
DATA HIDING IN GRAYSCALE IMAGES BY DYNAMIC PROGRAMMING

BASED ON A HUMAN VISUAL MODEL

1,#

 I-Shi Lee (李義溪) and
1,2

 Wen-Hsiang Tsai (蔡文祥)

1
Dept. of Computer Science, National Chiao Tung University

2
Dept. of Computer Science and Information Engineering, Asia University

E-mail: gis87809@cis.nctu.edu.tw & whtsai@cis.nctu.edu.tw

Also with the Department of Information Management at
Technology and Science Institute of Northern Taiwan.

ABSTRACT

A new method for data hiding in grayscale images based
on a human vision model with distortion-minimizing
capabilities is proposed for covert communication. Each of the
eight bit planes of an input grayscale image is viewed as a
binary image, into which message data are embedded
horizontally. To minimize the image distortion, two
optimization techniques, namely, block pattern coding and
dynamic programming, are proposed. Furthermore, the
proposed method can predict the PSNR value of the resulting
image according to the size of the data to be embedded before
the embedding process starts. Experimental results show good
performances of the proposed method.

1. INTRODUCTION
Data hiding in images is a useful technique for covert

communication. Many data hiding techniques have been
proposed recently [1, 2, 3]. The most common approach is
least-significant-bit (LSB) replacement, which embeds
message data in a subset of the LSB planes of an image. The
image into which a message is hidden is called a cover image,
and the result a stego-image. Wang et al. [4] embedded a
binary image in the fifth LSB bit plane of a cover image, and
employed an optimal substitution process based on a genetic
algorithm and a local pixel adjustment method to lower the
distortion in the stego-image. Chang et al. [5] used dynamic
programming to obtain an optimal solution for the LSB
substitution method. Chan and Cheng [6, 7] presented an
optimal pixel adjustment process to improve the image quality
of the stego-image acquired by Wang’s schemes. Thien and
Lin [8] proposed a method for hiding data in images digit by
digit using a modulus function. The method is better than
simple LSB substitution not only in eliminating false contours
but also in reducing image distortion. Lee and Chen [9]
applied variable-sized LSB insertion to estimate the maximum
embedding capacity by a human visual system (HVS)
property, and to maintain image fidelity by removing false
contours in smooth image regions. Liu et al. [10] presented a
novel bit plane-wise data hiding scheme using variable-depth
LSB substitution and employed post-processing to eliminate
the resulting noticeable artifacts.

Most of the above methods lack consideration of using
precise human visual models in improving the data hiding
effect. Instead, Wu and Tsai [11] presented a method based on
the HVS by modifying quantization scales according to
variation insensitivity from smooth to contrastive to improve
the stego-image quality. And Lie and Chang [12] presented an
adjusted LSB technique with the number of LSBs adapting to
the pixels of different grayscales.

In this study, we propose a method to embed data into a
grayscale image for covert communication, based on the use
of a new HVS model to estimate the number of usable bits of
each pixel in the cover image. Furthermore, a block pattern
encoding method is proposed to embed up to three data bits in
a 2×2 block of the bit planes without yielding visible
degrading of the stego-image quality. This is achieved by
using two optimization techniques. The first technique utilizes
multiple block pattern encoding tables, from which an optimal
one is chosen for each input image, and the second technique
uses dynamic programming to divide the message data stream
into appropriate bit segments for optimal data bit embedding
in the image blocks to minimize a cost function. Especially,
the proposed method can predict the PSNR value of the stego-
image according to the embedded data size before the
embedding process is started. Moreover, the proposed method
can extract embedded data without referencing the original
image, and does not require post-processing to refine the
stego-image quality.

In the remainder of this paper, we introduce the basic idea
behind the proposed method in Section 2. In Section 3, we
describe the adopted HVS model and the corresponding cost
function. In Section 4, the proposed data hiding method is
described. The corresponding data recovery process is
proposed in Section 5. Some experimental results are given in
Section 6, followed by conclusions in Section 7.

2. EMBEDDING DATA IN BIT PLANES OF
GRAYSCALE IMAGES

Eight bits represent a pixel’s intensity in a grayscale
image. The bit plane formed by the same bit of each pixel in
the grayscale image is a binary image. Figure 1 shows the
eight bit planes of each of three given 128×128 grayscale

Figure 1. Three grayscale images and their 8 corresponding bit planes (from left to right, original images, bp0, bp1,

bp2, …, and bp7, respectively).

images. The image of each bit plane is zoomed out for
comparison. It is observed that the content of the LSB plane
bp0 is almost fully randomized. If the message is embedded in
bp0, the resulting image will appear to be almost unaltered to
human eyes. On the contrary, there exist less random noise
areas in the remaining more significant bit planes.

