
COVERT COMMUNICATION VIA PDF FILES BY NEW DATA HIDING

TECHNIQUES*

1
Yin-Cheng Lai (賴以晟) and

2
Wen-Hsiang Tsai (蔡文祥)

Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan

E-mail:
1
troy0420.cs96g@g2.nctu.edu.tw,

2
whtsai@cs.nctu.edu.tw

ABSTRACT

PDF files become very popular nowadays. People

use them to exchange information on the Internet, and so

it is also a good choice to use PDF files as cover media

for covert communication. A method for this purpose by

two new data hiding techniques is proposed. The first is

a technique based on a white space coding using space-

equivalent codes in the PDF file. And the second is a

technique of inserting invisible texts into PDF files via

the use of artificially created text matrices outside the

visible area of the displayed PDF document. A secret

key is used to enhance the security of the embedded data.

Experimental results show the feasibility of the proposed

method.

1. INTRODUCTION

Many kinds of file formats can be used in

information communication. The PDF (portable

document format) is one of the most common formats

and has become more and more popular nowadays

because of its advantages in various applications, such

as high printing quality and cross-platform applicability.

In addition to using PDF files directly to exchange

information, it is also advantageous to use them as cover

media to hide data for secret message transmission and

other uses. Although PDF files are popular now, there

are yet not many researches on data hiding in PDF files.

It is desirable to have more kinds of data hiding

techniques for various application purposes.

Several techniques for data hiding in PDF files

have been proposed in recent years [2-5]. Zhong and

Chen [2] proposed an information steganography

algorithm on PDF documents by hiding data between

indirect objects of PDF documents. The algorithm can

embed data of unlimited lengths into PDF documents

and the embedded PDF documents are kept transparent

when being displayed in PDF readers. Zhong, Cheng

and Chen [3] proposed a steganographic technique for

hiding data in a kind of PDF English texts. They

modified integer numerals which are used to position

∗
This work was supported by NSC project No. 97-2631-

H-009-001.

characters in the PDF text. Because the perceptual

difference is very small, people cannot be aware of the

hidden data in the PDF document. Liu et al. [4]

proposed an algorithm based on equivalent

transformations in PDF files. They discovered that the

effect of the page display of a PDF file is extraneous to

the seriation of the dictionary’s entries so that data

hiding can be achieved by arranging special arrays of

entries, instead of by operations of adding any other data

to the cover PDF. Wang and Tsai [5] proposed a data

hiding method by slight modifications of the values of

various PDF object parameters, yielding a difference of

appearance difficult to notice by human vision.

In this paper, we propose two data hiding

techniques via PDF files for secret transmission. The

first is based on a white space coding scheme. When

opening a PDF file with a certain text editor, we can see

the initial code of the PDF file, in which there are many

white-space characters used to separate syntactic

constructs from one another. According to the PDF

standard [1], many distinct characters are treated as

white-space characters. We can use this property to

embed secret messages. The second technique is based

on a scheme of inserting invisible texts into a cover PDF.

In a PDF file, a text matrix decides where and how to

display the corresponding text in a PDF document. We

may insert some specially-specified text matrices with

their coordinates being outside the visible area of the

PDF so that the corresponding text, where secret

messages are embedded, will not show on the displayed

PDF documents, thus achieving the effect of data hiding

or steganography.

In the remainder of this paper, we give first a

general introduction to the PDF in Section 2. In Section

3, we describe the proposed secret transmission method

via PDF files by two different kinds of data hiding

techniques. And in Section 4, some experimental results

are shown. A conclusion is made in Section 5.

2. INTRODUCTION TO PDF

The Adobe portable document format (PDF) is one

of the Adobe
®
 Acrobat

®
 family of products [1] and is

described by a page description language which is

modified from PostScript
®
. Each PDF file represents a

document in a manner independent of the application

software, hardware, and operating systems used to create

the document and of the output device on which the

document is to be displayed or printed. The basic

elements in a PDF file are objects that together describe

the appearance of one or more pages of the PDF

document. A PDF document’s pages can contain any

combination of text, graphics, and images, and a PDF

page’s appearance is determined by a content stream

which contains a sequence of graphics objects to be

painted on the page.

According to the PDF standard [1], a canonical

PDF file initially consists of four parts (see Figure 1) as

follows.

1. A one-line header identifying the version of the

PDF specification to which the file conforms.

2. A body consists of a sequence of indirect objects

representing the contents of the PDF document.

3. A cross-reference table containing information

about the indirect objects in the PDF file, such as

the offset of each object which give the object’s

location in the displayed document.

4. A trailer giving the location of the cross-reference

table and those of certain special objects within the

body of the file.

