
DATA HIDING IN COLOR IMAGES BY COLOR REPLACEMENTS WITH

REDUCTION OF IMAGE DISTORTION AND CHANGE NOTICEABILITY*

1, 3I-Shi Lee and I-Shi Lee(李義溪) 1, 2, �Wen-Hsiang Tsai(蔡文祥)

1
Dept. of Computer Science

National Chiao Tung University, Hsinchu, Taiwan 30010
2
 Dept. of Computer Science and Information Engineering

Asia University, Taichung, Taiwan 41354
3
Dept. of Management Information

Technology and Science Institute of Northern Taiwan, Taipei, Taiwan

E-mails: gis87809@gmail.com & whtsai@cis.nctu.edu.tw

�To whom all correspondence should be sent.

ABSTRACT
A new technique for data hiding in color images by color

space partitioning and color encoding with reduction of image

distortion and color change noticeability is proposed. The

RGB color space is partitioned into non-overlapping, equal-

sized color cubes. The colors in each cube are encoded to

represent fixed-length message segments. Data hiding is

accomplished by replacing the colors of the pixels with similar

colors in the corresponding color cubes. And data extraction is

a reverse process of data embedding. To reduce image

distortion, color replacement at a pixel is conducted by

choosing as the replacing color the one, which is closest to the

pixel’s color in the sense of Euclidean color distance. And to

reduce the noticeability of the resulting color changes, color

cubes are selected in such a way that the pixels of the cubes

are as separated as possible in the cover image. Experimental

results are also included, which show the effectiveness of the

propose method in RGB images with high PSNR values and

low visual differences in stego-images.

1. INTRODUCTION

Data hiding in images is a useful technique for many

applications, such as copyright protection, covert

communication, multimedia authentication, information

sharing, etc. The image into which a message is hidden is

called a cover image, and the result a stego-image. Many

techniques for data hiding in images have been proposed in the

past decade [1-3]. They may be categorized into two major

approaches: the spatial-domain approach and the frequency-

domain approach. In the former, secret data are directly

embedded in the characteristics of the pixels of the cover

image, and in the latter, the cover image is transformed first

into frequency-domain coefficients, into which secret data are

embedded. In general, the frequency-domain approach is more

robust against attacks while the spatial-domain approach can

hide more data. In this study, we adopt the spatial-domain

approach and deal with the color image, like the BMP image.

The most common spatial-domain approach to data

hiding is least-significant-bit (LSB) replacement, which

embeds message data in the LSB’s of image pixels’ binary or

grayscale values. Wang et al. [4] embedded data in the fifth

LSB bit plane of a cover image, and employed an optimal

substitution process based on a genetic algorithm and a local

pixel adjustment method to lower the distortion in the stego-

image. Chang et al. [5] used dynamic programming to obtain

the optimal solution for the LSB substitution method. Chan

and Cheng [6, 7] presented an optimal pixel adjustment

process to improve the image quality of the stego-image

acquired by Wang’s schemes. Thien and Lin [8] proposed a

method for hiding data digit by digit in images using a

modulus function. The method is better than simple LSB

substitution not only in eliminating false contours but in

reducing image distortion. Lee and Chen [9] applied variable-

sized LSB insertion to estimate the maximum embedding

capacity by a human visual system (HVS) property, and to

maintain image fidelity by removing false contours in smooth

image regions. Wu and Tsai [10] presented a method based on

the HVS by modifying quantization scales according to

variation insensitivity from smooth to contrastive to improve

stego-image quality. Lie and Chang [11] presented an adjusted

LSB technique with the number of LSB’s adaptive to the

pixels of different grayscales. And Lee and Tsai [12] proposed

a new method for data hiding in binary images based on block

pattern coding and dynamic programming with distortion-

minimizing capabilities. Tsai and Wang [13] proposed a data

hiding technique for color images using a binary space

partitioning tree, which partitions the RGB color space into

voxels and embeds three message bits into each voxel.

In a conventional RGB image, there are 2563, or

approximately 16.8 million, colors which are the result from

the use of 8 bits (one byte) for the color value of each of the

red (R), green (G) and blue (B) channels. Human vision

cannot distinguish such an enormous number of colors.

Actually, even the 256 gray levels in a gray-scale image are

still too many for visual discrimination. This kind of human

vision weakness offers a good opportunity for data hiding by

the technique of color replacement. That is, we may replace

some pixels’ colors in a cover image by other similar ones

without causing suspicion from observers. The proposed data

hiding method is based on this principle.