The most-significant-bit plane bp7 contains almost no
noise, and data cannot be embedded easily into it without
causing significant visual changes. We may embed message
data into bit planes in the order of bp0, bp1, …, bp7. This
scheme is termed horizontal data hiding, to be contrastive
with traditional vertical data hiding methods which embed
data into the bits b7, b6, …, b0 of each pixel in the order of b0
through b7, where b0 is the LSB of the pixel. Compared with
the vertical data hiding method, horizontal data hiding can
reduce more distortion in the stego-image, as revealed in the
results of this study.

On the other hand, embedding data directly in bit planes
will cause visible damages to the edges in the bit planes. To
overcome this difficulty, in this study we design a new cost
function which considers certain perception characteristics of
the HVS, and adopt a method proposed in Lee and Tsai [13]
for data embedding. Each bit plane is regarded to have a
different weight in its capability for data hiding, and the new
cost function is designed accordingly to measure the degree of
distortion resulting from pixel value changes. The details are
discussed in the following.

3. COST FUNCTION FOR DISTORTION
MEASUREMENT

Since stego-images are viewed by human vision, the
characteristics of the HVS must be exploited in designing a
data embedding process. Two of such characteristics are
useful here. First, human perception is more sensitive to
grayscale changes in smooth areas than in texture areas in a
grayscale image. Second, human perception is sensitive to
relative luminance rather than absolute one. Designing the cost
function for distortion measurement for data embedding must
take these two characteristics into consideration, as elaborated
in the following.

3.1 Computing Number of Data-Embeddable Bits with
Consideration of Neighborhood Grayscale Value Change
For the first consideration, assume that a pixel P with

grayscale value g is to be used to embed message data. Let
MAX denote the maximum grayscale value, and MIN the
minimum, in the 3×3 block with P as the center, which we call
the neighborhood of P. Then, the maximum between-pixel
grayscale range in this block is Δ = MAX − MIN. According to
the previous discussions, to avoid a significant change of the

smoothness degree with respect to the neighborhood of P, the
new grayscale value g′ resulting from the data embedding is
restricted in this study to remain in the range of g ± Δ/2. Then,
we define a maximum number D of data-embeddable bits at P
as

D = ⎣log2(Δ/2)⎦ = ⎣(log2Δ) − 1⎦ = ⎣log2(MAX − MIN) − 1⎦. (1)

3.2 Computing Number of Data-Embeddable Bits with
Consideration of Pixel’s Luminance Change

For the second consideration mentioned above, let f denote
the luminance of a pixel P with grayscale value g where 1 ≤ f
≤ 100. According to the Fechner law [14], the relative
luminance property perceived by the HVS may be expressed
as a contrast value c computed by

c = 50×log10f

where 0 ≤ c ≤ 100. Moreover, according to the Weber law [14],
the maximum allowable change Δc of the contrast value c
according to the principle of “just noticeable difference
(JND)” about the pixel’s luminance change is about 2. That is,
if the luminance of a pixel is changed too much so that Δc is
larger than 2, the change will be noticeable to the HVS.
Accordingly, we can compute in another way a maximum
number of data-embeddable bits in the 8 bits of a pixel’s
grayscale value, as described next.

First, we want to compute the maximum luminance
change (Δf)max in accordance with the maximum allowable
contrast change (Δc)max = 2. With c being the contrast of pixel
P, let cmax denote the maximum possible contrast value. Then,
we have

2 = (Δc)max = cmax − c = 50×log10fmax − 50×log10f
= 50×log10 fmax / f,

which can be reduced to be fmax/f = 10(2/50). So, the maximum
allowable luminance change can be expressed as
(Δf)max = fmax − f = (fmax/ f − 1)×f = (10(2/50) − 1)×f ≈ 0.0965×f.

And so we may impose the following constraint to the value of
f:

 (Δf)max / f ≤ 0.0965. (2)
On the other hand, in a monochrome image the luminance

f in the range of [1 100] is represented by the grayscale value
g in the range [0 255], such that g may be computed by the
mapping g = (f − 1)×(255/99) ≈ 2.576(f − 1), or equivalently,
the mapping f ≈ 0.3882g + 1, which specifies a linear relation
between f and g. Hence, from Constraint (2), we can, after
some derivations, get the following new constraint for
grayscale changes according to the principle of JND:

 0.0965 ≥ (Δf)max / f = (Δg)max /(g + 2.576) (3)

where (Δg)max, corresponding to (Δf)max, denotes the maximum
grayscale change in the pixel’s neighborhood. That is, if the
above constraint (3) is set for data embedding, the changes of
grayscales in the stego-image will not be detectable by human
eyes according to the JND principle.

Now, we discuss how many bits can be utilized for data
embedding for each possible grayscale value g. If 5 bits of the
pixel’s grayscale are used for embedding message data, the
maximum grayscale change at the pixel will be (Δg)max = 25 −
1 = 31. And according to Constraint (3), g must be larger than
319, which, however, is out of the grayscale range [0, 255].
This means that embedding 5 or more bits of message data
into a pixel is impractical according to the JND principle. As a
result, bp4, bp5, bp6, and bp7 are not used for data embedding
in this study. If 4 LSBs of g are changed, then (Δg)max = 24 − 1
= 15, and by Constraint (3) we get g >153. That is, when the
following constraint g > 153 is satisfied, we can embed data
into the 4 LSBs of g without causing a noticeable luminance
change according to the JND principle.

