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ABSTRACT 

A new method for data hiding in grayscale images based 
on a human vision model with distortion-minimizing 
capabilities is proposed for covert communication. Each of the 
eight bit planes of an input grayscale image is viewed as a 
binary image, into which message data are embedded 
horizontally. To minimize the image distortion, two 
optimization techniques, namely, block pattern coding and 
dynamic programming, are proposed. Furthermore, the 
proposed method can predict the PSNR value of the resulting 
image according to the size of the data to be embedded before 
the embedding process starts. Experimental results show good 
performances of the proposed method. 

1. INTRODUCTION 
Data hiding in images is a useful technique for covert 

communication. Many data hiding techniques have been 
proposed recently [1, 2, 3]. The most common approach is 
least-significant-bit (LSB) replacement, which embeds 
message data in a subset of the LSB planes of an image. The 
image into which a message is hidden is called a cover image, 
and the result a stego-image. Wang et al. [4] embedded a 
binary image in the fifth LSB bit plane of a cover image, and 
employed an optimal substitution process based on a genetic 
algorithm and a local pixel adjustment method to lower the 
distortion in the stego-image. Chang et al. [5] used dynamic 
programming to obtain an optimal solution for the LSB 
substitution method. Chan and Cheng [6, 7] presented an 
optimal pixel adjustment process to improve the image quality 
of the stego-image acquired by Wang’s schemes. Thien and 
Lin [8] proposed a method for hiding data in images digit by 
digit using a modulus function. The method is better than 
simple LSB substitution not only in eliminating false contours 
but also in reducing image distortion. Lee and Chen [9] 
applied variable-sized LSB insertion to estimate the maximum 
embedding capacity by a human visual system (HVS) 
property, and to maintain image fidelity by removing false 
contours in smooth image regions. Liu et al. [10] presented a 
novel bit plane-wise data hiding scheme using variable-depth 
LSB substitution and employed post-processing to eliminate 
the resulting noticeable artifacts. 

Most of the above methods lack consideration of using 
precise human visual models in improving the data hiding 
effect. Instead, Wu and Tsai [11] presented a method based on 
the HVS by modifying quantization scales according to 
variation insensitivity from smooth to contrastive to improve 
the stego-image quality. And Lie and Chang [12] presented an 
adjusted LSB technique with the number of LSBs adapting to 
the pixels of different grayscales. 

In this study, we propose a method to embed data into a 
grayscale image for covert communication, based on the use 
of a new HVS model to estimate the number of usable bits of 
each pixel in the cover image. Furthermore, a block pattern 
encoding method is proposed to embed up to three data bits in 
a 2×2 block of the bit planes without yielding visible 
degrading of the stego-image quality. This is achieved by 
using two optimization techniques. The first technique utilizes 
multiple block pattern encoding tables, from which an optimal 
one is chosen for each input image, and the second technique 
uses dynamic programming to divide the message data stream 
into appropriate bit segments for optimal data bit embedding 
in the image blocks to minimize a cost function. Especially, 
the proposed method can predict the PSNR value of the stego-
image according to the embedded data size before the 
embedding process is started. Moreover, the proposed method 
can extract embedded data without referencing the original 
image, and does not require post-processing to refine the 
stego-image quality. 

In the remainder of this paper, we introduce the basic idea 
behind the proposed method in Section 2. In Section 3, we 
describe the adopted HVS model and the corresponding cost 
function. In Section 4, the proposed data hiding method is 
described. The corresponding data recovery process is 
proposed in Section 5. Some experimental results are given in 
Section 6, followed by conclusions in Section 7. 

2. EMBEDDING DATA IN BIT PLANES OF 
GRAYSCALE IMAGES 

Eight bits represent a pixel’s intensity in a grayscale 
image. The bit plane formed by the same bit of each pixel in 
the grayscale image is a binary image. Figure 1 shows the 
eight bit planes of each of three given 128×128 grayscale 

 



    

    

     
Figure 1. Three grayscale images and their 8 corresponding bit planes (from left to right, original images, bp0, bp1, 

bp2, …, and bp7, respectively). 
 

images. The image of each bit plane is zoomed out for 
comparison. It is observed that the content of the LSB plane 
bp0 is almost fully randomized. If the message is embedded in 
bp0, the resulting image will appear to be almost unaltered to 
human eyes. On the contrary, there exist less random noise 
areas in the remaining more significant bit planes. 

The most-significant-bit plane bp7 contains almost no 
noise, and data cannot be embedded easily into it without 
causing significant visual changes. We may embed message 
data into bit planes in the order of bp0, bp1, …, bp7. This 
scheme is termed horizontal data hiding, to be contrastive 
with traditional vertical data hiding methods which embed 
data into the bits b7, b6, …, b0 of each pixel in the order of b0 
through b7, where b0 is the LSB of the pixel. Compared with 
the vertical data hiding method, horizontal data hiding can 
reduce more distortion in the stego-image, as revealed in the 
results of this study. 