More specifically, we propose in this study a new method

for hiding data in RGB color images using color space

partitioning and color encoding. The RGB color space is

partitioned into non-overlapping, equal-sized color clusters,

each being cubic in shape, called a color cube. The colors in

each cube are used to represent fixed-length codes. Message

data hiding is accomplished by replacing selected image

pixels’ colors with closest ones in color cubes to embed

corresponding codes representing the message bits. And data

extraction is a reverse process of data embedding. To reduce

image distortion, each color cube is designed to include a

number of color groups, with all colors in each group

representing an identical code. The colors in each group are

distributed as separately as possible in the cube, and color

replacement at an image pixel is conducted by choosing as the

replacing color the one in a group, which is closest to the

pixel’s color in the sense of Euclidean color distance. And to

reduce the noticeability of the resulting color changes, we

select adaptively for use in data embedding those cubes whose

colors are more scattered in the cover image (that is, the pixels

whose colors are in these cubes are more separated mutually in

the cover image), so that the color changes on these pixels will

arouse less notice from the observer. Experimental results

show the effectiveness of the proposed method for large-

volume data hiding with image distortion and change

noticeability reduction.

In the remainder of this paper, the principle of the

proposed data hiding method is described in Sections 2. The

detailed algorithms of the data embedding and extraction

processes are presented in Section 3. Some experimental

results and discussions are given in Section 4, followed by

conclusions in Section 5.

2. PRINCIPLE OF PROPOSED DATA HIDING

METHOD

The basic idea of the proposed method for data hiding in RGB

color images is to encode certain colors in the color space, and

embed given message bits into selected scattered image pixels

by replacing these pixels’ colors by the encoded colors. And

extraction of the message is a reverse process, consisting of

finding image pixels with encoded colors and decoding these

colors to get the embedded message bits.

Appropriate techniques must be devised for the above

simple idea of data embedding and extraction to be carried out

effectively. The concern of reducing image content distortion

and color change noticeability should be taken into

consideration in these techniques. Also, the common

requirement of data recoverability in data extraction need be

met. The techniques proposed in this study satisfy these aims

and are described in the following.

A. Proposed technique for reduction of color

change noticeability
It is unnecessary to use all of the huge number of colors in the

color space for data embedding by color replacements. Instead,

we partition them into non-overlapping cubic-shaped clusters,

called color cubes, and find out those cubes better for use in

data embedding. More specifically, we find out image pixels

with their colors “falling” in each color cube, and check the

scattering degree of these pixels. Presumably, image pixels

located more separately in the cover image are more suitable

for data embedding because the changes of their colors,

appearing to be farther way from one another, will attract less

notice from observers. On the contrary, color changes at less

scattered pixels tend to create visual artifacts and arouse more

suspicion. Based on this idea, we propose in this study the

following scheme of reducing the noticeability caused by

image pixels’ color changes.

1. Partition the RGB color space into color cubes.

2. Collect the set of pixels in the cover image with their

colors “falling” in each color cube, called the range set

of the color cube.

3. Define the degree of pixel scattering of each color cube

by a certain scatter measure of the pixels in the range set

of the color cube.

4. Sort into a list the color cubes with nonempty range sets

by their pixel scattering degrees, with the color cube

with the largest scattering degree on the top of the list.

5. Sort further those color cubes with equal pixel scattering

degrees by their range set sizes, meaning that color

cubes with larger range sets will be used first for data

embedding.

6. According to the length of the message to be hidden,

select from the top of the color cube list a sufficient

number of color cubes for use in data embedding.

7. Use the pixels of the range sets of the selected color

cubes as the locations for data embedding by color

replacements.

Let S = {P1, P2, …, Pn} denote the range set of a color

cube C with n pixels. The scatter measure mentioned in Step 3

above for C, denoted as M, is defined as the mean of the

Euclidean distances of all the pixel pairs in S, i.e., is defined as

,

| |i j

i j

P P

M
n

�

�
�

 (1)

where the Euclidean distance |Pi � Pj| between any two pixels

Pi and Pj at image coordinates (ui, vi) and (uj, vj), respectively,

is computed as |Pi � Pj| = [(ui � uj)
2 + (vi � vj)

2]1/2. A larger

value of M means higher pixel separateness of S in the cover

image.

As an illustration of the range sets of color cubes, Fig. 1(a)

shows a cover image and Fig. 1(b) is the range set of a color

cube found in (a), shown as a binary image with each white

dot indicating a pixel in the set. The range set may be seen to

include pixels with some dark green colors.

B. Proposed technique for reduction of image

content distortion
For convenience of data processing, the number of colors included in

each color cube is taken to be a power of 2 in this study. If all the

colors in a color cube, say with 2m ones, are used for data embedding,

each color may be used to represent m message bits. The embedding

work of an m-bit message segment then is to replace the color of an

image pixel in the range set of a color cube by the color of the 2m ones

in the color cube, which corresponds to the value of the m message

bits.

However, to reduce the image distortion resulting from such

color replacements, we propose in this study to allow multiple colors,

instead of just a single one, to represent an identical message segment.

For example, if we allow, say, 2n colors as a group to represent a

message segment, then whenever an image pixel’s color is to be

replaced by one in the color cube, there will be 2n choices, and the one

closest to the pixel’s color may be taken as the replacing color, thus

achieving the purpose of reducing image distortion due to the color

replacement.

