 with respect to the respective secret 
images, saying they are very close to the original secret images in appearance.  

Moreover, we conducted experiments on a large data set with 127 different secret 
image and target image pairs, and the result is included in Fig. 6 (as orange curves). 

 

  
(a) (b) 

   
(c) (d) (e) 

  
(f) (g) 

   
(h) (i) (j) 

Fig. 5. Comparison of results of Lai and Tsai [5] and proposed method. (a) Secret image. (b) Target image. 
(c) Mosaic image created by method proposed by Lai and Tsai [5] with RMSE=47.651. (d) Mosaic image 
created by proposed method with RMSE = 33.935. (e) Recovered secret image with RMSE=0.993 with 
respect to secret image (a). (f) Secret image of another experiment. (g) Target image. (h) Mosaic image 
created by Lai and Tsai [5] with RMSE=38.036. (i) Mosaic image created by proposed method with 
RMSE=27.084. (j) Recovered secret image with RMSE=0.874 with respect to secret image (f). 

6   Conclusions 
A new image steganography method has been proposed, which not only can be used 
for secure keeping of secret images but also can be a new option to solve the 
difficulty of hiding images with huge data volumes behind cover images. By the use 
of proper pixel color transformation as well as skillful handling of 
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overflows/underflows in the converted pixels’ colors, secret-fragment-visible mosaic 
images of high similarities to arbitrarily-selected target images can be created with no 
need of a target image database, and the original secret images can be recovered 
nearly losslessly from the created mosaic images. Good experimental results have 
shown the feasibility of the proposed method. Future studies may be directed to 
applying the proposed method to images of color models other than the RGB. 
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Fig. 6. Plots of trends of various parameters versus different tile image sizes (8×8, 16×16, 
24×24, 32×32) with input secret images all shown previously and a large data set with 127 
different secret image and target image pairs. (a) RMSE values of created mosaic images with 
respect to target images. (b) Numbers of required bits embedded for recovering secret images. 
(c) PSNR values of recovered secret images with respect to original ones. (d) RMSE values of 
recovered secret images with respect to original ones. 
 

References 
1. Bender, W., Gruhl, D., Morimoto, N., Lu, A.: Techniques for Data Hiding. IBM System 

Journal, Vol. 35, 313－336 (1996)  
2. Petitcolas, F.A.P., Anderson, R.J., Kuhn, M. G.: Information Hiding － a Survey. 

Proceedings of IEEE, Vol. 87, No. 7, 1062－1078 (1999)  
3. Thien, C. C., Lin, J. C.: A Simple and High-hiding Capacity Method for Hiding Digit-by-

digit Data in Images Based on Modulus Function. Pattern Recognition, Vol. 36, 2875－
2881 (2003) 

4. Wang, R. Z., Chen, Y. S.: High-payload Image Steganography Using Two-way Block 
Matching. IEEE Signal Processing Letters, Vol. 13, No. 3, 161－164 (2006) 

5. Lai, I.J., Tsai, W.H.: Secret-fragment-visible Mosaic Image － A New Computer Art and 
Its Application to Information Hiding. Accepted and to appear in IEEE Transactions on 
Information Forensics and Security (2011) 

6. Reinhard, E., Ashikhmin, M., Gooch, B., Shirley, P.: Color Transfer between Images. 
IEEE Computer Graphics and Applications, Vol. 21, No. 5 (2001)  

7. Coltuc, D., Chassery, J.-M.: Very Fast Watermarking by Reversible Contrast Mapping. 
IEEE Signal Processing Letters, Vol. 14, No. 4, 255－258 (2007) 