However, the binary value of 153 is 100110012. After the
4 LSBs of g are changed, the new value of g might become a
value in the range of 100100002 through 100110002, which is
smaller than 153, causing a violation of Constraint (3).
Therefore, we must change the above constraint g > 153 to be
g > 160 where 160 = 101000002 such that after any 4-bit data
are embedded into the 4 LSBs of g, the resulting new value g'
of g will always be larger than 160, thus satisfying Constraint
(3). In other words, to meet Constraint (3), only when a given
pixel’s grayscale g satisfies g ≥ 160 can the 4 LSBs of g be
replaced by 4-bit message data. And in short, 4 bits are the
upper limit to be embedded in a pixel’s grayscale according to
the JND principle.

Similarly, if 3 bits are changed, then (Δg)max = 23 − 1 = 7,
and by Constraint (3) as well as a similar reasoning process,
the constraint g ≥ 72 should be satisfied, where 72 =
010010002. If 2 bits are changed, the constraint g ≥ 32 is
required, where 32 = 001000002. Finally, if 1 bit is changed, g
≥ 10 is necessary, where 10 = 000010102.

In summary, we embed an appropriate number B of
message bits in a pixel’s grayscale g according to the
following rule to satisfy the JND principle:

if g ≥ 160, then B = 4;
if g ≥ 72, then B = 3;
if g ≥ 32, then B = 2;
if g ≥ 10, then B = 1;
otherwise, B = 0. (4)

3.3 Combining Results of Two Considerations
To combine the results of the above two considerations, it

is not difficult to figure out that the maximum number of data-
embeddable bits at a pixel should be taken to be E = min(D, B)
where D and B are as specified in (1) and (4), respectively.

Let the grayscale value g of a pixel P in binary form be
denoted as g = (g7 g6 g5 g4 g3 g2 g1 g0)2, and the replacement
cost of gi in the i-th bit plane be denoted as Ci where 0 ≤ i ≤ 3.
According to the previous discussions, Ci is defined in this
study as:

if i ≤ (E − 1), then Ci = 8/2(Ε−1)−i; otherwise, Ci = ∞.
The above definition of the cost function gives more penalties
to the replacement of more significant bits. In more details, we
have the following results:

if E = 4, then C0 = 1, C1 = 2, C2 = 4, C3 = 8, C4 ~ C7 = ∞;
if E = 3, then C0 = 2, C1 = 4, C2 = 8, C3 ~ C7 = ∞;
if E = 2, then C0 = 4, C1 = 8, C2 ~ C7 = ∞;
if E = 1, then C0 = 8, C1 ~ C7 = ∞;
if E = 0, then C0 ~ C7 = ∞.

4. PROPOSED HORIZONTAL DATA HIDING
METHOD

The proposed method is implemented as an algorithm
which includes two stages: (1) embedding of some control
data, followed by (2) embedding of message data. The control
data include the necessary information for use in the data
recovery process. All data are embedded in the bit planes by a
block pattern encoding method. As mentioned previously,
each of the bit planes bp0 through bp3 can be viewed as a
binary image and they together can be regarded as being
concatenated into a sequence for data embedding. In this
section, the idea to deal with the binary image is presented
first, followed by the proposed process.

4.1 Block Pattern Encoding for Data Embedding
In order to embed a message into a binary image, every

2×2 image block is regarded as a pattern with a 4-bit binary
value in which each bit of 0 corresponds to a black pixel and
each 1 a white one. The proposed data embedding process is
based on the use of a block pattern encoding table which maps
each block pattern into a certain code with one, two, or three
bits of the message data to be hidden. And data embedding is
accomplished by changing the block bit values so that the
corresponding code of the resulting block pattern become just
some bits of the input message data to be embedded. A
possible block pattern encoding table designed for use in this
study is shown in Table 1. It is emphasized, by the way, that
such a table is just one of the many possible tables which may
be used for data hiding, and the proposed data embedding
process will choose from them an optimal one for each
specific input binary image, as described later.

Suppose that we want to embed one bit in a 2×2 block.
The number of possible patterns in a 2×2 block are 16. This
number is much larger than the required number of 2 to
represent the two different message bits ‘0’ and ‘1’ in a block,
so we may use more than one block pattern to represent a
single message bit (0 or 1), allowing the possibility of
choosing among the block patterns an optimal one to replace
the original block in the data embedding process and thus
reducing more distortion in the resulting block. On the other
hand, we wish to embed more data in a block, not just a bit as
just mentioned; and for this we can use a block pattern to
represent more than one bit, as is done in this study. In short,
we want to achieve both minimum-cost bit replacement and
maximum-volume data embedding.