Consequently, each color cube as discussed above should be

expanded to have 2n�2m = 2m+n colors, instead of just 2m ones, if

embedding of m-bit message segments is still desired. And because of

the property of having three color channels in an RGB image, m+n

must be a multiple of 3 for 2m+n to be the cube of an integer M (i.e.,

M3), meaning that each color cube has the side length of M. That is, it

must be true that m + n = 3k for some positive integer k such that 2m+n

= 23k = (2k)3 = (2k) � (2k) � (2k) = M3 with M = 2k. If not, then the

color cluster will not form a cube; instead, it becomes a rectangular

parallelepiped (also called a cuboid), which is less convenient to

handle due to side asymmetry.

For example, if we take m = 2 and n = 1, then each color cube

has 22+1 = 8 colors, divided into 4 groups with each group including

two colors. One of such color cubes is shown in Fig. 2, in which the

four color groups are G1 = {(0, 0, 0), (1, 1, 1)}, G2 = {(1, 0, 0), (0, 1,

1)}, G3 = {(1, 1, 0), (0, 1, 1)}, G4 = {(0, 1, 0), (1, 0, 1)} and the two

colors in each group are located diagonally in opposite directions,

where each color is expressed as a 3-tuple (r, g, b) with r, g, and b

being the values of the R, G, and B channels, respectively. Such color

cubes are too small to be useful. The color cube adopted for use in the

experiment of this study is taken to include 2m+n = 23+3 = 64 colors

with m = 3 and n = 3, i.e., with 8 groups of 8 colors. Therefore, for 8-

bit R, G, and B color channels, there are totally (256/4) � (256/4) �
(256/4) = 643 color cubes.

For convenience of discussions, we define a base color for each

color cube as the one in the cube with the smallest of the summation

of the r, g, and b values. By identifying color cubes with three indexes

i, j, k for the three dimensions of R, G, and B, respectively, it is not

difficult to figure out that the base color (
b

ir ,
b

jg ,
b

kb) for the (i, j, k)-

th color cube for m = 3 and n = 3 may be computed by
b

ir = 4i,
b

jg = 4j,
b

kb = 4k, (2)

where i, j, k = 0, 1, …, 63, and the values of the 64 colors in the cube

may be computed by

r =
b

ir ,
b

ir +1,
b

ir +2,
b

ir +3;

g =
b

jg ,
b

jg +1,
b

jg +2,
b

jg +3; (3)

b =
b

kb ,
b

kb +1,
b

kb +2,
b

kb +3.

For example, the (0, 0, 0)-th color cube with base color (0, 0, 0)

is shown in Table 1. Simply adding the base color values (
b

ir ,
b

jg ,
b

kb)

respectively to the color channel values in the table, we can get the

table for the (i, j, k)-th color cube.

According to the above idea, we propose the following scheme

for reduction of image distortion.

1. Define each color cube to have 2m+n colors, divided into 2m groups

with each group including 2n colors, where m + n = 3k for some

positive integer k.

2. Assign the colors in the color cube into groups such that the colors

in each group are distributed evenly, for the purpose of achieving

more effectively the goal of reducing image distortion due to color

replacements as discussed above.

3. Encode identically all the 2n colors in each group into an m-bit

message segment, i.e., represent the m message bits identically by

any color in the group.

4. When an image pixel P in the range set of a color cube C is to be

used for embedding an m-bit message segment H, find the group G

in C whose colors represent the value of H.

5. Find the color c' in G which is closest to c in the sense of

Euclidean color distance.

6. Replace c by c' to complete the data embedding work at pixel P.

In Step 5 above, the Euclidean color distance between the two

colors c = (r, g, b) and c' = (r', g', b') are defined to be |c � c'| = [(r �
r')2 + (g � g')2 + (b � b')2]1/2.

C. Proposed technique for extraction of embedded

data
A merit of the previously-proposed technique of data hiding

(including partitioning the color space into non-overlapping

color cubes as well as replacing a pixel’s color with another

one, both in an identical color cube) is the resulting assurance

of data recoverability in the data extraction stage. There are

two reasons which guarantee this merit, as described in the

following.

1. Although some original colors in the cover image have

been replaced, each of the replacing colors is in the same

color cube as that of the replaced one at an image pixel.

This ensures that if we use the pixels’ colors in the stego-

image to find the range set of each color cube, as is done in

the data extraction process, the result will be the same as

that found in the data hiding process. This means that the

pixels where data were hidden will not be missed in the

data extraction process.

2. Only color cubes with more-scattered range sets are utilized

for data embedding, and so if we select similarly color

cubes with more-scattered range sets in the data extraction

process, then the same set of color cubes will be found,

from whose range sets we can extract exactly the

previously-embedded message bits.

The proposed scheme for data extraction is described in

the following.

1. Partition the color space in the same way as done in the

data embedding process.

2. Collect the range set of each color cube from the pixels in

the given stego-image.

3. Compute the scattering degree of the range set of each color

cube.

4. Sort the color cubes into a list in the same way as done in

the data embedding process described previously.