On the other hand, embedding data directly in bit planes 
will cause visible damages to the edges in the bit planes. To 
overcome this difficulty, in this study we design a new cost 
function which considers certain perception characteristics of 
the HVS, and adopt a method proposed in Lee and Tsai [13] 
for data embedding. Each bit plane is regarded to have a 
different weight in its capability for data hiding, and the new 
cost function is designed accordingly to measure the degree of 
distortion resulting from pixel value changes. The details are 
discussed in the following. 

3. COST FUNCTION FOR DISTORTION 
MEASUREMENT 

Since stego-images are viewed by human vision, the 
characteristics of the HVS must be exploited in designing a 
data embedding process. Two of such characteristics are 
useful here. First, human perception is more sensitive to 
grayscale changes in smooth areas than in texture areas in a 
grayscale image. Second, human perception is sensitive to 
relative luminance rather than absolute one. Designing the cost 
function for distortion measurement for data embedding must 
take these two characteristics into consideration, as elaborated 
in the following.  

3.1 Computing Number of Data-Embeddable Bits with 
Consideration of Neighborhood Grayscale Value Change 
For the first consideration, assume that a pixel P with 

grayscale value g is to be used to embed message data. Let 
MAX denote the maximum grayscale value, and MIN the 
minimum, in the 3×3 block with P as the center, which we call 
the neighborhood of P. Then, the maximum between-pixel 
grayscale range in this block is Δ = MAX − MIN. According to 
the previous discussions, to avoid a significant change of the 

smoothness degree with respect to the neighborhood of P, the 
new grayscale value g′ resulting from the data embedding is 
restricted in this study to remain in the range of g ± Δ/2. Then, 
we define a maximum number D of data-embeddable bits at P 
as 

D = ⎣log2(Δ/2)⎦ = ⎣(log2Δ) − 1⎦ = ⎣log2(MAX − MIN) − 1⎦.  (1) 

3.2  Computing Number of Data-Embeddable Bits with 
Consideration of Pixel’s Luminance Change 

For the second consideration mentioned above, let f denote 
the luminance of a pixel P with grayscale value g where 1 ≤ f 
≤ 100. According to the Fechner law [14], the relative 
luminance property perceived by the HVS may be expressed 
as a contrast value c computed by 

c = 50×log10f 

where 0 ≤ c ≤ 100. Moreover, according to the Weber law [14], 
the maximum allowable change Δc of the contrast value c 
according to the principle of “just noticeable difference 
(JND)” about the pixel’s luminance change is about 2. That is, 
if the luminance of a pixel is changed too much so that Δc is 
larger than 2, the change will be noticeable to the HVS. 
Accordingly, we can compute in another way a maximum 
number of data-embeddable bits in the 8 bits of a pixel’s 
grayscale value, as described next. 

First, we want to compute the maximum luminance 
change (Δf)max in accordance with the maximum allowable 
contrast change (Δc)max = 2. With c being the contrast of pixel 
P, let cmax denote the maximum possible contrast value. Then, 
we have 

2 = (Δc)max = cmax − c = 50×log10fmax − 50×log10f  
= 50×log10 fmax / f, 

which can be reduced to be fmax/f = 10(2/50). So, the maximum 
allowable luminance change can be expressed as 
(Δf)max = fmax − f = (fmax/ f − 1)×f = (10(2/50) − 1)×f  ≈ 0.0965×f. 

And so we may impose the following constraint to the value of 
f: 

                        (Δf)max / f ≤ 0.0965.                                   (2) 
On the other hand, in a monochrome image the luminance 

f in the range of [1 100] is represented by the grayscale value 
g in the range [0 255], such that g may be computed by the 
mapping g = (f − 1)×(255/99) ≈ 2.576(f − 1), or equivalently, 
the mapping f ≈ 0.3882g + 1, which specifies a linear relation 
between f and g. Hence, from Constraint (2), we can, after 
some derivations, get the following new constraint for 
grayscale changes according to the principle of JND: 



         0.0965 ≥ (Δf)max / f = (Δg)max /(g + 2.576)                   (3) 

where (Δg)max, corresponding to (Δf)max, denotes the maximum 
grayscale change in the pixel’s neighborhood. That is, if the 
above constraint (3) is set for data embedding, the changes of 
grayscales in the stego-image will not be detectable by human 
eyes according to the JND principle. 