Fig. 1. Structure of a PDF file.

In a PDF file, white-space characters are used to

separate syntactic constructs from one another.

According to the PDF standard, many distinct characters

are treated as white spaces. Table 1 shows this property

of the PDF. All white-space characters are equivalent,

except in comments, strings, and streams. We can use

this property to embed secret messages into PDF files,

as done in this study. More details will be described in

Section 3.1.

A text matrix in an indirect object of a PDF file is

used to set the state of the corresponding text and locate

it. The structure of a text matrix is as follows:

a b c d e f Tm

where a through f are all numbers and “Tm” is the

operator of the text matrix. The first four numbers a, b, c

and d are used for describing text scaling, rotation, and

skew. The initial values are 1, 0, 0 and 1, respectively.

The other two numbers e and f are the distances to

translate the origin of the coordinate system used for

PDF document display in the horizontal and vertical

dimensions, respectively. In this paper, we use the

numbers e and f to embed secret messages. More details

will be described in Section 3.2.

Table 1. White-space characters in PDF files.

decimal hexadecimal name

0 00 null (NUL)

9 09 tab (HT)

10 0A line feed (LF)

12 0C form feed (FF)

13 0D carriage return (CR)

32 20 Space (SP)

3. DATA HIDING TECHNIQUES FOR SECRET

TRANSSMISSION VIA PDF FILES

3.1 Data Hiding in PDF Files by White Space Coding

According to Table 1, a white-space character may

described by one of six different codes, namely, the

hexadecimal number 00, 09, 0A, 0C, 0D, or 20. After

some experiments, we found out in this study that in

some text editors, 0C will show as a line and 0A will

cause line feeding, in the displayed document of a PDF

file containing these two codes. If we use these two

codes to embed secret messages, people will be aware of

the existence of the hidden data easily by inspecting the

displayed PDF document. So we only use 00, 09, 0D

and 20 to embed the secret message in this study.

Furthermore, we know that all white-space

characters are equivalent except in comments, strings,

and streams, so if 00, 09, 0D and 20 are not in

comments, strings, and streams, they all usable to embed

secret messages.

Accordingly, we can embed two bits of message

data using a single usable white-space character. That is,

we can use 00, 09, 0D and 20 to represent the 2-bit

message data 00, 01, 10, and 11, respectively. Table 2

shows this scheme, which we call white-space coding.

Table 2. Proposed data embedding scheme.

data to embed used hexadecimal code

00 00

01 09

10 0D

11 20

For example, if the secret message is 0011011110,

we use five white space characters to embed the

message and the codes of them are 00, 20, 09, 20, and

0D, representing the in-order bit pairs 00, 11, 01, 11,

and 10 in the secret, respectively.

Besides, in order to tell how many white-space

characters have been modified for data hiding, we use

two bytes to represent the length of the secret message

and embed them into the PDF file before embedding the

secret message data. These two bytes will be used in the

message data recovery process.

Since we do not insert any other data into the cover

PDF in the above-described message data embedding

process, the size of the PDF file will not change. And so

it is difficult for a reader of the displayed stego-PDF

document to be aware of the existence of the hidden data

in the PDF file. But obviously, the capacity of the data

which are embed, called data embedding capacity in the

sequel, is limited by the number of the usable white-

space characters that the cover PDF have.

3.2 Data Hiding in PDF Files by Insertion of

Invisible Texts

In this section, the other proposed data hiding

technique based on a scheme of inserting invisible texts

into a cover PDF is described. The basic idea is that we

embed into the PDF file some text matrices whose

coordinates are outside the visible area of the PDF so

that the corresponding texts will not be shown on the

displayed PDF document.

In more detail, given a secret message in the form

of a bit string, we transform it, three bits a time, into

decimal numbers and process them to define the values

of e and f in a number of text matrices. The

transformation scheme is specified by Table 3. After the

transformation, the secret data become a long string of

decimal digits, which we regard as a big integer number

and denote as N. Then we process N to define e and f for

some text matrices according to the following steps.

1. Create a text matrix M1 and set e of it as N if N does

not cause an overflow, and set f of it as 0.

2. If N causes an overflow, first separate N into two

numbers N1 and N2, where N1 is taken to be the

leading decimal digits in N which together as an

integer do not cause an overflow, and N2 to be the

remaining decimal digits in N. And then take e of M1

as N1 and f of M2 as N2 if N2 does not cause an

overflow.

3. If N2 causes an overflow, then separate N2 into two

numbers N21 and N22 in a similar way so that N21 are

the leading decimal digits in N2 which together as an

integer do not cause an overflow, and then take N21

to be f of M1, leaving N22 to be processed in the next

step.