5. Select a sufficient number of color cubes from the top of

the list according to the length of the embedded message.

6. Follow the color encoding rule used in data embedding to

decode as a message segment the color of each pixel in the

range set of each color cube selected in the last step.

7. Concatenate all the decoded message segments in order

into a message as the extraction result.

In Step 5 above, to decide how many color cubes should

be selected, the length of the message (in the unit of bit)

should be known in advance. For this, we take the message

length as part of the data to be hidden and append it to the

message data as the prefix, in the form of a fixed number of

bytes. If the value of the message length, expressed as a bit

sequence, is shorter than the length of all the bytes allocated

for it, then we pad sufficient leading 0’s to it to fill up the

bytes. In this way, the message length will be embedded first

as a fixed number of bytes into the image, and in the data

extraction process it can be extracted first as well from a fixed

number of bytes hidden in the stego-image, from which the

total number of remaining data bits can be decided, and the

message bits extracted properly.

D. Even distribution of cube colors into groups for

image distortion reduction
As mentioned previously, we assign the colors in the color

cube into groups such that the colors in each group are

distributed evenly. Consequently, a color in the group closest

to an image pixel’s color can be selected for color replacement,

in order to reduce the resulting image distortion. Here we

describe the technique we use for achieving such a goal of

even distribution of colors in groups. First, it is not difficult to

see that the desired distributions in the groups should be

symmetric to each other. To accomplish this, we adopt the

following steps, using the first color cube with base color (0, 0,

0) as an example for explanation of the detail. For other color

cubes, the corresponding steps are the same except the base

color. Table 2 shows the details of the involved computation

results in the steps.

1. Take the 64 color values of the color cube as Euclidean

coordinates, and compute its centroid, which is (1.5, 1.5,

1.5).

2. Transform the Euclidean coordinates into new ones through

a translation of (1.5, 1.5, 1.5).

3. Transform the new Euclidean coordinates (r, g, b) into 3D

spherical coordinates (�, �, �) by the following formula:

� = (r2 + g2 + b2)1/2, � = tan-1(g/b), � =tan-1[b/(r2+g2)1/2]

where � is the distance from the origin to a point in the

Euclidean space, � is the zenith angle with respect to the R-

axis, � is the azimuth angle with respect to the B-axis, as

shown in Fig. 3, and the function tan-1 has values in the

range from �90o to +90o.

4. To facilitate the purpose of even distribution of group

colors, modify the range of tan�1 such that the computed

values of � lie in the range 0o � � < 360o with 0o indicating

the direction of the R-axis.

5. Use in order the values of �, �, and � to sort the 64 colors

into a list.

6. Assign the 64 colors of the color cube evenly into the 8

groups using the list according to the following criteria to

achieve the goal of even distribution of group colors:

(1) each group has an equal number of colors which

have a certain value of �;
(2) the colors of each group have as many angles of

� as possible;

(3) the 8 color groups, when seen as grid points, are

symmetric to one another.

7. Regard all the 8 colors in each color group to be identical,

and encode each group to represent one of the eight 3-bit

segments 000 through 111, as mentioned previously.

In Step 6 above, to satisfy Criteria (2) and (3) we

normalize the angle values of � of all the grid points with

respect to each of the angles of “8 selected symmetric points”

and listed them for easier selection of appropriate colors into

the groups. For the 64-color cubes, these 8 symmetric points

may be selected to be the 8 corners of the cube, as done in our

experiment. The result of color distribution for the first color

cube with base color (0, 0, 0) is shown in Table 2. And an

example of the color distribution result for group 3, which

includes the corner of (0, 0, 0), is shown in Fig. 4. The

assigned 8 colors in the group are (1, 2, 2), (3, 2, 2), (1, 0, 2),

(2, 2, 3), (2, 3, 0), (0, 1, 0), (3, 0, 1), (0, 0, 0).

The above process is designed for color cubes with 64

colors. It is not difficult to modify the process to fit more

general cases of color cubes with 2m+n colors mentioned before.

Furthermore, as an example of data embedding at image

pixels, let P be a pixel with color c = (r, g, b) = (1, 3, 2) and

assume that the 3-bit message segment we want to embed is

010. The color cube used is that described in Table 2 and the

group of colors involved is the third shown in Fig. 4. The

color in the group closest to c is c' = (1, 2, 2) with a distance

of 1 to c. Therefore, the color c = (1, 3, 2) of P is replaced by

c' = (1, 2, 2) in the data embedding process.

As a deeper investigation of the effect of the above even

distribution of group colors in a color cube, we tried to

compute the value of the peak of the signal-to-noise ratio

(PSNR) for the worst case of color replacements, which occurs

when the colors of all image pixels are replaced with the most

dissimilar colors in color cubes. For this, we have two cases.

One is when the colors of each group in a color cube are not

evenly distributed. Then, the largest Euclidean color distance

resulting from a color replacement obviously will be |(3, 3, 3)

� (0, 0, 0)| = (3�32)1/2 = 27 . The other case is when the even

distribution is done as shown in Table 2. Then, according to a

computer program written in this study which computes

exhaustively the Euclidean color distances between every pair

of colors in the color cube based on the groups of Table 3, the

largest Euclidean color distance is d = 4 .