Now, we discuss how many bits can be utilized for data 
embedding for each possible grayscale value g. If 5 bits of the 
pixel’s grayscale are used for embedding message data, the 
maximum grayscale change at the pixel will be (Δg)max = 25 − 
1 = 31. And according to Constraint (3), g must be larger than 
319, which, however, is out of the grayscale range [0, 255]. 
This means that embedding 5 or more bits of message data 
into a pixel is impractical according to the JND principle. As a 
result, bp4, bp5, bp6, and bp7 are not used for data embedding 
in this study. If 4 LSBs of g are changed, then (Δg)max = 24 − 1 
= 15, and by Constraint (3) we get g >153. That is, when the 
following constraint g > 153 is satisfied, we can embed data 
into the 4 LSBs of g without causing a noticeable luminance 
change according to the JND principle. 

However, the binary value of 153 is 100110012. After the 
4 LSBs of g are changed, the new value of g might become a 
value in the range of 100100002 through 100110002, which is 
smaller than 153, causing a violation of Constraint (3). 
Therefore, we must change the above constraint g > 153 to be 
g > 160 where 160 = 101000002 such that after any 4-bit data 
are embedded into the 4 LSBs of g, the resulting new value g' 
of g will always be larger than 160, thus satisfying Constraint 
(3). In other words, to meet Constraint (3), only when a given 
pixel’s grayscale g satisfies g ≥ 160 can the 4 LSBs of g be 
replaced by 4-bit message data. And in short, 4 bits are the 
upper limit to be embedded in a pixel’s grayscale according to 
the JND principle. 

Similarly, if 3 bits are changed, then (Δg)max = 23 − 1 = 7, 
and by Constraint (3) as well as a similar reasoning process, 
the constraint g ≥ 72 should be satisfied, where 72 = 
010010002. If 2 bits are changed, the constraint g ≥ 32 is 
required, where 32 = 001000002. Finally, if 1 bit is changed, g 
≥ 10 is necessary, where 10 = 000010102. 

In summary, we embed an appropriate number B of 
message bits in a pixel’s grayscale g according to the 
following rule to satisfy the JND principle: 

if g ≥ 160, then B = 4; 
if g ≥ 72, then B = 3; 
if g ≥ 32, then B = 2; 
if g ≥ 10, then B = 1; 
otherwise, B = 0.                                               (4) 

3.3 Combining Results of Two Considerations 
To combine the results of the above two considerations, it 

is not difficult to figure out that the maximum number of data-
embeddable bits at a pixel should be taken to be E = min(D, B) 
where D and B are as specified in (1) and (4), respectively. 

Let the grayscale value g of a pixel P in binary form be 
denoted as g = (g7 g6 g5 g4 g3 g2 g1 g0)2, and the replacement 
cost of gi in the i-th bit plane be denoted as Ci where 0 ≤ i ≤ 3. 
According to the previous discussions, Ci is defined in this 
study as: 

if i ≤ (E − 1), then Ci = 8/2(Ε−1)−i; otherwise, Ci = ∞. 
The above definition of the cost function gives more penalties 
to the replacement of more significant bits. In more details, we 
have the following results: 

if E = 4, then C0 = 1, C1 = 2, C2 = 4, C3 = 8, C4 ~ C7 = ∞; 
if E = 3, then C0 = 2, C1 = 4, C2 = 8, C3 ~ C7 = ∞; 
if E = 2, then C0 = 4, C1 = 8, C2 ~ C7 = ∞; 
if E = 1, then C0 = 8, C1 ~ C7 = ∞; 
if E = 0, then C0 ~ C7 = ∞. 

4. PROPOSED HORIZONTAL DATA HIDING 
METHOD 

The proposed method is implemented as an algorithm 
which includes two stages: (1) embedding of some control 
data, followed by (2) embedding of message data. The control 
data include the necessary information for use in the data 
recovery process. All data are embedded in the bit planes by a 
block pattern encoding method. As mentioned previously, 
each of the bit planes bp0 through bp3 can be viewed as a 
binary image and they together can be regarded as being 
concatenated into a sequence for data embedding. In this 
section, the idea to deal with the binary image is presented 
first, followed by the proposed process. 

4.1 Block Pattern Encoding for Data Embedding 
In order to embed a message into a binary image, every 

2×2 image block is regarded as a pattern with a 4-bit binary 
value in which each bit of 0 corresponds to a black pixel and 
each 1 a white one. The proposed data embedding process is 
based on the use of a block pattern encoding table which maps 
each block pattern into a certain code with one, two, or three 
bits of the message data to be hidden. And data embedding is 
accomplished by changing the block bit values so that the 
corresponding code of the resulting block pattern become just 
some bits of the input message data to be embedded. A 
possible block pattern encoding table designed for use in this 
study is shown in Table 1. It is emphasized, by the way, that 
such a table is just one of the many possible tables which may 
be used for data hiding, and the proposed data embedding 
process will choose from them an optimal one for each 
specific input binary image, as described later. 

