
在黑白影像中用區塊圖樣編碼法作失真最小化之動態規劃

式資料隱藏
A Dynamic-Programming Approach to Data Hiding in Binary Im-
ages Using Block Pattern Coding with Distortion Minimization*

I-Shi Lee (李義溪)# and Wen-Hsiang Tsai (蔡文祥)
Department of Computer and Information Science

National Chiao Tung University
Hsinchu, Taiwan 300

Republic of China
E-mails: gis87809@cis.nctu.edu.tw, whtsai@cis.nctu.edu.tw

摘要

本篇論文提出一種在黑白影像中用區塊

圖樣編碼法作失真最小化之動態規劃式資料

隱藏的新方法。在資料隱藏過程中，二進位的

秘密資料被隱藏於原圖中特殊的 2×2 區塊
中，而隱藏的方式是改變影像區塊中的像素值

至一圖樣，而此圖樣係根據一種新的圖樣編碼

法，用以代表要被隱藏的秘密資料。抽出隱藏

的秘密資料則是靠比對圖中特殊區塊的圖樣

而達成。為了在黑白影像中隱藏更多資料，並

同時維持影像的品質，我們建議使用多個區塊

圖樣編碼表並選擇一個最佳的編碼表來使

用。我們也使用貪婪及動態規劃搜尋演算法來

將秘密影像的失真最小化。實驗結果顯示不僅

平均一個區塊可以隱藏更多的資料，而且也降

低了失真率，此證明我們的方法確實有效。

關鍵詞：資料隱藏，黑白影像，區塊圖樣編碼

法，動態規劃法，貪婪搜尋，失真最

小化

Abstract

A new approach to data hiding in binary im-
ages based on block pattern coding and the dy-
namic programming technique is proposed. A
binary secret value is embedded into a 2×2 block
in a cover image by changing the block pixel
values into a pattern which represents the secret
value according to a coding scheme proposed in
this study. And extraction of the hidden secret

* This work was supported partially by the MOE Program for

Promoting Academic Excellency of Universities under the
grant number 89-1-FA04-1-4.

#Also with Department of Management Information at
Kuang Wu Institute of Technology.
 To whom all correspondence should be sent.

data is accomplished by block pattern decoding.
To embed more data in a binary image and
maintain the image quality simultaneously, mul-
tiple block pattern encoding tables are designed,
from which an optimal one is selected for each
input image. A dynamic programming algorithm
is also designed for data embedding to minimize
the resulting distortion in the stego-image. Ac-
cordingly, not only more data can be embedded
in a block on the average, but also the overall
distortion is reduced in an optimal sense. Ex-
perimental results are also included to show the
effectiveness of the proposed approach.

Key words: data hiding, binary images, block

pattern encoding, dynamic pro-
gramming, greedy search, distor-
tion minimization.

I. Introduction
Many data hiding techniques have been pro-

posed for a variety of applications of digital im-
ages in recent years [1, 3-5, 7, 11]. Most of the
techniques were proposed for color and gray-
scale images because pixels in such images take
a wide range of values and so are more proper
for data hiding. One simple approach is to use
the LSB replacement technique [11] to hide se-
cret data or authentication signals. However,
data hiding in binary images is a more challeng-
ing work. Because binary image pixels have
drastic contrast, it is easier for humans’ eyes to
find out pixel value changes in binary images.
Therefore, it is more difficult to hide data into
binary images than into color or gray-level im-
ages. Wu et al. [10] embedded secret data in
specific image blocks that are selected with
higher “flippability” scores by pattern matching.
Manipulated flippable pixels on the image re-
gion boundary are then used to embed a signifi-
cant amount of data without causing noticeable

- 1 -

artifacts. Pan et al. [6] changed pixel values in
image blocks, mapped block contents into the
secret data, and used a secret key and a weight
matrix to protect the hidden data. Given an im-
age block of size m×n, the scheme can conceal
up to log2(m×n + 1) bits of data in the image
by changing, at most, two bits in an image block.
Koch and Zhao [2] embedded a bit 0 or 1 in a
block by changing the number of black pixels in
the block to be larger or smaller than that of
white ones, respectively. Tzeng and Tsai [8]
encoded the edge features of binary images into
4×4 block patterns, and authenticated the images
by pattern matching. Tzeng and Tsai [9] also
proposed a new feature, called surrounding edge
count, for measuring the structural randomness
in a 3×3 image block, and defined “pixel em-
beddability” from the viewpoint of minimizing
image distortion. Accordingly, embeddable im-
age pixels suitable for hiding secret data can be
selected.