Accordingly, for the 2nd case the maximum mean-square

error (MSE) for the stego-image may be computed to be

MSEmax = d2/3 = 4/3, and the corresponding worst PSNR value

is PSNRmin = 10�log[2552/MSEmax] = 10�log[65025/(4/3)] 	
46.88 dB which is quite high. In contrast, the former case has

PSNRmin = 10�log[65025/(27/3)] 	 38.59 dB which is lower.

In short, the 2nd case, which is what we have implemented in

this study, has less image distortion.

As a comparison with the LSB replacement method, the

proposed method obviously performs better than the 3-LSB

technique both in data hiding rate and in distortion reduction

effect. It performs worse than the 1-LSB and 2-LSB

techniques in data hiding but better in distortion reduction.

3. DETAILED ALGORITHMS OF PROPOSED

DATA EMBEDDING AND EXTRACTION

We now describe the detailed algorithms for data embedding

and extraction. We assume that the maximum length of given

messages to be embedded is B bytes (8B bits) long.

Algorithm 1. Data embedding process.

Input: a cover image I, a message G in the form of a bit string,

and the color encoding tables (like Table 2) for color

cubes with 64 colors defined by Eqs. (2) and (3).

Output: a stego-image I' with G embedded.

Steps:

A. Finding the range sets of the color cubes ---

1. Find the range set Si from the cover image I for each color

cube Ci.

2. Compute the scattering degree Mi of each Ci by Eq. (1).

3. Sort all non-empty Si into a list L according to their values

of Mi with the top of the list corresponding to the largest

Mi.

B. Creating extended message data ---

4. Pad 0’s, if necessary, to the front of the bit string

representing the length of message G so that the resulting

bit string, T, occupies B bytes.

5. Concatenate T and G in order, to form a third string T'.

6. Count the number of bits in T', append 0’s to the end of

T', if necessary, to make the total number N of bits a

multiple of 3, call the resulting bit string an extended

message, and denote it by G'.

C. Embedding of message data ---

7. Regard all the pixels in each range set Sj in L in the

raster-scan order as a sequence Qj, and concatenate all

sequences of Qj in order into a longer one Q.

8. Embed sequentially every 3-bit segment H of G' into

pixels in Q in order in the following way, until all bits of

G' are exhausted:

(1) take sequentially an unprocessed pixel P in Q with

color c;

(2) find out the color cube C whose range set includes P;

(3) find out the color group p of C, whose

corresponding code is equal to H;

(4) find out the color c' in p which is closest to c in the

sense of Euclidean color distance;

(5) replace c of P by c' in the cover image.

The data extraction process is described as an algorithm

in the following. We assume the embedded data in the given

stego-image is the extended message G' mentioned in the

previous algorithm, which includes the original message G

preceded by the value of the length of G in the form of B bytes.

Algorithm 2. Data extraction process.

Input: a stego-image I', and the color encoding tables (like

Table 2) for color cubes with 64 colors defined by Eqs.

(2) and (3).

Output: the message G.

Steps:

A. Finding the range sets of the color cubes ---

1. Find the range set Si from the stego image I' for each color

cube Ci.

2. Compute the scattering degree Mi of each Ci by Eq. (1).

3. Sort all non-empty Si into a list L according to their values

of Mi with the top of the list corresponding to the largest

Mi.

B. Extracting the length of the message

4. Regard all the pixels in each range set Sj in L in the raster-

scan order as a sequence Qj, and concatenate all

sequences of Qj in order into a longer one Q.

5. Extract B bytes of data from Q first to obtain the length N

of the message G in the following way:

(1) take sequentially an unprocessed pixel P in Q with

color c';

(2) find out the color cube C whose range set includes P;

(3) find out the color group p of C, which includes c';

(4) find out the 3-bit code corresponding to p;

(5) repeat the above steps until the concatenation of all

the found 3-bit codes in order, denoted as K, is just

more than B bytes long;

(6) take the first B bytes of K and convert it into an

integer as the message length N, and the tail

portion R in K as the leading bits of the message G.

C. Extracting the message data

6. Compute N' =
N/3� where
�� means the ceiling function.

7. Repeating the following steps N' times:

(1) take sequentially an unprocessed pixel P in Q with

color c';

(2) find out the color cube C whose range set includes P;

(3) find out the color group p of C, which includes c';

(4) find out the 3-bit code of p;

8. Concatenate R extracted in Step 5 and all the codes

extracted in Step 7 in order as a bit string, and take the

first N bits of it as the desired message G.