Suppose that we want to embed one bit in a 2×2 block. 
The number of possible patterns in a 2×2 block are 16. This 
number is much larger than the required number of 2 to 
represent the two different message bits ‘0’ and ‘1’ in a block, 
so we may use more than one block pattern to represent a 
single message bit (0 or 1), allowing the possibility of 
choosing among the block patterns an optimal one to replace 
the original block in the data embedding process and thus 
reducing more distortion in the resulting block. On the other 
hand, we wish to embed more data in a block, not just a bit as 
just mentioned; and for this we can use a block pattern to 
represent more than one bit, as is done in this study. In short, 
we want to achieve both minimum-cost bit replacement and 
maximum-volume data embedding. 

As an illustration, we may use either the block pattern t1 = 
10112 or the pattern t2 = 01112 to represent the two-bit 
message value s = 012. In this way, when we want to embed, 
for example, the message value s = 012 into a block B with 
value v = 10102, we have the two alternative block patterns t1 
= 10112 and t2 = 01112 to choose to replace v =10102, instead 
of the conventional case of just one. And if we choose t1 = 
10112 to replace v =10102, then less distortion of just a 1-bit 
error (occurring at the LSB position) will result. Contrastively, 
if only one block pattern, say, t2 = 01112 is available, then an 
error of 3 bits will result, causing more distortion in the 
resulting block. It is such an allowance of multiple choices for 



block pattern replacement that achieves more distortion 
reduction in the proposed method. By the way, the previously-
mentioned bit errors are used just for convenience of 
illustrating the advantage of multiple choices of replacing 
blocks; they in fact should be the replacement costs defined 
previously. 

Table 1. A block pattern encoding table proposed in this study. 

Type Block 
pattern 

Corres- 
ponding 
binary 
value  

Encoded 
message 

data 

0  1111 1 

2  1110 00 

4  1101 00 

6  1011 01 

8  0111 01 

10  0011 011 

12  0101 011 

14  1010 010 
 

Type Block 
pattern 

Corres-
ponding 
binary 
value

Encoded 
message 

data 

1  0000 0 

3  0001 11 

5  0010 11 

7  0100 10 

9  1000 10 

11  0110 100 

13  1001 101 

15  1100 010 
 

 
4.2 Data Embedding in Binary Images 

The proposed data embedding process in binary bit-plane 
images consists of four major steps and includes two folds of 
distortion minimization, as described in the following. 

(1) Computing bit costs for data embedding: We calculate the 
replacement cost value for each bit in the image according 
to the cost function defined in Section 3. 

(2) Dividing the input image into blocks: We first divide each 
of bit planes bp0 through bp3 into non-overlap 2×2 blocks 
with every two neighboring blocks separated by a 1-pixel-
wide line of pixels in between, as shown in Figure 2. And 
next, we select the first n “embeddable” blocks and 
concatenate them sequentially, where n is the length of the 
message data string to be embedded. A block is said to be 
embeddable in this study if the replacement cost value of 
any one bit of the block is not infinite. 

(3) Using multiple block pattern encoding tables for first-fold 
distortion reduction: We generate all possible block 
pattern encoding tables and select an optimal one for use 
in the data embedding process, in the sense of introducing 
the least distortion. The reason is that a single block 
pattern encoding table will not be suitable for every input 
binary image; if an image is destroyed seriously after data 
embedding using a specific table like Table 1, it will be 
appropriate to use another table with other combinations 
of block patterns to encode the message data. Specifically, 
we exchange the encoded message data of certain types in 
Table 1 with those of the other types in the following way: 

 

exchange the message data “0” with “1”;  
exchange the message data “00” with “01”;  
exchange the message data “10” with “11”; 
exchange the message data “010” with “011”; 
exchange the message data “100” with “101”; 
exchange the message data “00” and “01” with “10” 
and “11,” respectively; 
exchange the message data “010” and “011” with 
“100” and “101,” respectively. 

By enumerating all possible cases in the above way, we 
can get the 128 distinct tables (numbered from 0 to 127) 
for selection to minimize the distortion. 

(4) Applying search techniques for second-fold distortion 
reduction: Finally, we apply the dynamic programming 
technique to segment the input message data stream 
optimally into a series of codes and embed them in the 
input image, according to the cost function proposed 
previously. This reduces the resulting distortion further in 
a global sense. 