As an illustration, we may use either the block pattern t1 =
10112 or the pattern t2 = 01112 to represent the two-bit
message value s = 012. In this way, when we want to embed,
for example, the message value s = 012 into a block B with
value v = 10102, we have the two alternative block patterns t1
= 10112 and t2 = 01112 to choose to replace v =10102, instead
of the conventional case of just one. And if we choose t1 =
10112 to replace v =10102, then less distortion of just a 1-bit
error (occurring at the LSB position) will result. Contrastively,
if only one block pattern, say, t2 = 01112 is available, then an
error of 3 bits will result, causing more distortion in the
resulting block. It is such an allowance of multiple choices for

block pattern replacement that achieves more distortion
reduction in the proposed method. By the way, the previously-
mentioned bit errors are used just for convenience of
illustrating the advantage of multiple choices of replacing
blocks; they in fact should be the replacement costs defined
previously.

Table 1. A block pattern encoding table proposed in this study.

Type Block
pattern

Corres-
ponding
binary
value

Encoded
message

data

0 1111 1

2 1110 00

4 1101 00

6 1011 01

8 0111 01

10 0011 011

12 0101 011

14 1010 010

Type Block
pattern

Corres-
ponding
binary
value

Encoded
message

data

1 0000 0

3 0001 11

5 0010 11

7 0100 10

9 1000 10

11 0110 100

13 1001 101

15 1100 010

4.2 Data Embedding in Binary Images

The proposed data embedding process in binary bit-plane
images consists of four major steps and includes two folds of
distortion minimization, as described in the following.

(1) Computing bit costs for data embedding: We calculate the
replacement cost value for each bit in the image according
to the cost function defined in Section 3.

(2) Dividing the input image into blocks: We first divide each
of bit planes bp0 through bp3 into non-overlap 2×2 blocks
with every two neighboring blocks separated by a 1-pixel-
wide line of pixels in between, as shown in Figure 2. And
next, we select the first n “embeddable” blocks and
concatenate them sequentially, where n is the length of the
message data string to be embedded. A block is said to be
embeddable in this study if the replacement cost value of
any one bit of the block is not infinite.

(3) Using multiple block pattern encoding tables for first-fold
distortion reduction: We generate all possible block
pattern encoding tables and select an optimal one for use
in the data embedding process, in the sense of introducing
the least distortion. The reason is that a single block
pattern encoding table will not be suitable for every input
binary image; if an image is destroyed seriously after data
embedding using a specific table like Table 1, it will be
appropriate to use another table with other combinations
of block patterns to encode the message data. Specifically,
we exchange the encoded message data of certain types in
Table 1 with those of the other types in the following way:

exchange the message data “0” with “1”;
exchange the message data “00” with “01”;
exchange the message data “10” with “11”;
exchange the message data “010” with “011”;
exchange the message data “100” with “101”;
exchange the message data “00” and “01” with “10”
and “11,” respectively;
exchange the message data “010” and “011” with
“100” and “101,” respectively.

By enumerating all possible cases in the above way, we
can get the 128 distinct tables (numbered from 0 to 127)
for selection to minimize the distortion.

(4) Applying search techniques for second-fold distortion
reduction: Finally, we apply the dynamic programming
technique to segment the input message data stream
optimally into a series of codes and embed them in the
input image, according to the cost function proposed
previously. This reduces the resulting distortion further in
a global sense.

Figure 2. Division of an input image into 2×2 blocks with

separating lines (grids with bold boundaries are
2×2 blocks for data embedding)

4.3 Search for Optimal Solutions

The search cost proposed in this study for use in the
adopted search technique is the total replacement cost in the
resulting stego-image, computed from the summation of the
replacement costs of all the bit changes in the replaced blocks.
In Table 1, block patterns can be used to encode one, two, or
three message bits. Accordingly, when we embed a binary
message value v, we have the three choices of embedding the
first one, two, or three initial bits of v into a block. To
determine how many bits should be embedded in a selected
block, we may calculate first the cost for each of the three
cases, and replace the selected block with the block pattern
corresponding to the minimum cost. This method provides a
quick way for data embedding; however, it is just a greedy
search algorithm and in general does not yield an optimal
solution.

To see this, for example, suppose that the message value v
of 0112 is to be embedded in three selected blocks with
patterns B1 = 0100, B2 = 0100, and B3 = 1100 according to
Table 1. And as illustrated in Figure 3, suppose also that the
costs of replacing the four bits are computed to be 2, 1, 1, and
2 for B1; to be 1, 4, 4, and 1 for B2; and to be 4, 4, 1, and 1 for
BB3. By the above-mentioned greedy search algorithm, we
replace B1 = 0100 with the block pattern 0000 of type 1 to
embed the initial bit 0 of v. The replacement cost for this block
is 2×0 + 1×1 + 1×0 + 2×0 = 1 because a bit (the second bit) is
flipped here with its corresponding cost being 1 and the other
bits in the original block are not changed. This cost is a local
minimum. Next, we replace B2 = 0100 with the block pattern
0001 of type 3 to embed the last two bits 112 of v, and the

replacement cost is 1×0 + 4×1 + 4×0 + 1×1 = 5. Therefore the
total replacement cost for embedding v is 1 + 5 = 6.