4. EXPERIMENT RESULTS AND

DISCUSSIONS

A series of experiments have been conducted in this study on

BMP images. Some experimental results are shown in Figs. 5

through 8. Fig. 5 is a continuation of Fig. 1. Fig. 5(a) shows

the stego-image resulting from embedding 22900 bytes of

message data into the cover image shown in Fig. 1(a) which is

of the size 256�256. And Fig. 5(b) shows the difference

between Fig. 1(a) and Fig. 5(a) as a color image I'' (called a

difference image), which is produced in the following way,

assuming that (r, g, b) is a color in the cover image I, (r', g', b')

the corresponding color in the stego-image I', and (r'', g'', b'')

the computed difference color:

x'' = |x � x'| + 128 if |x � x'| 0;

 = 255 if |x � x'| = 0,

where x = r, g, or b. The concept behind the above

computation is to set a difference value of 0 to be 255 and a

non-zero one to be around 128. Consequently, an unprocessed

pixel with three zero difference values will become a white

pixel in the difference image I'', while a processed pixel will

have a color (r'', g'', b'') with all the three color channel values

around 128. As can be seen from Fig. 5(b), most of the pixels

in the cover image have been utilized for data embedding, but

the stego-image looks almost identical to the cover image of

Fig. 1(a) due to the effectiveness of image distortion and

change noticeability reduction. It can also be observed from

Fig. 5(b) that the processed pixels are quite random in their

locations, and more uniform regions, like those on the clothes,

yield range sets with smaller scatter measures, as expected,

which are not used for data embedding (seen as white-pixel

clusters in the figure). The rate of processed pixels (called

processed pixel rate in the sequel) is (22900�8) � 3 �
(256�256) 	 0.932 and the PSNR value was computed to be

48.59 dB which is better than the worse-case value 46.88 dB,

as it should be. Totally, 1628 color cubes have been utilized.

Fig. 6 shows another experimental result with a 256�256

cover image. The processed pixel rate is again 0.932, the

computed PSNR value is 48.23 dB, and the number color

cubes used is 5242. A similar phenomenon of leaving uniform

regions unused for data embedding is observed (most on the

flowers at the lower part of the cover image). For illustrations,

we also include the range set of a color cube as Fig. 6(b). Two

more examples of experimental results with 512�512 cover

images are shown in Figs. 7 and 8. The message data

embedded are 88200 bytes long, and the processed pixel rates

are (88200�8) � 3 � (512�512) 	 0.897, for both cases. The

PSNR values are 48.70 dB and 48.27 dB, respectively.

More statistics data about our experiments are shown in

Table 3, in which images 4.1.03, 4.1.01, 4.2.04, 4.2.07 are

those in Figs. 5 through 8, respectively. All the images come

from the USC image database. From the table, we see that the

PSNR values of all the stego-images are over 48 dB.

The experiments were conducted for color cubes with 64

colors and color groups of 8 colors. Color cubes and color

groups of sizes other than those used in the experiments of this

study may also be applied for various application needs. In

general, larger-sized color cubes will lead to larger embedding

capacity of each color replacement (that is, more bits are

encoded by each replacing color) if the size of each color

group is fixed. On the other hand, with the size of the color

cube being fixed, larger-sized color groups, though reducing

more distortion caused by color replacements, will lead to less

embedding capability (that is, less bits are encoded by each

color group). The original cover image is not needed in data

recovery, so the proposed method is a blind scheme. The

PSNR values of the stego-images constructed in the

experiments are high, showing that the aim of image distortion

reduction carried out by the use of color groups is

accomplished. The stego-images look almost identical to the

cover images, showing that another aim of reducing color

change noticeability is also reached. Furthermore, secret keys

may be used to randomize the message data before they are

embedded into the cover image or/and randomize the sequence

of pixels (sequence Q in Algorithms 1 and 2) into which the

data are embedded, in order to enhance data security. Illegal

recovery of the embedded data will so obtain just a sequence

of noise. The proposed method is thus appropriate for uses in

steganographic applications.

5. CONCLUSIONS

A novel method for hiding large-volume message data in RGB

images has been proposed. The method is based on the idea of

changing selected image pixels’ colors by similar ones which

encode the message bits. The replacing colors come from some

selected color cubes in the color space, and the image pixels

come from the range sets of the color cubes. Data

recoverability is ensured by the use of color cubes and range

sets. The color cubes are selected in such a way that the pixels

in their range sets are as separated as possible. This reduces

the noticeability caused by the color changes. Each replacing

color comes from the choice of an optimal one from a group of

evenly distributed colors in a color cube. This reduces the

resulting image distortion due to the color replacements.

Experimental results show the feasibility of the proposed

method for large-volume data hiding as well as the

effectiveness of reducing image distortion and change

noticeability. The method is a blind data hiding technique; the

original cover image is not required in the data extraction

process. Future researches may be directed to dynamic uses of

variable-sized color cubes, random distributions of groups’

colors in color cubes, uses of the proposed method for various

applications, etc.

REFERENCES

[1] S. Katzenbeisser and F. A. P. Petitolas, Information

Hiding Techniques for Steganography and Digital

Watermarking, Artech House, Boston, U. S. A., 2000.