 
 

 
Figure 2. Division of an input image into 2×2 blocks with 

separating lines (grids with bold boundaries are 
2×2 blocks for data embedding) 

 
4.3 Search for Optimal Solutions 

The search cost proposed in this study for use in the 
adopted search technique is the total replacement cost in the 
resulting stego-image, computed from the summation of the 
replacement costs of all the bit changes in the replaced blocks. 
In Table 1, block patterns can be used to encode one, two, or 
three message bits. Accordingly, when we embed a binary 
message value v, we have the three choices of embedding the 
first one, two, or three initial bits of v into a block. To 
determine how many bits should be embedded in a selected 
block, we may calculate first the cost for each of the three 
cases, and replace the selected block with the block pattern 
corresponding to the minimum cost. This method provides a 
quick way for data embedding; however, it is just a greedy 
search algorithm and in general does not yield an optimal 
solution. 

To see this, for example, suppose that the message value v 
of 0112 is to be embedded in three selected blocks with 
patterns B1 = 0100, B2 = 0100, and B3 = 1100 according to 
Table 1. And as illustrated in Figure 3, suppose also that the 
costs of replacing the four bits are computed to be 2, 1, 1, and 
2 for B1; to be 1, 4, 4, and 1 for B2; and to be 4, 4, 1, and 1 for 
BB3. By the above-mentioned greedy search algorithm, we 
replace B1 = 0100 with the block pattern 0000 of type 1 to 
embed the initial bit 0 of v. The replacement cost for this block 
is 2×0 + 1×1 + 1×0 + 2×0 = 1 because a bit (the second bit) is 
flipped here with its corresponding cost being 1 and the other 
bits in the original block are not changed. This cost is a local 
minimum. Next, we replace B2 = 0100 with the block pattern 
0001 of type 3 to embed the last two bits 112 of v, and the 



replacement cost is 1×0 + 4×1 + 4×0 + 1×1 = 5. Therefore the 
total replacement cost for embedding v is 1 + 5 = 6. 

Now, if we do not use the greedy search algorithm at the 
beginning, and replace instead B1 = 0100 by the block pattern 
0101 of type 12 in Table 1 to embed the three bits 0112 of v 
directly, then the total replacement cost value will be reduced 
to be 2×0 + 1×0 + 1×1 + 2×1 = 3 which is smaller than the 
previously-computed total replacement cost of 6. This shows 
that there indeed exists at least one solution better than that 
found by the greedy search algorithm. Figure 3 illustrates the 
data embedding process for this example. This is also true for 
many other examples, as found by this study. And so the 
search of an optimal solution is meaningful, for which the 
proposed method is dynamic programming. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. An example of proposed data embedding process. 

4.4 Dynamic Programming for Data Embedding 
In the proposed dynamic programming algorithm 

(abbreviated as DPA hereafter), edit distances are defined for 
cost minimization in the search. Assume that the input 
message data to be embedded are in the form of an n-bit string 
S1 with S1[i] denoting its ith bit. Also, let n 2×2 embeddable 
blocks be selected as a list in advance for data embedding and 
expressed as another string S2 with S2[i] denoting its ith block. 
For convenience, let Sk[i～j] denote a substring of Sk with bits 
or blocks Sk[i] through Sk[j], where k =1, 2 and i, j = 1, 2, …, n. 

Only one type of edit operation, namely, replacement, is 
used in the proposed DPA to specify the image block 
replacement operations involving S1 and S2 in the proposed 
data embedding process. The edit distance between S1 and S2 
is defined, according to the previous discussions, as the 
minimum total replacement cost to transform S2 into S1 by 
editing operations according to a certain block pattern 
encoding table. Let C be an n×n cost matrix with its element 
C[j, i] denoting the minimum total replacement cost to 
transform a substring S2[j～n] of S2 into a substring S1[i～n] of 
S1. Then C[1, 1] is the minimum total replacement cost to 
transform S2[1 ～ m] into S1[1 ～ n] (i. e., to transform the 
substring of S2 into the entire string of S1), where 1 ≤ m ≤ n. 
Also, let RC be a cost function with each of its element RC(j, i, 

l) denoting the total replacement cost for replacing the jth 
block S2[j] of S2 with the block pattern which encodes the 
initial l bits of the substring S1[i～n] of S1 with l = 1, 2, or 3. 
By the above definitions, the value C[j, i] is recursively just 
the minimum of all the possible values of RC(j, i, l) + C[j+1, 
i+l], where l = 1, 2 or 3. Then, according to dynamic 
programming, the minimum search cost and its corresponding 
solution may be computed by the following algorithm. 

Algorithm 1. Computing minimum search cost for 
minimizing distortion by DPA. 

Input: (1) an n-bit message data string S1; (2) a string S2 of n 
selected blocks; (3) a block pattern encoding table T; 
(4) an n×n cost matrix C[j, i], for i, j = 1, 2, …, n; (5) 
an n×n type matrix I with its element I[j, i] used for 
recording the block pattern in T used for replacing S2[j] 
in calculating C[j, i]; and (6) an n×n segmentation 
matrix N with its element N[j, i] used for recording the 
number of initial bits of S1[i～n] used in calculating 
C[j, i]. 

