
SECURITY PROTECTION OF SOFTWARE PROGRAMS BY
INFORMATION SHARING AND AUTHENTICATION TECHNIQUES USING

INVISIBLE ASCII CONTROL CODES*

1, 3

I-Shi Lee(李義溪),
1, 2,

Wen-Hsiang Tsai (蔡文祥)

1Department of Computer Science
National Chiao Tung University, Hsinchu, Taiwan 30010

2Department of Information Communication
Asia University, Taichung, Taiwan 41354
3Department of Management Information

Technology and Science Institute of Northern Taiwan, Taipei, Taiwan

E-mails: gis87809@cis.nctu.edu.tw & whtsai@cis.nctu.edu.tw

 To whom all correspondence should be sent.

ABSTRACT

A new method for software program protection by information
sharing and authentication techniques using invisible ASCII
control codes is proposed. A scheme for sharing a secret
source program among a group of participants, each holding a
camouflage program to hide a share, is first proposed. The
secret program is divided into shares. Each share is encoded
next into a sequence of special ASCII control codes which are
invisible when the codes are inserted in the comment of the
Visual C++ program. These invisible codes then are hidden in
the camouflage program, resulting in a stego-program for a
participant to keep. Each stego-program can still be compiled
and executed to perform the original function of the
camouflage program. A secret program recovery scheme is
also proposed. To enhance security three security measures
via the use of a secret random key are also proposed.
Experimental results show the feasibility of the proposed
method.

1. INTRODUCTION

Software programs written in various computer languages are
important resources of intellectual properties. They need
protection from being tampered with. One technique of
information protection is information sharing. When applied
to software programs, this technique means that a secret
program is, via a certain sharing scheme, transformed into
several copies, called shares. Each share is individually
different from the original secret program in appearance,
content, and/or function. The secret program cannot be
recovered unless the shares are collected and manipulated
with a reverse sharing scheme. Such a technique of program
sharing may be regarded as one way of secret keeping, which
is necessary in many software-developing organizations.

The concept of secret sharing was proposed first by
Shamir [1]. By a so-called (k, n)-threshold scheme, the idea is
to encode a secret data item into n shares for n participants to
keep, and any k or more of the shares can be collected to
recover the original secret, but any (k − 1) or fewer of them
will gain no information about it. A similar scheme, called
visual cryptography, was proposed by Naor and Shamir [2] for

sharing an image. The scheme provides an easy and fast
decryption process consisting of xeroxing the shares onto
transparencies and stacking them to reveal the original image
for visual inspection. This technique has been investigated
further in [3-5], though it is suitable for binary images only.
Verheul and van Tilborg [6] extended the visual cryptography
technique for processing images with small numbers of gray
levels or colors. Lin and Tsai [7] proposed a digital version of
the visual cryptography scheme for color images with no limit
on the number of colors. The n shares obtained from a color
image are hidden in n camouflage images which may be
selected to have well-known contents, like famous characters
or paintings, to create additional steganographic effects for
security protection of the shares.

Sharing of software programs in source form has not been
studied yet. In this paper, we propose a method for this
purpose, which is based on the use of some specific ASCII
control codes invisible in certain software editors. Invisibility
of such ASCII control codes is a finding of this study through
a systematic investigation of the visibility of all the ASCII
codes in the window of the Visual C++ editor of Microsoft
Visual Studio .NET 2003, Service Pack 1 (abbreviated as the
VC++ editor in the sequel). By the use of the logic operation of
“exclusive-OR,” each source program to be shared is
transformed into a number of shares, say N ones, which are
then hidden respectively into N pre-selected camouflage
source programs, resulting in N stego-programs. Each stego-
program still can be compiled and executed to perform the
function of the original camouflage program, and each
camouflage program may be selected arbitrarily, thus
enhancing the steganographic effect.

To improve the security protection effect further, we
propose additionally an authentication scheme for verifying
the correctness of the contents of the stego-programs brought
by the participants to join the process of secret program
recovery. This is advantageous to prevent any of the
participants from accidental or intentional provision of a false
or destructed stego-program. The verified contents include the
share data and the camouflage program contained in each
stego-program. Any “bad” share or camouflage program will
be identified and picked out in the secret program recovery

process. This double capability of authentication is based on
the use of certain authentication signals embedded in the
stego-programs. Each signal is generated from the contents of
the share data and the camouflage program content. A third
measure proposed to enhance security protection in this study
is to prohibit recovery of the secret program with illegally
collected stego-programs. All of these protection capabilities
are carried out with the provision of a secret random key
through the use of certain mathematical operations.