[2] M. Swanson, M. Kobayashi, and A. Tewfik, “Multimedia

data-embedding and watermarking technologies,”

Proceedings of the IEEE, vol. 86, pp. 1064-1088, 1998.

[3] W. Bender, D. Gruhl, N. Morimoto, and A. Lu,

“Techniques for data hiding,” IBM System Journal, Vol.

35, No. 3 & 4, Feb. 1996.

[4] R. Z. Wang, C. F. Lin, and J. C. Lin, “Hiding data in

Images by optimal moderately-significant-bit

replacement,” IEEE Electronics Letters, vol. 36, no. 25, pp.

2069-2070, Dec. 2000.

[5] C. C. Chang, J. Y. Hsiao, and C. S. Chan, ”Finding

optimal least-significant-bit substitution in image hiding

by dynamic programming strategy,” Pattern Recognition,

vol. 36, pp. 1583-1595, 2003.

[6] C. K. Chan, and L. M. Cheng, "Improved hiding data in

images by optimal moderately-significant-bit

replacement," IEEE Electronics Letters, vol. 37, no. 16, pp.

1017-1018, August 2001.

[7] C. K. Chan, and L. M. Cheng, "Hiding data in images by

simple LSB substitution," Pattern Recognition, vol. 37, pp.

469-474, 2004.

[8] C. C. Thien and J. C. Lin, "A simple and high-hiding

capacity method for hiding digit-by-digit data in images

based on modulus function," Pattern Recognition, vol. 36,

pp. 2875-2881, 2003.

[9] Y. K. Lee and L. H. Chen, “High capacity Image

steganographic model,” IEE Proceedings on Vision, Image

Signal Process, vol. 147 no. 3, June 2000.

[10] D. C. Wu and W. H. Tsai, “Spatial-domain image hiding

using an image differencing,” IEE Proceedings-Vision,

Image, and Signal Processing, vol. 147, no. 1, pp. 29-37,

2000.

[11] W. N. Lie, and L. C. Chang, “Date hiding in images with

adaptive numbers of least significant bits based on the

human visual system,” Proceedings of IEEE

International Conference on Image Processing, Taipei,

Taiwan, Republic of China, vol. 1, pp. 286-290, October

1999.

[12] I. S. Lee and W. H. Tsai, “Data hiding in binary images

with distortion-minimizing capabilities by optimal block

pattern coding and dynamic programming techniques,”

IEICE Transactions on Information and Systems, Vol.

E90-D, No. 8, pp. 1142-1150, 2007.

[13] Y. Y. Tsai and C. M. Wang, “A novel data hiding scheme

for color images using a BSP tree,” Journal of Systems

and Software, Vol. 80, pp. 429–437, 2007.

ACKNOWLEDGEMENT

This work was supported partially by the NSC Advanced

Technologies and Applications for Next Generation

Information Networks (II) – Sub-project 5: Network Security,

Project No. NSC-96-2752-E-009-006-PAE. And partially by

the NSC project NSC96-2422-H-009-001.

Table 1. The colors in the (0, 0, 0)-th color cube with base

color (r, g, b) = (0, 0, 0).

No . Color No. Color No. Color

1 (0, 0, 0) 23 (1, 1, 2) 45 (2, 3, 0)

2 (0, 0, 1) 24 (1, 1, 3) 46 (2, 3, 1)

3 (0, 0, 2) 25 (1, 2, 0) 47 (2, 3, 2)

4 (0, 0, 3) 26 (1, 2, 1) 48 (2, 3, 3)

5 (0, 1, 0) 27 (1, 2, 2) 49 (3, 0, 0)

6 (0, 1, 1) 28 (1, 2, 3) 50 (3, 0, 1)

7 (0, 1, 2) 29 (1, 3, 0) 51 (3, 0, 2)

8 (0, 1, 3) 30 (1, 3, 1) 52 (3, 0, 3)

9 (0, 2, 0) 31 (1, 3, 2) 53 (3, 1, 0)

10 (0, 2, 1) 32 (1, 3, 3) 54 (3, 1, 1)

11 (0, 2, 2) 33 (2, 0, 0) 55 (3, 1, 2)

12 (0, 2, 3) 34 (2, 0, 1) 56 (3, 1, 3)

13 (0, 3, 0) 35 (2, 0, 2) 57 (3, 2, 0)

14 (0, 3, 1) 36 (2, 0, 3) 58 (3, 2, 1)

15 (0, 3, 2) 37 (2, 1, 0) 59 (3, 2, 2)

16 (0, 3, 3) 38 (2, 1, 1) 60 (3, 2, 3)

17 (1, 0, 0) 39 (2, 1, 2) 61 (3, 3, 0)

18 (1, 0, 1) 40 (2, 1, 3) 62 (3, 3, 1)

19 (1, 0, 2) 41 (2, 2, 0) 63 (3, 3, 2)

20 (1, 0, 3) 42 (2, 2, 1) 64 (3, 3, 3)

21 (1, 1, 0) 43 (2, 2, 2)

22 (1, 1, 1) 44 (2, 2, 3)

Fig. 3. Illustration of a 3D spherical coordinate system for use

in even color distribution.