Message value v = “011”  

Selected block list 

Output: C[j, i], I[j, i], and N[j, i] for all i, j = 1, 2, …, n. 
Steps: 
1. Set all C[j, i] initially to be ∞ for all i, j = 1, 2, …, n. 
2. Starting from i = n and j = n, for each pair of (j, i)  

with i, j = 1, 2, …, n, perform the following steps. 
2.1 If C[j, i] is equal to ∞ , continue the next step  

(Step 2.2); else increment i and j to calculate the 
next C[j, i]. 

2.2 Take C[j, i] to be the minimum of the three 
replacement costs, RC(j, i, 1) + C[j+1, i+1], RC(j, i, 
2) + C[j+1, i+2], and RC(j, i, 3) + C[j+1, i+3]; and 
record the corresponding number of the processed 
initial bits (1, 2, or 3) of S1[i～n] in N[j, i], and the 
corresponding type of the used block pattern of T in 
I[j, i]. 

In the above algorithm, the number of initial bits of S1[i～
n] and the used block pattern type in each recursive step are 
recorded in matrices N and I, respectively, which are used in 
the data embedding process, as described next. 

Algorithm 2. Data embedding using block pattern encoding 
tables and DPA. 

Input: (1) a grayscale image G; (2) a secret message data 
string S1 with n bits; (3) a control message data string 
Sc with m bits, including a table number Topt 
(specifying the block pattern encoding table used) with 
seven bits, followed by a value Lopt (specifying the 
number of selected blocks used) with m-7 bits; and (4) 
128 block pattern encoding tables. 

Output: a stego-image S. 
Steps: 
1. Compute the cost of each bit of G as mentioned previously. 
2. Get a list Bm of m 2×2 embeddable blocks sequentially 

from the bit planes bp0 through bp3 of G in order for 
embedding the m bits of Sc. Also, get a list Bn of n 2×2 
embeddable blocks sequentially for the n bits of S1. Let Bm 
and Bn also include the position information of each 
selected block. 

3. For each block pattern encoding table T among the input 
128 ones, with S1, Bn, and T as input, apply Algorithm 1 to 
calculate the cost matrix C[j, i], the type matrix I[j, i], and 
the segmentation matrix N[j, i] for all i, j = 1, 2, …, n. 

4. Find the minimum Cmin of the 128 values of C[1, 1] 

Replacing blocks  
(by greedy search) 

Hidden bit(s) 0 11 

Cost 1 5 (total replaced 
 cost=6) 

 optimum search)  
Replacing block 
(by

Hidden bits 011 

Cost 3 

(total replaced 
cost=3) 

1 2 3

2 1
21

Cost function of 
corresponding bit   1 4

14
4 4

11



computed in the last step, and set Topt to be the table 
number of the corresponding block pattern encoding table 
used in computing Cmin. 

5. Use the block pattern encoding table Topt, the type matrix 
Imin and the segmentation matrix Nmin corresponding to 
Cmin, and the position information of each block in Bn, to 
embed the string S1 into bp0 through bp3 of G to get the 
stego-image S . 

6. Set the value Lopt to be the number of the blocks used for 
embedding S1 in the last step. 

7. Using Sc (including Topt and Lopt), Bm, and T= 1 as input, 
apply Algorithm 1 to calculate the cost matrix C[j, i], the 
type matrix I[j, i], and the segmentation matrix N[j, i] for 
all i, j = 1, 2, …, m. 

8. Use the block pattern encoding table Table 1, the type 
matrix I and the segmentation matrix N in the last step, 
and the position information of each block in Bm, to embed 
the substring Sc into bp0 through bp3 of G to get the final 
stego-image S. 

5. PROPOSED DATA RECOVERY PROCESS 

The goal of data recovery is to extract the embedded 
message data from a stego-image, as described in the 
following. 

Algorithm 3. Message data recovery  
Input: a stego-image I' including a message bit stream S. 
Output: the message bit stream S. 
Steps: 
1. Calculate the cost of every bit of G as mentioned 

previously. 
2. Get m 2×2 embeddable blocks sequentially from bp0 

through bp3 of I' as a list Lm. 
3. For each 2×2 block P of Lm, compute the binary value v 

corresponding to the block pattern, and decode v by 
looking v up in the block pattern encoding table 1 to get 
the corresponding encoded message data bits as the data 
recovery result of P. 