In the remainder of this paper, we describe in Section 2
the finding of the invisible ASCII codes and a scheme of
binary data encoding into such codes for use in generating
stego-programs. In Section 3, an algorithm describing the
proposed source program sharing and authentication signal
generation schemes is presented, and in Section 4, an
algorithm for stego-program authentication and secret source
program recovery is described. In Section 5, discussions on
and measures for security issues are given. And finally in
Section 6, some experimental results are presented, followed
by a conclusion in Section 7.

2. INVISIBLE ASCII CONTROL CODES FOR BINARY
DATA ENCODING

ASCII codes, usually expressed as hexadecimal numbers, are
used very commonly to represent texts for information
interchanges on computers. Some of the ASCII codes of 00
through 1F were used as control codes to control computer
peripheral devices like printers, tape drivers, teletypes, etc.
(see Table 1). But now they are rarely used for their original
purposes because of the rapid development of new peripheral
hardware technologies, except those codes for text display
controls, such as 0A and 08 with the meanings of “line feed”
and “backspace,” respectively. It is found in this study that
some of the ASCII control codes, when displayed by certain
text editors under some OS environments, are invisible. Such
ASCII codes may be utilized for various secret data hiding
purposes [8].

The finding of such invisible codes resulted from a
systematic test of all the ASCII control codes in the
environment of the VC++ editor of Microsoft Visual
Studio .NET 2003, Service Pack 1. Four of such codes so
found are 1C, 1D, 1E, and 1F, which are invisible in the
comments or character strings of VC++ programs (see Table 2).
Such codes will simply be said invisible in subsequent
discussions.

As an illustrative example, in Fig. 1 we show a simple
source program in Fig. 1(a) with a short comment “test a file.”
In the comment, we inserted consecutively the four codes 1C,
1D, 1E, and 1F between the letters “s” and “t” in the word
“test.” Their existences can be checked with the text editor
UltraEdit 32, as can be seen from Fig. 1(b). But the four codes
are invisible in the VC++ editor, as can be seen from Fig. 1(a).
Such invisibility usually will arouse no suspicion and so
achieve a steganographic effect, since, unless necessary,
people will always use the VC++ editor for program inspection
and development. We utilize such an “invisibility
phenomenon” for hiding both share data and authentication
signals in source programs in this study, as described in the
following.

For the purpose of program sharing among several
participants, after a given secret source program is
transformed into shares, each share is transformed further into
a string of the above-mentioned invisible ASCII control codes,
which is then embedded into a corresponding camouflage

source program held by a participant. And for the purpose of
security protection, authentication signals, after generated, are
transformed as well into invisible ASCII control codes before
embedded. These two data transformations are based on a
binary-to-ASCII mapping proposed in this study, which is
described as a table as shown in Table 2, called invisible
character coding table by regarding each ASCII code as a
character.

Table 1. ASCII control codes and descriptions.

Dec Hex Char Description Dec Hex Char Description

0 0 NUL null
character 16 10 DLE data link

escape

1 1 SOH start of
header 17 11 DC1 device

control 1

2 2 STX start of text 18 12 DC2 device
control 2

3 3 ETX end of text 19 13 DC3 device
control 3

4 4 EOT end of
transmission 20 14 DC4 device

control 4

5 5 ENQ enquiry 21 15 NAK negative
acknowledge

6 6 ACK acknowledge 22 16 SYN synchronize

7 7 BEL bell (ring) 23 17 ETB
end

transmission
block

8 8 BS backspace 24 18 CAN cancel

9 9 HT horizontal
tab 25 19 EM end of

medium
10 A LF line feed 26 1A SUB substitute

11 B VT vertical tab 27 1B ESC escape

12 C FF form feed 28 1C FS file separator

13 D CR carriage
return 29 1D GS group

separator

14 E SO shift out 30 1E RS record
separator

15 F SI shift in 31 1F US unit
separator

Table 2 Invisible character coding table.

Bit pair Corresponding invisible ASCII code
00 1C

01 1D

10 1E

11 1F
Specifically, after the share and the authentication signal

data are transformed into binary strings, the bit pairs 00, 01,
10, and 11 in the strings are encoded into the hexadecimal
ASCII control codes 1C, 1D, 1E, and 1F, respectively. To
promote security, a secret random key is also used in
generating the authentication signal. The details are described
in the next section.