In a binary image, there are only two pixel
values, 0 and 1, and the corresponding pixels
may be called black and white ones, respectively.
When data are embedded in a binary image, the
image pixels will be changed from black to
white or from white to black. The distortion rate
is 50% in general data hiding methods for binary
images. We propose in this paper a new ap-
proach to data hiding based on a block pattern
coding technique and a dynamic programming
algorithm. The approach can be used to embed
more data in a block of a binary image, and
minimize the resulting stego-image distortion
simultaneously.

In order to embed more data in a binary im-
age, more pixels need be changed; however, the
quality of the resulting stego-image will get
worse. On the contrary, in order to maintain the
quality of the resulting image, the amount of the
embedded data should be limited. The proposed
approach is designed to be a compromise be-
tween the embedded data volume and the result-
ing image distortion. Our method can extract
embedded data without referencing the original
image. It also has the merit of concealing up to
three data bits in a 2×2 block by changing the
smallest number of bits in a block. Contrastively,
most existing methods for hiding data in binary
images can embed only one or two data bits in a
2×2 image block [6, 8].

In the remainder of this paper, the proposed
method for dealing with 2×2 image blocks is
first described in Section II. Some experimental
results are shown in Section III, followed by a
conclusion in Section IV.

II. Proposed Data Embedding
Method

The proposed method is designed to hide se-

cret data behind binary images in random fash-
ions controlled by secret keys. The method con-
sists of a data embedding process and a data ex-
traction process. In this section, the ideas behind
the proposed method are presented first, fol-
lowed by the details of the proposed data em-
bedding and extraction processes.

A. Encoding Block Patterns for Secret Data
Representation

In order to embed secret data into a binary
cover image, every 2×2 block of the cover image
is regarded as a pattern with a corresponding
4-bit binary value in this study, with each black
pixel representing a bit 0 and each white one
representing 1. An illustration is shown in Figure
1. Therefore, in a 2×2 block, possible binary
values of the block pattern are 00002 through
11112, where “00002” means an entirely black
block while “11112” means an entirely white
one.

A 2×2 block pattern Corresponding
binary value

b1b2b3b4

Figure 1. Il
r

The ma
method is b
encoding ta
into a certa
the code be
data embed
block patter
blocks beco
embedded.
signed for u
The idea be
scribed as f
that such a
ones all of
the propose
among them

The num
block are 1
the need to
‘1’, so we
represent a
sibility of c
mal one to

- - 2

b1 b2

b b

0110

3 4

lustration of block patterns and cor-
esponding binary values.

in idea of the proposed data hiding
ased on the use of a block pattern
ble which maps each block pattern
in code for use as hidden data with
ing up to three bits in length. And

ding is accomplished by changing the
ns so that the codes of the resulting
me just the input secret data to be
A block pattern encoding table de-
se in this study is shown in Table 1.
hind the design of this table is de-
ollows. It is emphasized by the way
table is just one of the many possible
which are usable for data hiding, and
d approach chooses an optimal table
 for each specific input image.
ber of possible patterns in a 2×2

6. This number is much larger than
represent the two secret bits ‘0’ and
may use multiple block patterns to
single secret value, allowing the pos-
hoosing among the patterns an opti-
replace the original image block in

the data embedding process, thus reducing the
resulting image distortion in the replaced block.
Furthermore, we wish to embed more data in a
block, and for this goal we may use a block pat-
tern to represent more than one bit of secret data.