Now, if we do not use the greedy search algorithm at the
beginning, and replace instead B1 = 0100 by the block pattern
0101 of type 12 in Table 1 to embed the three bits 0112 of v
directly, then the total replacement cost value will be reduced
to be 2×0 + 1×0 + 1×1 + 2×1 = 3 which is smaller than the
previously-computed total replacement cost of 6. This shows
that there indeed exists at least one solution better than that
found by the greedy search algorithm. Figure 3 illustrates the
data embedding process for this example. This is also true for
many other examples, as found by this study. And so the
search of an optimal solution is meaningful, for which the
proposed method is dynamic programming.

Figure 3. An example of proposed data embedding process.

4.4 Dynamic Programming for Data Embedding
In the proposed dynamic programming algorithm

(abbreviated as DPA hereafter), edit distances are defined for
cost minimization in the search. Assume that the input
message data to be embedded are in the form of an n-bit string
S1 with S1[i] denoting its ith bit. Also, let n 2×2 embeddable
blocks be selected as a list in advance for data embedding and
expressed as another string S2 with S2[i] denoting its ith block.
For convenience, let Sk[i～j] denote a substring of Sk with bits
or blocks Sk[i] through Sk[j], where k =1, 2 and i, j = 1, 2, …, n.

Only one type of edit operation, namely, replacement, is
used in the proposed DPA to specify the image block
replacement operations involving S1 and S2 in the proposed
data embedding process. The edit distance between S1 and S2
is defined, according to the previous discussions, as the
minimum total replacement cost to transform S2 into S1 by
editing operations according to a certain block pattern
encoding table. Let C be an n×n cost matrix with its element
C[j, i] denoting the minimum total replacement cost to
transform a substring S2[j～n] of S2 into a substring S1[i～n] of
S1. Then C[1, 1] is the minimum total replacement cost to
transform S2[1 ～ m] into S1[1 ～ n] (i. e., to transform the
substring of S2 into the entire string of S1), where 1 ≤ m ≤ n.
Also, let RC be a cost function with each of its element RC(j, i,

l) denoting the total replacement cost for replacing the jth
block S2[j] of S2 with the block pattern which encodes the
initial l bits of the substring S1[i～n] of S1 with l = 1, 2, or 3.
By the above definitions, the value C[j, i] is recursively just
the minimum of all the possible values of RC(j, i, l) + C[j+1,
i+l], where l = 1, 2 or 3. Then, according to dynamic
programming, the minimum search cost and its corresponding
solution may be computed by the following algorithm.

Algorithm 1. Computing minimum search cost for
minimizing distortion by DPA.

Input: (1) an n-bit message data string S1; (2) a string S2 of n
selected blocks; (3) a block pattern encoding table T;
(4) an n×n cost matrix C[j, i], for i, j = 1, 2, …, n; (5)
an n×n type matrix I with its element I[j, i] used for
recording the block pattern in T used for replacing S2[j]
in calculating C[j, i]; and (6) an n×n segmentation
matrix N with its element N[j, i] used for recording the
number of initial bits of S1[i～n] used in calculating
C[j, i].

Message value v = “011”

Selected block list

Output: C[j, i], I[j, i], and N[j, i] for all i, j = 1, 2, …, n.
Steps:
1. Set all C[j, i] initially to be ∞ for all i, j = 1, 2, …, n.
2. Starting from i = n and j = n, for each pair of (j, i)

with i, j = 1, 2, …, n, perform the following steps.
2.1 If C[j, i] is equal to ∞ , continue the next step

(Step 2.2); else increment i and j to calculate the
next C[j, i].

2.2 Take C[j, i] to be the minimum of the three
replacement costs, RC(j, i, 1) + C[j+1, i+1], RC(j, i,
2) + C[j+1, i+2], and RC(j, i, 3) + C[j+1, i+3]; and
record the corresponding number of the processed
initial bits (1, 2, or 3) of S1[i～n] in N[j, i], and the
corresponding type of the used block pattern of T in
I[j, i].

In the above algorithm, the number of initial bits of S1[i～
n] and the used block pattern type in each recursive step are
recorded in matrices N and I, respectively, which are used in
the data embedding process, as described next.

Algorithm 2. Data embedding using block pattern encoding
tables and DPA.

Input: (1) a grayscale image G; (2) a secret message data
string S1 with n bits; (3) a control message data string
Sc with m bits, including a table number Topt
(specifying the block pattern encoding table used) with
seven bits, followed by a value Lopt (specifying the
number of selected blocks used) with m-7 bits; and (4)
128 block pattern encoding tables.

Output: a stego-image S.
Steps:
1. Compute the cost of each bit of G as mentioned previously.
2. Get a list Bm of m 2×2 embeddable blocks sequentially

from the bit planes bp0 through bp3 of G in order for
embedding the m bits of Sc. Also, get a list Bn of n 2×2
embeddable blocks sequentially for the n bits of S1. Let Bm
and Bn also include the position information of each
selected block.