3. PROPOSED PROGRAM SHARING SCHEME

In the sequel, by a program we always mean a source program.
A sketch of the proposed process for sharing a secret program

is described as follows. We assume that the number of
participants in the secret program sharing activity is N, and
that the input secret random key has a value of Y.
(1) Creating shares --- Apply exclusive-OR operations to the

contents of the secret program and all the camouflage
programs, and divide the resulting string into N segments
as shares, with the one for the k-th participant to keep
being denoted as Ek.

(2) Generating authentication signals --- For each camouflage
program Pk, use the random key value Y to compute two
modulo-Y values from the binary values of the contents of
Pk and Ek, respectively; and concatenate them as the
authentication signal Ak for Pk.

(3) Encoding and hiding shares and authentication signals ---
Encode Ek and Ak respectively into invisible ASCII control
codes by the invisible character coding table (Table 2) and
hide them evenly at the right sides of all the characters of
the comments of camouflage program Pk, resulting in a
stego-program for the k-th participant to keep.
A detailed algorithm for the above scheme is given in the

following. We assume that the length of a program is
measured as the number of the ASCII characters in it. Also,
given two ASCII characters C and D, each with 8 bits,
denoted as C = c0c1...c7 and D = d0d1...d7, we define the result
of “exclusive-ORing” the two characters as E = C⊕D =
e0e1...e7 with ei = ci⊕di for i = 0, 1, ..., 7 where ⊕ denotes the
bitwise exclusive-OR operation. Note that E has eight bits, too.
And given two equal-lengthed character strings S and T, we
define the result of exclusive-ORing them, U = S⊕T, as that
resulting from exclusive-ORing the corresponding characters
in the two strings.

Algorithm 1. Program sharing and authentication.
Input: (1) a secret program Ps of length ls; (2) N pre-selected

camouflage programs P1, P2, ..., PN of lengths l1, l2, ...,
lN, respectively; and (3) a secret key which is a random
binary number Y with length lY (in the unit of bit).

Output: N stego-programs, P1', P2', ..., PN', in each of which a
share and an authentication signal are hidden.

Steps:
Stage 1. Creating shares from the secret program.
1. Create N + 1 character strings, all of the length ls of Ps,

from the secret program and the camouflage programs in
the following way.

1.1 Scan the characters (including letters, spaces, and
ASCII codes) in the secret program Ps line by line,
and concatenate them into a character string Ss.

1.2 Do the same to each camouflage program Pk, k = 1,
2, ..., N, to create a character string Sk of length ls (not
lk) either by discarding the extra characters in Pk if lk
> ls or by repeating the characters of Pk at the end of
Sk if lk < ls, when lk ≠ ls.

2. Compute the new string E = Ss⊕S1⊕S2⊕...⊕SN.
3. Divide E into N segments E1, E2, ..., EN as shares.
Stage 2. Generating authentication signals from the

contents of the shares and the camouflage
programs.

4. Generate an authentication signal Ak for each camouflage
program Pk, k = 1, 2, ..., N, using the data of Sk and Ek as
follows.
4.1 Regarding Sk as a sequence of 8-bit integers with

each character in Sk composed of 8 bits, compute the
sum of the integers, take the modulo-Y value of the

sum as ASk
, transform ASk

 into a binary number, and

adjust its length to be lY, the length of the key Y, by
padding leading 0’s if necessary.

4.2 Do the same to Ek to obtain a binary number AEk

with length lY, too.
4.3 Concatenate ASk

 and AEk
 to form a new binary

number Ak with length 2lY as the authentication
signal of Pk.

Stage 3. Encoding and hiding the share data and
authentication signals.

5. For each camouflage program Pk, k = 1, 2, ..., N, perform
the following tasks.
5.1 Concatenate the share Ek and the authentication

signal Ak as a binary string Fk.
5.2 Encode every bit pair of Fk into an invisible ASCII

control code according to the invisible coding table
(Table 2), resulting in a code string Fk'.

5.3 Count the number m of characters in all the
comments of Pk.

5.4 Divide Fk' evenly into m segments, and hide them in
order into Pk, with each segment hidden to the right
of a character in the comments of Pk.