For example, we may use both the block
pattern t1 = 11012 and the pattern t2 = 11102 to
represent the two-bit secret value s = 002. In this
way, when we want to embed, for example, the
secret value s = 002 into a block B with pattern v
= 01102, we have the two choices of block pat-
terns t1 = 11012 and t2 = 11102 instead of the
conventional case of just one, from which we
can choose t2 = 11102 to replace the pattern v =
01102 of the block B, resulting in the smaller
distortion of just a 1-bit error. Note that if only
the choice of t1 = 11012 is allowed, then the error
will be 3 bits which mean a larger distortion in
the replaced block. It is such allowance of mul-
tiple choices for block pattern replacement that
achieves distortion reduction in the proposed
approach.

Accordingly, we group in this study the 16
possible block patterns in a 2×2 block B into
distinct sets according to the entropy values E of
the block patterns, where an entropy value E of a
block pattern P is defined as follows:
E = − = −p

k
k

k pp∑ 2log 0 log2 p0 − p1log2 p1

where p0 and p1 respectively are the occurrence
probability values of black and white pixels ap-
pearing in P computed as

p0 = (number of black pixels in B)/4;
 p1 = (number of white pixels in B)/4.

By the above definition, there are three possible
entropy values 0, 0.811, and 1 in a 2×2 block. A
pattern P in a set with a higher entropy value E
is presumably more random in its black and
white arrangement, and so is more suitable for
hiding more secret data without causing a no-
ticeable change. We summarize the above dis-
cussions about secret value encoding in Table 1.
B. Sketch of proposed data hiding idea

In the proposed data embedding process, the
more data we embed in a 2×2 block, the worse
the resulting image quality becomes. Therefore,
we must control the number of destructed pixels
in a block to reduce the image distortion. The
idea of the data embedding process we propose
in this studyis sketched as four major steps in the
follow, which includes two folds of distortion
minimization.
(I). Checking the data embeddability of each

block: If a 2×2 image block is entirely
black or white, discard it as unsuitable for
data embedding.

(II). Randomizing the embedding position:
Use a secret key as well as a random num-
ber generator to select randomly a sequen-

tial list blocks for data embedding. This
enhances the security of the hidden data
from being accessed.

(III). Using multiple block pattern encoding
tables for the first-fold distortion reduc-
tion: Generate all possible block pattern
encoding tables and select an optimal one
in the data embedding process, in order to
decrease the distortion.

(IV). Applying optimal search techniques for
the second-fold distortion reduction: We
design cost functions for measuring degrees
of block pattern changes for use in opti-
mizing the block pattern replacement op-
erations in the data embedding process.
Apply the optimal search technique of dy-
namic programming to segment the input
secret data stream optimally into codes end
embed them in the input image according
to a cost function designed in advance for
measuring the degree of the pattern change
in each image block. This reduces the re-
sulting distortion further in a global sense.

C. Use of Multiple Block Pattern Encoding
Tables

The first distortion-reduction technique using
multiple block pattern encoding tables, as men-
tioned previously in the third major step of the
proposed data; embedding process, is based on
the idea that a single encoding table will not be
suitable for every binary image in the embedding
process. If a binary image is destroyed very se-
riously in the data embedding process using Ta-
ble 1, it will be necessary to use another table
with other combinations of block patterns and
encoded hidden data. For example, assume that a
binary secret value v = 1012 is to be embedded
into a sequence of three randomly selected im-
age blocks with patterns 0000,0100, and 1111 by
Table 1. The data embedding process using Ta-
ble 1, as illustrated in Fig. 2(a), will select opti-
mally the block pattern type D2 = 1001, which
encodes the three-bit secret value v = 1012, to
replace the first selected block with pattern 0000,
resulting in reversing two bits. However, if we
replace the encoded secret data of type A in Ta-
ble 1 with those of type F, and replace those of
all of types B1 through B4 with those of all of
types E1 through E4, respectively, then we will
get a new block pattern encoding table and the
use of it to hide the secret value v = 1012 will
result in no bit reversing because here we can, as
illustrated in Fig. 2(b), select in sequence opti-
mally the new pattern type F = 0000 (encoding
the secret data of 12) and the new pattern type E3
= 0100 (encoding the secret data of 012) to en-
code together the secret data v = 1012. This
means that adaptive table generations and selec-
tions for use in data embedding help distortion
reduction indeed. More generally, by enumerat-

- - 3

ing all possible ways for exchanging the encoded
secret data of certain types in Table 1 with those
of the other types, we can get 128 distinct block
pattern encoding tables for selection in the data
embedding process to minimize the distortion.