4. Concatenate the preface m data bits extracted in the last 
step into a sequence as a desired control message data Sc. 

5. Get the preface 7 data bits of Sc as Topt, and the remaining 
m-7 data bits of Sc as Lopt, which specify respectively (1) 
the optimal block pattern encoding table Topt used in data 
embedding; and (2) the number of 2×2 blocks of I' used in 
embedding S in the bp0 through bp3 of I'. 

6. Also, get Lopt 2×2 selected blocks sequentially from bp0 
through bp3 of I' as a list L. 

7. For each 2×2 block P of L, compute the binary value v 
corresponding to the block pattern, and decode v by 
looking v up in the block pattern encoding table Topt to get 
the corresponding encoded message data bits as the data 
recovery result of P. 

8. Concatenate all the data bits extracted in the last step into 
a sequence as the desired message S and exit. 

For security consideration, we encrypt further the control 
message by a secret key before the data embedding process, 
and embed the result into bp0 through bp3 at bit positions 
randomly generated with a distinct secret key and a random 
number generator. The reverse process can be easily 
performed to get the original control message. The same 
method is also applied to the message data to get a higher 
degree of data protection. 

6. EXPERIMENTAL RESULTS 

Figures 4 and 5 illustrate some experimental results of 
applying the proposed method. The bit streams of message 
data in Figures 4 and 5 were generated randomly. The stego-
images “House” and “Lena” both of size 256×256 with high 
PSNR values of 56.88 dB and 68.44dB, respectively, obtained 
by embedding 16440 bits (about 2KB) message data using the 
DPA and the optimal block pattern encoding table among the 
128 ones are shown Figures 4(b) and 4(d), respectively. The 
cover images are depicted in Figures 4(a) and 4(c) respectively 
for comparison. The results show that the proposed method 
can be applied to embed message data in grayscale images and 
obtain good-quality stego-images without noticeable artifacts 
in smooth image regions. 

 

   
(a)                                     (b)                

   
(c)                                     (d)                

Figure 4. Some experimental results. (a) Cover image 
“House.” (b) Stego-image of (a). (c) Cover image 
“Lena.” (d) Stego-image of  (c). 

Figure 5 illustrates three grayscale stego-images “House”, 
“Lena” and “Jet.” and results of data embedding. The three 
stego-images of size 128×128 were obtained by embedding 
1000 bytes of message data using the proposed DPA and the 
optimal encoding table. The PSNR values are 46.90 dB, 
49.33dB and 48.80 dB, respectively. In each row of the figure, 
from left to right are an original image, bp0, bp1, bp2, and bp3 
of the original bit planes (copied from Figure 1), followed by 
the resulting stego-bit planes of bp0, bp1, bp2, and bp3, 
respectively. Compared with the cover images in Figure 1 and 
their four corresponding bit planes, it can be seen that the 
stego-images retain most significant textures. 

Table 2 summarizes the statistical data of the stego-image 
“Lena” using the DPA and the optimal encoding table, 
including the message data length, the PSNR value, the 
selected block pattern encoding table, the numbers of used 
blocks, the minimum replacement cost values, and the average 
of the numbers of embedded bits per block. The message data 
bit stream in Table 2 was generated randomly. 

In more details, the result of Table 2 is transformed into 
Fig. 6. When the amount of the embedded data is smaller than 
1000B, the PSNR values in Table 2 are all larger than 49dB. 
And the differences in the stego-images are not noticeable. 



 

     

     

     
Figure 5. Experimental results of three images. In each row, from left to right are the original image, bp0, 

bp1, bp2, and bp3 of original bit planes (copied from Fig. 1), followed by resulting stego-bit planes 
of bp0, bp1, bp2, and bp3. 

 
 

Figure 6 also reveals that the relation between the 
PSNR value yielded by the proposed method and the 
embedded data amount is approximately linear. The 
PSNR value of the DPA decreases about 3.3225 dB 
when the embedded data size increases 200 bytes. Thus, 
the proposed DPA method can predict the PSNR value 
before the data embedding process starts according to 
the message data size. From Table 2, the PSNR value of 
the DPA can be estimated by a simple line fitting 
method to be PSNR = 62.5870 − (m − 1) × 3.3225 (dB), 
1 ≤ m ≤ 5, where m denotes the size of message data in the 
unit of 200 bytes for 128×128 grayscale images. Similar 
results can be observed for the other images. Moreover, the 
equation of the PSNR value can be extended and used for 
grayscale images of any sizes by applying the proposed DPA. 
For a grayscale image of size H×W, if the above value of m 
denotes the size of the message data in the unit of 
(200×H×W)/(128×128) bytes, then the resulting PSNR value 
still can be estimated using the above equation. Note that this 
merit of predictable PSNR values enables a user of the 
proposed method to determine in advance how large a cover 
image should be selected for a certain given amount of 
message data. 