3. For each block pattern encoding table T among the input
128 ones, with S1, Bn, and T as input, apply Algorithm 1 to
calculate the cost matrix C[j, i], the type matrix I[j, i], and
the segmentation matrix N[j, i] for all i, j = 1, 2, …, n.

4. Find the minimum Cmin of the 128 values of C[1, 1]

Replacing blocks
(by greedy search)

Hidden bit(s) 0 11

Cost 1 5 (total replaced
 cost=6)

 optimum search)
Replacing block
(by

Hidden bits 011

Cost 3

(total replaced
cost=3)

1 2 3

2 1
21

Cost function of
corresponding bit 1 4

14
4 4

11

computed in the last step, and set Topt to be the table
number of the corresponding block pattern encoding table
used in computing Cmin.

5. Use the block pattern encoding table Topt, the type matrix
Imin and the segmentation matrix Nmin corresponding to
Cmin, and the position information of each block in Bn, to
embed the string S1 into bp0 through bp3 of G to get the
stego-image S .

6. Set the value Lopt to be the number of the blocks used for
embedding S1 in the last step.

7. Using Sc (including Topt and Lopt), Bm, and T= 1 as input,
apply Algorithm 1 to calculate the cost matrix C[j, i], the
type matrix I[j, i], and the segmentation matrix N[j, i] for
all i, j = 1, 2, …, m.

8. Use the block pattern encoding table Table 1, the type
matrix I and the segmentation matrix N in the last step,
and the position information of each block in Bm, to embed
the substring Sc into bp0 through bp3 of G to get the final
stego-image S.

5. PROPOSED DATA RECOVERY PROCESS

The goal of data recovery is to extract the embedded
message data from a stego-image, as described in the
following.

Algorithm 3. Message data recovery
Input: a stego-image I' including a message bit stream S.
Output: the message bit stream S.
Steps:
1. Calculate the cost of every bit of G as mentioned

previously.
2. Get m 2×2 embeddable blocks sequentially from bp0

through bp3 of I' as a list Lm.
3. For each 2×2 block P of Lm, compute the binary value v

corresponding to the block pattern, and decode v by
looking v up in the block pattern encoding table 1 to get
the corresponding encoded message data bits as the data
recovery result of P.

4. Concatenate the preface m data bits extracted in the last
step into a sequence as a desired control message data Sc.

5. Get the preface 7 data bits of Sc as Topt, and the remaining
m-7 data bits of Sc as Lopt, which specify respectively (1)
the optimal block pattern encoding table Topt used in data
embedding; and (2) the number of 2×2 blocks of I' used in
embedding S in the bp0 through bp3 of I'.

6. Also, get Lopt 2×2 selected blocks sequentially from bp0
through bp3 of I' as a list L.

7. For each 2×2 block P of L, compute the binary value v
corresponding to the block pattern, and decode v by
looking v up in the block pattern encoding table Topt to get
the corresponding encoded message data bits as the data
recovery result of P.

8. Concatenate all the data bits extracted in the last step into
a sequence as the desired message S and exit.

For security consideration, we encrypt further the control
message by a secret key before the data embedding process,
and embed the result into bp0 through bp3 at bit positions
randomly generated with a distinct secret key and a random
number generator. The reverse process can be easily
performed to get the original control message. The same
method is also applied to the message data to get a higher
degree of data protection.

6. EXPERIMENTAL RESULTS

Figures 4 and 5 illustrate some experimental results of
applying the proposed method. The bit streams of message
data in Figures 4 and 5 were generated randomly. The stego-
images “House” and “Lena” both of size 256×256 with high
PSNR values of 56.88 dB and 68.44dB, respectively, obtained
by embedding 16440 bits (about 2KB) message data using the
DPA and the optimal block pattern encoding table among the
128 ones are shown Figures 4(b) and 4(d), respectively. The
cover images are depicted in Figures 4(a) and 4(c) respectively
for comparison. The results show that the proposed method
can be applied to embed message data in grayscale images and
obtain good-quality stego-images without noticeable artifacts
in smooth image regions.

(a) (b)

(c) (d)

Figure 4. Some experimental results. (a) Cover image
“House.” (b) Stego-image of (a). (c) Cover image
“Lena.” (d) Stego-image of (c).

Figure 5 illustrates three grayscale stego-images “House”,
“Lena” and “Jet.” and results of data embedding. The three
stego-images of size 128×128 were obtained by embedding
1000 bytes of message data using the proposed DPA and the
optimal encoding table. The PSNR values are 46.90 dB,
49.33dB and 48.80 dB, respectively. In each row of the figure,
from left to right are an original image, bp0, bp1, bp2, and bp3
of the original bit planes (copied from Figure 1), followed by
the resulting stego-bit planes of bp0, bp1, bp2, and bp3,
respectively. Compared with the cover images in Figure 1 and
their four corresponding bit planes, it can be seen that the
stego-images retain most significant textures.