Secret code V="101"

Selected block lists

Replacing block
(optimal)

Hidden bits 101

Reversed bits 2

1 2 3

(a) Block replacement using Table 1.

Secret code V="101"

Selected block lists

Replacing block
(optimal)

Hidden bits 1

Reversed bits 0

1 2

(b) Block replacement using new table.

3

01

0

Figure 2. An example of proposed data embed-

ding process.

D. Proposed Distortion-Minimizing Cost
Function and Search Techniques for
Optimal Solutions

The cost function proposed in this study
for use in the proposed data embedding process
to minimize image distortion is the total number
of reversed bits in the resulting stego-image. In
Table 1, block patterns can be used to encode
one, two, or three secret bits. Correspondingly,
we hide a binary secret value v by embedding
the first one, two, or three bits in the prefix of v
into a block. To determine how many bits should
be embedded, we may calculate first the cost
function value for each of the three cases, and
then replace the currently selected block with the
block pattern which corresponds to the case with
the minimum cost function value. This method
provides a quick way for data embedding.
However, it is actually a greedy search and not
an optimal solution.

To see this, for example, for the previ-
ously-mentioned example in which the secret
value v of 1012 is embedded in three selected
blocks with patterns 0000, 0100, and 1111 by
Table 1, by the above-mentioned greedy algo-
rithm we first replace the block with pattern
0000 by the block pattern E3 = 0100 to embed

two bits 10. The computed cost function value is
1 because a bit is reversed here. This cost is a
local minimal one. Next, we replace the block
with pattern 0100 by the block pattern A= 1111
to embed the last bit 1of v, and get a local mini-
mal cost value 3. The total cost value is 4. Now,
if we do not use the greedy algorithm from the
beginning, and replace instead the first block
with pattern 0000 by the block pattern D2 =
1001 to embed three bits 101 directly, then the
total cost value will be reduced to 2 which is
smaller than the previous total cost 4. This
shows that there indeed exist at least one solu-
tion better than that found by the greedy method.
Figure 3 illustrates the data embedding process
for this example. This is also true for many other
examples, as found by this study. And so the
search of an optimal solution is meaningful, for
which the proposed method is dynamic pro-
gramming.

Secret code V="101"

Selected block lists

Replacing blocks

(by greedy search)

Hidden bit(s) 10 1

Cost 1 3 (Toatl cost = 4)
Replacing block

(by optimum search)

Hidden bits 101

Cost 2 (Total cost = 2)

1 2 3

Figure 3. An example of proposed data embed-

ding process.
In the proposed dynamic programming

algorithm (abbreviated as DP in the sequel), cer-
tain edit distances are defined to minimize the
cost function, as described in the following. As-
sume that the input secret data value to be hid-
den is in the form of an n-bit string S1 with S1[i]
denoting its (i+1)th bit. Also, let the randomly
selected blocks for embedding the secret value
be expressed as a list in the form of another
string S2 with S2[i] denoting its (i+1)th block.
Only one type of edit operation, namely, re-
placement, is needed for use in the proposed
algorithm to represent the image block replace-
ment operations involving S1 and S2 in the pro-
posed secret data embedding process. The edit
distance of S1 and S2 is defined, according to the
previous discussions, as the minimum cost to
transform S2 into S1 by edit operations according
to an optimal block pattern encoding table used
in the data embedding process. Let C be a
two-dimensional cost matrix with its element C[i,
j] denoting the minimum cost to transform a