R

G

B

�

�

�

(a) Cover image. (b) Range set of a color cube.

Fig. 1. An illustration of range sets of color cubes.

(a) Stego-image. (b) Difference image.

Fig. 5. An experimental result of data embedding applied to

Fig. 1(a) with a 256�256 cover image and a 22900-

byte message.

(a) Cover image. (b) Range set of a color cube.

(c) Stego-image. (d) Difference image.

Fig. 6. A second experimental result with a 256�256 cover image

and 22900-byte message.

(a) Cover image. (b) Stego-image. (c) Difference

image.

Fig. 8. A fourth experimental result of data embedding with

a 512�512 cover image and a 88200-byte message.

(a) Cover image. (b) Stego-image.

(c) Difference image.

Fig. 7. A third experimental result of data embedding with a

512�512 cover image and a 88200-byte message.

R

B

G

Fig. 4. An example of color distribution in a color

cube .--- the 8 colors in group 3.

R

G

c11 = (0, 0, 0)

B

c12 = (1, 1, 1)

c21 = (1, 0, 0)

c22 = (0, 1, 1)

c31 = (1, 1, 0)

c32 = (0, 0, 1)

c41 = (0, 1, 0)

c42 = (1, 0, 1)

Fig. 2. A color cube with 8 colors divided into four

groups with base color (0, 0, 0).

Table 2. Color encoding table for the (0, 0, 0)-th color cube

with base color (0, 0, 0).

r g b � � � group code

2 1 2 0.9 35 315

2 3 2 1.7 18 72

0 1 2 1.7 18 198

1 1 3 1.7 65 225

3 2 0 2.2 -43 18

1 0 0 2.2 -43 252

0 3 1 2.2 -13 135

3 3 0 2.6 -35 45

1 000

2 2 2 0.9 35 45

0 2 2 1.7 18 162

2 0 2 1.7 18 288

2 1 3 1.7 65 315

1 3 0 2.2 -43 108

3 1 0 2.2 -43 342

0 0 1 2.2 -13 225

0 3 0 2.6 -35 135

2 001

1 2 2 0.9 35 135

3 2 2 1.7 18 18

1 0 2 1.7 18 252

2 2 3 1.7 65 45

2 3 0 2.2 -43 72

0 1 0 2.2 -43 198

3 0 1 2.2 -13 315

0 0 0 2.6 -35 225

3 010

1 1 2 0.9 35 225

1 3 2 1.7 18 108

3 1 2 1.7 18 342

1 2 3 1.7 65 135

0 2 0 2.2 -43 162

2 0 0 2.2 -43 288

3 3 1 2.2 -13 45

3 0 0 2.6 -35 315

4 011

2 1 1 0.9 -35 315

1 1 0 1.7 -65 225

2 3 1 1.7 -18 72

0 1 1 1.7 -18 198

0 3 2 2.2 13 135

3 2 3 2.2 43 18

1 0 3 2.2 43 252

3 3 3 2.6 35 45

5 100

r g b � � � group code

2 2 1 0.9 -35 45

2 1 0 1.7 -65 315

0 2 1 1.7 -18 162

2 0 1 1.7 -18 288

0 0 2 2.2 13 225

1 3 3 2.2 43 108

3 1 3 2.2 43 342

0 3 3 2.6 35 135

6 101

1 2 1 0.9 -35 135

2 2 0 1.7 -65 45

3 2 1 1.7 -18 18

1 0 1 1.7 -18 252

3 0 2 2.2 13 315

2 3 3 2.2 43 72

0 1 3 2.2 43 198

0 0 3 2.6 35 225

7 110

1 1 1 0.9 -35 225

1 2 0 1.7 -65 135

1 3 1 1.7 -18 108

3 1 1 1.7 -18 342

3 3 2 2.2 13 45

0 2 3 2.2 43 162

2 0 3 2.2 43 288

3 0 3 2.6 35 315

8 111

Table 3 Statistics of experimental results.

No. Image

Size of

message

data

(bytes)

Process-

ed pixel

rate

No. of

used

color

cubes

PSNR

(dB)

1 4.1.01(256�256) 22900 0.932 5242 48.23

2 4.1.02(256�256) 22900 0.932 3329 48.49

3 4.1.03(256�256) 22900 0.932 1628 48.59

4 4.1.05(256�256) 22900 0.932 3840 48.68

5 4.2.01(512�512) 88200 0.879 5514 48.36

6 4.2.02(512�512) 88200 0.879 5446 49.19

7 4.2.04(512�512) 88200 0.879 9908 48.70

8 4.2.05(512�512) 88200 0.879 6626 48.61

9 4.2.06(512�512) 88200 0.879 17093 48.60

10 4.2.07(512�512) 88200 0.879 17110 48.27

11 House(512�512) 88200 0.879 16048 48.68