 Furthermore, we may compute a distortion rate for each 
stego-image. This rate is computed in this study as the ratio of 
the number of bit flippings (changing bit 0 to 1 or 1 to 0 in 
data embedding) to the length of the message data. Most 

existing vertical data hiding methods yield distortion rates of 
about 50% for grayscale images because of the characteristic 
of randomness in bit flippings. In most existing vertical data 
hiding methods, when 200-byte secret message data are 
embedded into a 128×128 grayscale image, these data will be 
divided into pieces of 4 bits and each piece is embedded into 
the bits b3b2b1b0 of a pixel. Then the average grayscale change 
of the pixel, measured in terms of the number of flipped bits, 
may be computed to be 1×50% + 2×50% + 4×50% + 8×50% = 
7.5. Consequently, the corresponding mean square-error value 
MSE of the stego-image may be computed to be MSE = 
[(200×8)/4]×(7.5×7.5)]/(128×128) where (200×8)/4 is the 
number pixels required for embedding the 200-byte message 
data, 7.5×7.5 is the square error incurred at each pixel, and 
128×128 is the image size. Finally, the PSNR value of the 
stego-image may be computed to be 10×log(2552/MSE) = 
46.75 dB. Contrastively, in Table 2 the PSNR value of our 
method is a much larger value 62.48 dB, which means the 
proposed method is superior in distortion minimization. 

In summary, the experimental results above show that for 
grayscale images, the proposed method takes effectively into 
consideration both the effect of the HVS and the preservation 
of local edges, and yields stego-images that are less distorted 
than those yielded by most existing data hiding methods. 

Table 2. Statistics of stego-images yielded by DPA using 
optimal encoding table. 
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Figure 6. PSNR values of stego-image “Lena” using DPA.

Embedded 
bit 

number 
per block

200 62.48 8 779 1774 2.054

400 59.37 57 1636 3243 1.956

600 55.57 57 2297 5680 2.09 

800 52.96 57 3101 8355 2.064

1000 49.33 8 3826 11699 2.091

Lena
(128

×128)

1200 46.74 57 4295 16248 2.235
 
 



7. CONCLUSIONS 

Two novel methods for hiding message data into grayscale 
images with distortion reduction effects have been proposed, 
with one being the DPA and the other being the use of 
multiple block pattern encoding tables. A cost function has 
been proposed to estimate the weight of each bit in each pixel 
to be replaced according to an HVS model. A horizontal data 
hiding method in which message data are embedded in a 
sequence of bit planes has also been proposed to decrease 
possible distortions in stego-images. An optimal block pattern 
encoding table is chosen from 128 alternative ones for use in 
the proposed data embedding process to minimize the 
distortion in the stego-image. The proposed method minimizes 
further the distortion using dynamic programming based on 
the proposed cost function. The proposed method can embed 
up to three bits in a 2×2 image block. As a result, not only the 
textures in the cover image are reserved, but also the distortion 
of the stego-image can be effectively reduced in an optimal 
way. Especially, the proposed DPA can predict the PSNR 
value of a sego-image before the embedding process starts 
according to the size of the data to be embedded. 

The space and time complexities of the proposed DPA are 
both of the order of n2. It may cost more time to embed a long 
secret code. But in certain applications there is no need of 
real-time processing, and optimality in data embedding 
volumes or minimization in image distortion is the main 
concern. In such cases, our method is good to use. On the 
other hand, if time is really concerned, then one can 
alternatively use the other proposed method, the greedy search 
algorithm, that takes only linear computation time and still 
minimize distortion in the stego-image in a suboptimal way. 

On the other hand, at least two approaches may be adopted 
to make the proposed method more robust. First, we can 
embed multiple copies of the secret data in the embedding 
process so that attacks will not entirely destroy the secret 
information. If attacks do occur, then after the data are 
extracted by the proposed method, we may apply a voting 
scheme to recover the secret. The second approach is to try to 
place secret data in the more significant bits of the cover 
image, for example, in bp2 and bp3 in the proposed method, 
assuming that most attacks to BMP images are conducted to 
the LSBs. Because the information encoded in these bit-planes 
cannot be removed in most applications (otherwise, the image 
will be seriously distorted or destructed), hopefully this 
method will work in real applications. 

The proposed method processes 2×2 blocks in the data 
embedding process. It may be extended to process larger-sized 
blocks because when the block size is larger, the number of 
the block patterns which can be selected to encode a certain 
message value becomes larger as well, resulting possibly in 
greater reduction of image distortion. Other future works may 
be directed to embed multiple message data in a grayscale 
image for protecting the intellectual property right and 
authenticating multimedia data, to define more general cost 
functions for other HVS models, and to design better encoding 
tables to reduce stego-image distortion further. 
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