Table 2 summarizes the statistical data of the stego-image
“Lena” using the DPA and the optimal encoding table,
including the message data length, the PSNR value, the
selected block pattern encoding table, the numbers of used
blocks, the minimum replacement cost values, and the average
of the numbers of embedded bits per block. The message data
bit stream in Table 2 was generated randomly.

In more details, the result of Table 2 is transformed into
Fig. 6. When the amount of the embedded data is smaller than
1000B, the PSNR values in Table 2 are all larger than 49dB.
And the differences in the stego-images are not noticeable.

Figure 5. Experimental results of three images. In each row, from left to right are the original image, bp0,

bp1, bp2, and bp3 of original bit planes (copied from Fig. 1), followed by resulting stego-bit planes
of bp0, bp1, bp2, and bp3.

Figure 6 also reveals that the relation between the
PSNR value yielded by the proposed method and the
embedded data amount is approximately linear. The
PSNR value of the DPA decreases about 3.3225 dB
when the embedded data size increases 200 bytes. Thus,
the proposed DPA method can predict the PSNR value
before the data embedding process starts according to
the message data size. From Table 2, the PSNR value of
the DPA can be estimated by a simple line fitting
method to be PSNR = 62.5870 − (m − 1) × 3.3225 (dB),
1 ≤ m ≤ 5, where m denotes the size of message data in the
unit of 200 bytes for 128×128 grayscale images. Similar
results can be observed for the other images. Moreover, the
equation of the PSNR value can be extended and used for
grayscale images of any sizes by applying the proposed DPA.
For a grayscale image of size H×W, if the above value of m
denotes the size of the message data in the unit of
(200×H×W)/(128×128) bytes, then the resulting PSNR value
still can be estimated using the above equation. Note that this
merit of predictable PSNR values enables a user of the
proposed method to determine in advance how large a cover
image should be selected for a certain given amount of
message data.

 Furthermore, we may compute a distortion rate for each
stego-image. This rate is computed in this study as the ratio of
the number of bit flippings (changing bit 0 to 1 or 1 to 0 in
data embedding) to the length of the message data. Most

existing vertical data hiding methods yield distortion rates of
about 50% for grayscale images because of the characteristic
of randomness in bit flippings. In most existing vertical data
hiding methods, when 200-byte secret message data are
embedded into a 128×128 grayscale image, these data will be
divided into pieces of 4 bits and each piece is embedded into
the bits b3b2b1b0 of a pixel. Then the average grayscale change
of the pixel, measured in terms of the number of flipped bits,
may be computed to be 1×50% + 2×50% + 4×50% + 8×50% =
7.5. Consequently, the corresponding mean square-error value
MSE of the stego-image may be computed to be MSE =
[(200×8)/4]×(7.5×7.5)]/(128×128) where (200×8)/4 is the
number pixels required for embedding the 200-byte message
data, 7.5×7.5 is the square error incurred at each pixel, and
128×128 is the image size. Finally, the PSNR value of the
stego-image may be computed to be 10×log(2552/MSE) =
46.75 dB. Contrastively, in Table 2 the PSNR value of our
method is a much larger value 62.48 dB, which means the
proposed method is superior in distortion minimization.

In summary, the experimental results above show that for
grayscale images, the proposed method takes effectively into
consideration both the effect of the HVS and the preservation
of local edges, and yields stego-images that are less distorted
than those yielded by most existing data hiding methods.

Table 2. Statistics of stego-images yielded by DPA using
optimal encoding table.

Stego
-

image

Message
data

length
(bytes)

PSNR
(dB)

Table
number

No. of
used

blocks

Cost
value

PSNR VS embedded data

0

20

40

60

80

1 2 3 4 5 6

PSNR

 unit: 200 bytes

Figure 6. PSNR values of stego-image “Lena” using DPA.

Embedded
bit

number
per block

200 62.48 8 779 1774 2.054

400 59.37 57 1636 3243 1.956

600 55.57 57 2297 5680 2.09

800 52.96 57 3101 8355 2.064

1000 49.33 8 3826 11699 2.091

Lena
(128

×128)

1200 46.74 57 4295 16248 2.235

7. CONCLUSIONS

Two novel methods for hiding message data into grayscale
images with distortion reduction effects have been proposed,
with one being the DPA and the other being the use of
multiple block pattern encoding tables. A cost function has
been proposed to estimate the weight of each bit in each pixel
to be replaced according to an HVS model. A horizontal data
hiding method in which message data are embedded in a
sequence of bit planes has also been proposed to decrease
possible distortions in stego-images. An optimal block pattern
encoding table is chosen from 128 alternative ones for use in
the proposed data embedding process to minimize the
distortion in the stego-image. The proposed method minimizes
further the distortion using dynamic programming based on
the proposed cost function. The proposed method can embed
up to three bits in a 2×2 image block. As a result, not only the
textures in the cover image are reserved, but also the distortion
of the stego-image can be effectively reduced in an optimal
way. Especially, the proposed DPA can predict the PSNR
value of a sego-image before the embedding process starts
according to the size of the data to be embedded.