- - 4

substring of S2 with bits S2[j] through S2[n−1]
into a substring of S1 with bits S1[i] through
S1[n−1]. Then C[0, 0] is the value of the mini-
mum cost to transform S2 into S1. Also, let RC be
a replacement cost function with its element
RC(L, i, j) denoting the cost for replacing the
(j+1)th block in S2, denoted by S2[j], with the
block patterns encoding the initial L bits of a
substring of S1 with bits S1[i] through S1[n−1],
where L may be 1, 2, or 3. By the above defini-
tions, the value C[i, j] is recursively just the
value of the minimum of all possible values of
RC(L, i, j)+C[i+L, j+1], where L = 0, 1, and 3.
And because of this, the size of C must be ex-
panded to n+2 × n. Furthermore, those elements
of C with indices larger than n−1 should be
given certain values (0 or ∞) to specify their
correspondences to “boundary conditions”. Then,
according to the dynamic programming tech-
nique, the minimum edit distance may be com-
puted by the following recursive formulas:
Set initial values

C[n, j] = 0, j = 0, 1, 2,⋯n,

C[n+1, j] = 0, j = 0, 1, 2,⋯n,

C[n+2, j] = 0, j = 0, 1, 2,⋯n,

C[i, n] = ∞, i = 0, 1, 2,⋯n−1,

C[i, j] = ∞, i, j = 0, 1, 2,⋯n−1;

and then for all i = 0, 1, ⋯n−1, j = 0, 1,⋯n−1,
compute

C[i, j] = min{RC(1, i, j)+C[i+1, j+1], RC(2, i,
j)+C[i+2, j+1], RC(3, i, j)+C[i+3, j+1]}.

Algorithm 1. Computing minimum cost for
minimizing distortion in data
embedding process by DP.

Input: an n-bit secret code string S1, a string of n
randomly selected blocks S2, a block pat-
tern encoding table, a two-dimensional
cost matrix C[i, j], for i = 0, 1, …, n+2, j
= 0, 1, …, n with the initial values speci-
fied in the above recursive formulas, a
two-dimensional index matrix I[i, j], for i
= 0, 1, … n−1, j = 0, 1, … n–1, for re-
cording the relative indices in the block
pattern encoding table after calculating
C[i, j], and a two-dimensional matrix N[i,
j], for i = 0, 1, … n-1, j = 0, 1, … n–1, for
recording the relative next step after cal-
culating C[i, j] with each element given
an initial value of minus one.

Output: C[i, j], the minimum cost to change the
substring S2[j] through S2[n] into S1[i]
through S1[n], I[i, j], and N[i, j].

Steps:
1. If C[i, j] is equal to an infinitive value ∞,

continue the next step; else go to Step 4.
2. Calculate three temporary cost functions T[1],

T[2], and T[3], record every next step and the
corresponding value as the indices index1,
index2, and index3 of the block pattern en-
coding table which is used in calculating the
minimal cost in RC(1, i, j), RC(2, i, j), and
RC(3, i, j), respectively, in the following way:

2.1 T[1] = RC(1, i, j) + C(i+1, j+1),
next_step[1] = i+1, and acquire in-
dex1.

2.2 T[2] = RC(2, i, j) + C(i+2, j+1),
next_step[2] = i+2, and acquire in-
dex2.

2.3 T[3] = RC(3, i, j) + C(i+3, j+1),
next_step[3] = i+3, and acquire in-
dex3.

3. Take C(i, j) to be the minimum of the three
temporary cost functions, record the corre-
sponding relative next step in N[i, j], and re-
cord the relative index in the block pattern
encoding table in I[i, j].

4. Return C[i, j].

Because every next step and the used indices
of the block pattern encoding table have been
recorded, we can reconstruct the embedding
process easily. The space complexity and time
complexity are both O(n2) for the DP. Now, the
proposed data embedding process is described in
detail as an algorithm in the following.

Algorithm 2. Data embedding process using

block pattern encoding tables
and DP.

Input: a binary image I, a secret data string S1
with n bits, a secret key K as well as a
random number generator f, and 128
block pattern encoding tables.

Output: a stego-image S, an optimal block pat-
tern encoding table B, a length of block
list L, and a minimal total cost Cmin.

Steps:
1. Get a list of embeddable 2×2 blocks from the

input image I in a way as described previ-
ously.