6. Take the final camouflage programs P1', P2', ..., PN' as
the output stego-programs.

In Step 3, we assume that the number of characters in the
secret program is a multiple of N, the number of participants,
for simplicity of algorithm description; if not, it can be made
so by appending a sufficient number of blank spaces at the end
of the original secret program. In Steps 4.1 and 4.2, the
purpose we compute the signals ASk

 and AEk
 from the contents

of the camouflage program Pk and the share Ek, respectively,
for use in generating the authentication signal Ak is to prevent
any participant from intentionally or accidentally changing the
contents of the original camouflage program or the hidden
share; illegal tampering with them will be found out in the
process of secret program recovery described in the next
section. It is also noted that each stego-program yielded by the
algorithm still can be compiled and executed to perform the
function of the original camouflage program.

4. SECRET PROGRAM RECOVERY SCHEME

A sketch of the proposed process for recovering the secret
source program is described as follows, for which it is
assumed that the stego-program brought to the recovery
activity by participant k is denoted as Pk'. Also, the original
key with value Y used in Algorithm 1 is provided.
(1) Extracting hidden shares and authentication signals ---

Scan the comments of each stego-program Pk' to collect
the invisible ASCII control codes hidden in them and
concatenate the codes as a character string; decode the
string into a binary one by the invisible character coding
table (Table 2); and divide the string into two parts, the
share data Ek and the authentication signal Ak. Also,
remove the hidden codes from Pk' to get the original
camouflage program Pk.

(2) Authenticating the shares and the camouflage programs --
- Use the authentication signal Ak as well as the key Y to
check the correctness of the contents of the extracted share
data Ek and the camouflage program Pk by decomposing
Ak into two signals and matching them with the modulo-Y
values of the binary values of Pk and Ek, respectively.
Issue warning messages if either or both authentications
fail.

(3) Recovering the secret program --- Apply exclusive-OR
operations to the extracted share data E1 through EN and
the camouflage programs P1 through PN to reconstruct the
secret program Ps.
The secret program recovery process is described as a

detailed algorithm in the following.

Algorithm 2. Authentication of the stego-programs and
recovery of the secret program.

Input: N stego-programs P1', P2', ..., PN' provided by the N
participants and the secret key Y with length lY used in
secret program sharing (Algorithm 1).

Output: the secret program Ps hidden in the N stego-programs
if the shares and the camouflage programs in the stego-
programs are authenticated to be correct.

Steps:
Stage I. extracting hidden shares and authentication

signals.
1. For each stego-program Pk', k = 1, 2, ..., N, perform the

following tasks to get the contents of the camouflage
programs and the authentication signals.
1.1 Scan the comments in Pk' line by line, and collect

the invisible ASCII codes located to the right of the
comment characters as a character string Fk'.

1.2 Remove all the collected characters of Fk' from Pk',
resulting in a program Pk with length lk, which
presumably is the original camouflage program.

1.3 Decode the characters in Fk' using the invisible
character coding table (Table 2) into a sequence of
bit pairs, denoted as Fk.

1.4 Regarding Fk as a binary string, divide it into two
segments Ek and Ak with the length of the latter
being fixed to be 2lY, which presumably are the
hidden share and the authentication signal,
respectively.

1.5 Divide Ak into two equal-lengthed binary numbers
ASk

 and AEk
.

Stage II. Authenticating share data and camouflage
programs.

2. Concatenate all Ek, k =1, 2, ..., N, in order, resulting in a
string E with length lE which presumably equals ls, the
length of the secret program to be recovered.

3. For each k = 1, 2, ..., N, perform the following
authentication operations.
3.1 Create a character string Sk of length lE from the

characters in Pk either by discarding extra characters
in Pk if lk > lE or by repeating the characters of Pk at
the end of Sk if lk < lE, when lk ≠ lE.

3.2 Regarding Sk as a sequence of 8-bit integers with
each character in Sk composed of 8 bits, compute the
sum of the integers, take the modulo-Y value of the
sum as ASk

', transform ASk
' into a binary number, and

adjust its length to be lY, the length of the key Y, by
padding leading 0’s if necessary.

3.3 Do the same to Ek, resulting in a binary number AEk
'.

3.4 Compare ASk
' with the previously extracted ASk

; if
mismatching, issue the message “the camouflage
program is not genuine,” and stop the algorithm.

3.5 Compare AEk
' with the previously extracted AEk

; if
mismatching, issue the message “the share data have
been changed,” and stop the algorithm.

Stage III. Recovering the secret program.

4. Compute Ss = E⊕S1⊕S2⊕...⊕SN, and regard it as a
character string.

5. Use the ASCII codes 0D and 0A (“carriage return” and
“line feed”) in Ss as separators, break Ss into program
lines to reconstruct the original secret program Ps as
output.