The space and time complexities of the proposed DPA are
both of the order of n2. It may cost more time to embed a long
secret code. But in certain applications there is no need of
real-time processing, and optimality in data embedding
volumes or minimization in image distortion is the main
concern. In such cases, our method is good to use. On the
other hand, if time is really concerned, then one can
alternatively use the other proposed method, the greedy search
algorithm, that takes only linear computation time and still
minimize distortion in the stego-image in a suboptimal way.

On the other hand, at least two approaches may be adopted
to make the proposed method more robust. First, we can
embed multiple copies of the secret data in the embedding
process so that attacks will not entirely destroy the secret
information. If attacks do occur, then after the data are
extracted by the proposed method, we may apply a voting
scheme to recover the secret. The second approach is to try to
place secret data in the more significant bits of the cover
image, for example, in bp2 and bp3 in the proposed method,
assuming that most attacks to BMP images are conducted to
the LSBs. Because the information encoded in these bit-planes
cannot be removed in most applications (otherwise, the image
will be seriously distorted or destructed), hopefully this
method will work in real applications.

The proposed method processes 2×2 blocks in the data
embedding process. It may be extended to process larger-sized
blocks because when the block size is larger, the number of
the block patterns which can be selected to encode a certain
message value becomes larger as well, resulting possibly in
greater reduction of image distortion. Other future works may
be directed to embed multiple message data in a grayscale
image for protecting the intellectual property right and
authenticating multimedia data, to define more general cost
functions for other HVS models, and to design better encoding
tables to reduce stego-image distortion further.

ACKNOWLEDGEMENT

This work was supported partially by the NSC Project
Advanced Technologies and Applications for Next Generation
Information Networks (II) with Project No. NSC93-2752-E-
009-006-PAE.

REFERENCES

[1] S. Katzenbeisser and F. A. P. Petitolas, Information Hiding
Techniques for Steganography and Digital Watermarking,
Artech House, Boston, U. S. A., 2000.

[2] L. M. Marvel, J. C. G. Boncelet, and C. T. Retter, “Spread
spectrum image steganography,” IEEE Trans. on Image
Processing, vol. 8, no. 8, pp. 1075-1083, Aug. 1999.

[3] M. Swanson, M. Kobayashi, and A. Tewfik, “Multimedia
data-embedding and watermarking technologies,”
Proceedings of the IEEE, vol. 86, pp. 1064-1088, 1998.

[4] R. Z. Wang, C. F. Lin, and J. C. Lin, “Hiding data in
Images by optimal moderately-significant-bit
replacement,” IEEE Electronics Letters, vol. 36, no. 25, pp.
2069-2070, Dec. 2000.

[5] C. C. Chang, J. Y. Hsiao, and C. S. Chan, ”Finding
optimal least-significant-bit substitution in image hiding
by dynamic programming strategy,” Pattern Recognition,
vol. 36, pp. 1583-1595, 2003.

[6] C. K. Chan and L. M. Cheng, "Improved hiding data in
images by optimal moderately-significant-bit
replacement," IEEE Electronics Letters, vol. 37, no. 16, pp.
1017-1018, Aug. 2001.

[7] C. K. Chan, and L. M. Cheng, "Hiding data in images by
simple LSB substitution," Pattern Recognition, vol. 37, pp.
469-474, 2004.

[8] C. C. Thien and J. C. Lin, "A simple and high-hiding
capacity method for hiding digit-by-digit data in images
based on modulus function," Pattern Recognition, vol. 36,
pp. 2875-2881, 2003.

[9] Y. K. Lee and L. H. Chen, “High capacity Image
steganographic model,” IEE Proceedings on Vision, Image
Signal Process, vol. 147 no. 3, June 2000.

[10] S. H. Liu, T. H. Chen, H. X. Yao, and W. Gao, “A
variable depth LSB data hiding technique in images,”
Proceedings of 3rd International Conference on
Machine Learning and Cybernetics, pp. 3990-3994,
Shanghai, P. R. China, Aug. 2004.

[11] D. C. Wu and W. H. Tsai, “Spatial-domain image hiding
using an image differencing,” IEE Proceedings-Vision,
Image, and Signal Processing, vol. 147, no. 1, pp. 29-37,
2000.

[12] W. N. Lie, and L. C. Chang, “Date hiding in images with
adaptive numbers of least significant bits based on the
human visual system,” Proceedings of IEEE
International Conference on Image Processing, Taipei,
Taiwan, vol. 1, pp. 286-290, Oct. 1999.

[13] I. S. Lee and W. H. Tsai, “A Dynamic-Programming
Approach to Data Hiding in Binary Images Using Block
Patterns with Distortion Minimizing Capability,”
Proceedings of National Computer Symposium
NCS'2003, Taichung, Taiwan, Dec. 2003.

[14] A. K. Jain, Fundamentals of digital image Processing,
Prentice-Hall, Singapore, 1989.

	ABSTRACT