2. Set the value of the desired minimal total cost
Cmin to be infinitive.

3. For each block pattern encoding table Bi
among the 128 possible ones, perform the
following operations.
3.1 Calculate a total cost Ci using Bi and the

DP.
3.2 If Cmin is larger than Ci, perform the

following operations.
a. Take Ci as the minimal total cost

- - 5

Cmin.
b. Set the optimal block pattern en-

coding table B as Bi.
c. Sequentially, record every index

obtained from Step 3.1 according to
the next-step matrix N and index
matrix I, until an element of N is
equal to −1. Meanwhile, calculate L,
the length of the block list.

4. Replace the minimal cost block list with the
selected block list of binary image I by the
recorded index sequence of block pattern en-
coding table B and the length of the block list
L.

5. Take the final result as the desired
stego-image S.

E. Data Recovery Process
The goal of the proposed data recovery

process is to extract the embedded bit stream
from a stego-image. It is easy to finish the ex-
traction process as follows.

Algorithm 3. Secret data recovering process.

Input: a stego-image I’ presumably including a
secret bit stream S; and the secret key K
as well as the random number generator f
used in the data embedding process; the
index table B that points outs which table
is used in the embedding process, and the
length of the block list L.

Output: the secret bit stream S.

Steps:
1. Extract a list of 2×2 embeddable blocks from

the stego-image I’ by the secret key K , the
random number generator f, and the length L

2. For each 2×2 embeddable block in I’, com-
pute the corresponding block pattern P, and
look P up in the table B to decode the data
bits embedded in the block.

3. Take all the extracted data bits in sequence as
the desired secret bit stream S.

III. Experimental Results
Some experimental results of applying the

proposed method are shown here. Two streams
of secret data were generated by a random fash-
ion. One is a stream of 2432 bits, which was
embedded into the image shown in Figure 4(c).
The other is 992-bit long, which was embedded
into the binary image shown in Figure 4(d). Fig-
ures 4(a) and 4(b) show two binary cover images
of the sizes of 687×534 and 512×512, respec-
tively. And the stego-images after embedding the
secret data using the DP algorithm are shown in
Figures 4(c) and 4(d), respectively. Figures 4(e)
and 4(f) show the respective images of differ-
ences between Figures 4(a), 4(b) and Figures

4(c), 4(d) in terms of white pixels. Note that the
backgrounds of the images of Figures 4(e) and
4(f) are shown in gray values to emphasize the
difference positions.

Tables 2 shows the statistical data of the
stego-images of Figures 4(a) and (b) for the
proposed algorithms, in which we list the num-
bers of the selected table index, the used blocks,
the minimal cost values and the length of secret
data. The minimum cost values show that the DP
is the best, the greedy algorithm using an opti-
mal encoding table among the 128 possible one
is the next, and the greedy algorithm using just
an encoding table is the worst. For other images,
similar results can be observed. For the images
shown here, the average number of secret data in
a block, using the DP algorithm, is about 1.7 bits.
And the distortion rate computed as the ratio of
the number of reversed bits to the length of the
secret data, using the DP algorithm, is in the
range from 0.37 to 0.39, which is smaller than
0.5 yielded by most exist data hiding methods
for binary images.

IV. Discussions and Summary
A novel optimal method for hiding secret

data into binary images with a distortion mini-
mization effect and a larger data embedding ca-
pability has been proposed. An optimal block
pattern encoding table is chosen from 128 alter-
native ones for use in the proposed data embed-
ding process to minimize distortion in the
stego-image. The method can minimize further
the distortion using the dynamic programming
technique and can embed up to three bits in a
2×2 image block. Therefore, by our method, not
only more data can be embedded in a binary
image, but also the distortion rate of the
stego-image can be effectively reduced. The
proposed method is based on the use of 2×2
blocks in data embedding process. The future
works may be directed to designing a better cost
function for the human visual system, constrain-
ing certain conditions for the cost function to
find a better image quality, and finding a better
encoding table for replacing selected blocks to
reduce stego-image distortion further.

References
[1] S. Katzenbeisser and F. A. P. Petitolas,

Information Hiding Techniques for Steg-
anography and Digital Watermarking,
Artech House, Boston, U. S. A., 2000.