Note that in Step 4 above, we conduct the exclusive-OR
operations of E⊕S1⊕S2⊕...⊕SN. This will indeed result in the
desired Ss because E was computed as E = Ss⊕S1⊕S2⊕...⊕SN
in Step 2 of Algorithm 1, and so

E⊕S1⊕S2⊕...⊕SN
=(Ss⊕S1⊕S2⊕...⊕SN)⊕S1⊕S2⊕...⊕SN
=Ss⊕(S1⊕S1)⊕...⊕(SN⊕SN)
=Ss⊕0⊕0⊕...⊕0
= Ss

by the commutative and associative laws of the exclusive-OR
operation and the facts that X⊕X = 0 and X⊕0 = X for any bit
X, where the bold character 0 is used to represent 8
consecutive bits of zero, i.e., 0 = 00000000.

5. DISCUSSIONS ON SECURITY PROTECTION

In the previous discussions, we assume that the proposed
algorithms of secret sharing and recovery (Algorithms 1 and 2)
are known to the public, and that the key Y is held by a
supervisor other than any of the N participants. The key is
provided by the supervisor as an input to the secret program
sharing and recovery processes described by Algorithms 1 and
2; it is not available to any participant. Under these
assumptions and by Algorithm 2 above, if any participant
changes the content of the camouflage program or that of the
share contained in the stego-program which he/she holds
before the secret program recovery process, such illegal
tampering will be found out and warnings issued during the
recovery process.

However, there still exists in the two algorithms another
kind of weakness in security protection of the secret program.
That is, the secret program may be recovered illegally if all
the stego-programs are stolen by a person who knows the
algorithms, because then he/she may run Algorithm 2 to
extract the secret program without performing Step 3, as can
be figured out!

One way to remove this weakness is to use the secret key
to randomize the result of E = Ss⊕S1⊕S2⊕...⊕SN computed in
Step 2 in Algorithm 1 before E is divided into shares in the
next step. We implement this by letting the secret key Y join
the exclusive-OR operation of Step 2 after expanding Y
repeatedly to have a length equal to that of the secret program
Ss. That is, in Step 2 of Algorithm 1 we repeat the key Y’s and
concatenate them until the length of the expanded key Y' in
the unit of character (8 bits for a character) is equal to ls, the
length of Ss, and then compute E instead as E =
Ss⊕S1⊕S2⊕...⊕SN⊕Y'. Correspondingly, in Step 4 of
Algorithm 2 we expand Y similarly to get Y', and then
compute Ss instead as Ss = E⊕S1⊕S2⊕...⊕SN⊕Y'. The
properties of the exclusive-OR operation assure that the Ss so
computed is the desired secret program in its string form. In
this way, without the key Y, Ss obviously cannot be recovered,
and so the previously-mentioned weakness is removed.

6. EXPERIMENTAL RESULTS

In one of our experiments, we applied the proposed schemes
described previously to share a secret program among three

participants. The main part of the secret program seen in the
window of the Microsoft VC++ editor is shown in Fig. 2(a),
which has the function of generating a secret key from an
input seed. And part of one of the three camouflage programs
is shown in Fig. 2(b). After hiding the shares and the
authentication signals in the comments of each camouflage
programs, the stego-program resulting from Fig. 2(b) appears
to be the upper part of Fig. 2(c) which is not different from
that of Fig. 2(b). The real content of the stego-program seen in
the window of the UltraEdit 32 editor is shown in the lower
part of Fig. 2(c) which includes the ASCII codes representing
the program on the left and the appearance of the codes as
characters on the right. The recovered secret program is
shown in Fig. 2(d), which is identical to that shown in Fig.
2(a).

We also tested the case of recovery with one of the stego-
images (the second one) being damaged, as shown in Fig. 3(a).
The proposed scheme issued a warning message, as shown in
Fig. 3(b).

7. CONCLUSION

For the purpose of protecting software programs, new
techniques for sharing secret source programs and
authentication of resulting stego-programs using four special
ASCII control codes invisible in the window of the Microsoft
VC++ editor have been proposed. The proposed sharing
scheme divides the result of exclusive-ORing the contents of
the secret program and a group of camouflage programs into
shares, each of which is then encoded into a sequence of
invisible ASCII control codes before being embedded into the
comments of the corresponding camouflage program. The
resulting stego-programs are kept by the participants of the
sharing process. The original function of each camouflage
program is not destroyed in the corresponding stego-program.
The sharing of the secret program and the invisibility of the
special ASCII codes as share data provides two-fold security
protection of the secret program.