[2] E. Koch and J. Zhao, "Embedding robust
labels into images for copyright protec-
tion," Proceedings of International Con-
gress on Intellectual Property Rights for
Specialized Information, Knowledge and
New Techniques, pp. 242-251, Munich,
Germany, 1995.

- - 6

[3] D. Kundur, “Energy allocation principles
for high capacity data hiding,” Proceed-
ings of IEEE International Conference on
Image Processing, Vancouver, Canada, vol.
1, pp. 423-426, September 2000.

[4] S. Lin and D. J. Costello, Jr., Error Con-
trol Coding: Fundamentals and Applica-
tions, Prentice-Hall, Inc., Englewood
Cliffs, NJ, U. S. A., 1983.

[5] L. M. Marvel, J. C. G. Boncelet, and C. T.
Retter, “Spread spectrum image steg-
anography,” IEEE Transactions on Image
Processing, vol. 8, no. 8, pp. 1075-1083,
August 1999.

[6] H. K. Pan, Y. Y. Chen, and Y. C. Tseng,
“A secure data hiding scheme for
two-color images,” IEEE ISCC 2000, pp.
750-755, 2000.

[7] M. Swanson, M. Kobayashi, and A. Tew-
fik, “Multimedia data-embedding and wa-
termarking technologies,” Proceedings of
the IEEE, vol. 86, pp. 1064-1088, 1998.

[8] C. H. Tzeng and W. H. Tsai, “A new tech-

nique for authentication of images/videos
for multimedia applications,” Proceedings
of ACM Multimedia 2001 Workshops −
Multimedia and Security: New Challenges,
Ottawa, Ontario, Canada, pp. 23-26, Oct.
2001.

[9] C. H. Tzeng and W. H. Tsai, “A new ap-
proach to authentication of binary images
for multimedia communication with dis-
tortion reduction and security enhance-
ment,” accepted and to appear in IEEE
Communications Letters.

[10] M. Wu, E. Tang, and B. Liu, “Data hiding
in digital binary image,” Proceedings of
IEEE International Conference on Multi-
media & Expo 2000 (ICME’00), New
York, New York City, 2000.

[11] D. C. Wu and W. H. Tsai, “Spatial-domain
image hiding using an image differenc-
ing,” IEE Proceedings − Vision, Image,
and Signal Processing, vol. 147, no. 1, pp.
29-37, 2000.

Table 1. Proposed block pattern encoding table.

Type Block
pattern

Entropy
value

Corresponding
binary value

Encoded
secret data Type Block

pattern
Entropy

value
Corresponding
binary value

Encoded
secret data

A 0 1111 1 F 0 0000 0

B1 0.811 1110 00 E1 0.811 0001 11

B2 0.811 1101 00 E2 0.811 0010 11

B3 0.811 1011 01 E3 0.811 0100 10

B4 0.811 0111 01 E4 0.811 1000 10

C1 1 0011 011 D1 1 0110 100

C2 1 0101 011 D2 1 1001 101

C3 1 1010 010

C4 1 1100 010

Table 2. Statistics of two stego-images for three proposed algorithms, with the cost function defined as
the sum of the number of reversed bits in a block.

stego-image Algorithm Table
index

Used
blocks Cost Secret data

length

Greedy (using a fixed table) 0 1528 1153

Greedy (using optimal one among 128 16 1526 1115 NCTU

DPED 26 1418 954

2432

Greedy (using a fixed encoding table) 0 621 431

Greedy (using optimal one among 128 30 637 401 Lena

DPED 41 582 369

992

- - 7

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4. Input binary images, output stego-images with secret data, and the differences. (a) Binary

image “NCTU”. (b) Binary image “Lena”. (c) and (d) Stego-images after embedding secret

data, respectively. (e) and (f) The difference pixels after embedding secret data, respectively.

- - 8

	Introduction
	Proposed Data Embedding Method
	Encoding Block Patterns for Secret Data Representation
	Sketch of proposed data hiding idea
	Use of Multiple Block Pattern Encoding Tables
	Proposed Distortion-Minimizing Cost Function and Search Techniques for Optimal Solutions
	Set initial values
	Data Recovery Process
	Experimental Results
	Discussions and Summary
	References