In the secret program recovery process, the reversibility
property of the exclusive-OR operation is adopted to recover
the secret program using the share data extracted from the
stego-programs. To enhance security of keeping the
camouflage programs, a secret random key is adopted to
verify, during the recovery process, possible incidental or
intentional tampering with the hidden share and the
camouflage program content in each stego-program. The key
is also utilized to prevent unauthorized recovery of the secret
program by illegal collection of all the stego-programs and

unauthorized execution of part of the proposed algorithms.
Experimental results have shown the feasibility of the

proposed method. Future research may be directed to applying
the invisible ASCII control codes to other applications, such
as watermarking of software programs for copyright
protection, secret hiding in software programs for covert
communication, authentication of software program
correctness, and so on.

ACKNOWLEDGEMENT

This work was supported partially by the NSC project
Advanced Technologies and Applications for Next Generation
Information Networks (II) – Subproject 5: Network Security,
No. 96-2752-E-009-006-PAE and partially by the NSC project
No. 96-2422-H-009-001.

REFERENCES

[1] A. Shamir, “How to share a secret,” Communications of
the Association for Computing Machinery, vol. 22, no.
11, pp. 612-613, 1979.

[2] M. Naor and A. Shamir, “Visual cryptography,”
Advances in Cryptology --- EUROCRYPT’94, vol. 950
of Lecture Notes in Computer Science, pp. 1-12, 1995.

[3] G. Ateniese, C. Blundo, A. De Santis, and D. R.
Stinson, “Visual cryptography for general access
structures,” Information and Computation, vol. 129, pp.
86-106, 1996.

[4] M. Naor and B. Pinkas, “Visual authentication and
identification,” Advances in Cryptology ---
CRYPTO’97, vol. 1294 of Lecture Notes in Computer
Science, pp. 322-336, 1997.

[5] C. Blundo and A. De Santis, “Visual cryptography
schemes with perfect reconstruction of black pixels,”
Computers & Graphics, vol. 22, no. 4, pp. 449-455,
1998.

[6] E. R. Verheul and H. C. A. van Tilborg, “Construction
and properties of k out of n visual secret sharing
schemes,” Designs, Codes, and Cryptography, vol. 11,
pp. 179-196, 1997.

[7] C. C. Lin and W. H. Tsai, “Secret image sharing with
steganography and authentication,” Journal of Systems
& Software, vol. 73, no. 3, pp. 405-414, 2004.

[8] I. S. Lee and W. H. Tsai “Data hiding in emails and
applications by unused ASCII control codes,”
Proceedings of 2007 National Computer Symposium,
Taichung, Taiwan, vol. 4, pp. 414-422, Dec. 2007.

(a) A source program with four invisible ASCII control codes inserted in the comment “test a file.”

(b) The program seen in the window of the text editor UltraEdit with the four ASCII control codes visible between the letters “s”

and “t” of the word “test” in the comment.

Fig. 1 Illustration of invisible ASCII control codes in a comment of a source program.

(a) Main part of the secret source program seen in the window of the Microsoft VC++ editor.

Fig. 2 Experimental results of sharing a secret program.

(b) Part of one camouflage program seen in the window of Microsoft Visual C++ editor.

(c) The stego-program resulting from (b) seen in the window of Microsoft Visual C++ editor (upper part) and UltraEditor 32 editor
(lower part).

Fig. 2 Experimental results of sharing a secret program (continued).

(d) Recovered secret program seen in the window of Microsoft Visual C++ editor.

Fig. 2 Experimental results of sharing a secret program (continued).

(a) Destructed stego-program of Fig. 2(b) seen in the window of Microsoft Visual C++ editor (the changed characters are
highlighted).

(b) A message showing the content of the original camouflage program has been changed.

Fig. 3 An experimental result of authenticating a destructed stego-program (continued).

	ABSTRACT
	1. INTRODUCTION
	2. INVISIBLE ASCII CONTROL CODES FOR BINARY DATA ENCODING
	3. PROPOSED PROGRAM SHARING SCHEME
	4. SECRET PROGRAM RECOVERY SCHEME
	5. DISCUSSIONS ON SECURITY PROTECTION
	6. EXPERIMENTAL RESULTS
	7. CONCLUSION
	ACKNOWLEDGEMENT
	REFERENCES