4. Create a second text matrix M2, and repeat the above

three steps recursively using N22 as input, until all the

remaining decimal digits in N22 are exhausted.

Note that the range and precision of numbers are

limited by the internal representations used in the

computer on which the PDF consumer application is

running. So when we define the values e and f of the

created text matrices using decimal digits in the original

N in the above process, overflows might occur. The

result of the above recursive process is several text

matrices which include all the decimal digits of N as

their values of e and f.

In a PDF document, each page of the document is

represented by a page object—a dictionary that includes

references to the page’s contents and other attributes.

Each page object has a parameter named MediaBox

which defines the boundaries of the physical medium on

which the page is intended to be displayed or printed. In

short, the MediaBox decides the visible area of the page.

A common visible area of a PDF page is 595×842. In

order to guarantee that the position of the text in a text

matrix is outside the visible area to create invisibility to

an observer of the displayed PDF document, we

concatenate “999” before the decimal numbers of e and f

of each created text matrix. An example is given as

follows.

Suppose the secret message is “010001110.”

According to Table 3, we transform it into a string of

decimal digits “327.” Then, we prefix “999” to it to

yield N = 999327. Finally, we create a text matrix and

put N in it according to the previously-described secret

message embedding process. The final text matrix is as

shown below:

1 0 0 1 999327 0 Tm.

Table 3. Transformation between binary message string

and decimal numbers.

bit segment decimal number bit segment decimal number

000 1 100 5

001 2 101 6

010 3 110 7

011 4 111 8

After we insert message data into the cover PDF

file in the above way, the offset of each indirect object

and the offset of the cross-reference table in the file may

change. Such changes may cause a wrong display of the

resulting PDF document. So we have to update the

cross-reference table and the trailer of the PDF file to

get a correct stego-PDF file. More specifically, suppose

that we embed the secret message in an indirect object B

to get B′. Since we insert additional data in B, the size of

B′ is bigger than B. Therefore, the offsets of the indirect

objects whose locations are behind B need to be updated

by increasing them for a value D which is the difference

of the size between B and B′. And if the cross-reference

table is also behind B, the trailer needs to be updated by

the same way, too.

Since the embedded data will not appear in the

displayed PDF document, the data embedding capacity

is unlimited, but at the cost of increasing the size of the

resulting stego-PDF file.

3.3 Proposed Data Hiding Algorithm

We have proposed two data hiding techniques via

PDF files. We may use only either of them or both for

secret transmission. For the latter case, if the secret

message is short enough, then the first technique suffices

to embed all the message data into the cover PDF; or if

we cannot embed data just by the first technique, then

the second technique is used further to embed the

remaining data. The detail is described below as an

algorithm.

Algorithm 1: embedding a message in a PDF file.

Input: a user key K, a secret message S, and a cover

PDF file P.

Output: a stego-PDF file P′.

Steps:

1. Encrypt S by a certain method with K (for example,

by the DES algorithm), to get encrypted secret data

S′ and let l be the length of it in bytes.

2. Count the number m of all usable white-space

characters in P and compute the embedding capacity

n in bytes as n = m/4.

3. Separate S′ into two parts S1 and S2 by the following

way.

3.1 If n ≥ l+2, take S1 to be a string composed of S′

and prefixed by its length l (expressed as two

bytes), and take S2 to be null.

3.2 Else, take S1 to be a string composed of the first

n − 2 bytes of S′ and prefixed by its length n −

2 (expressed as two bytes), and take S2 to be

the remaining bytes of S′.

4. Embed S2 into P in the following way if S2 is not null.

4.1 Transform S2 into a bit sequence and pad S2

with one or two zeros, if necessary, to make the

number of bits in the resulting string S2′ a triple

of an integer.

4.2 Divide S2′ into 3-bit segments g1, g2, …, gk, and

map g1, g2, …, gk into decimal numbers g1′,

g2′, …, gk′, respectively, according to Table 3.

4.3 Embed g1′ through gk′ into P one by one by the

scheme of inserting invisible texts, as described

in Section 3.2.

5. Embed S1 into P in the following way.

5.1 Transform S1 into a bit sequence S1′.

5.2 Divide S1′ into 2-bit segments f1, f2…, f4w,

where w denotes the length of original S1 in

bytes.

5.3 Embed f1, f2, …, f4w into P one by one by the

scheme of white space coding, as described in

Section 3.1.

6. Update the cross-reference table and trailer, if

needed, to get a stego-PDF file P′ as output.

3.4 Proposed Data Recovery Algorithm

The proposed data recovery process is described as

follows, which corresponds to Algorithm 1.

Algorithm 2: recovering a secret message from a

stego-PDF file.

Input: a user key K and a stego-PDF file P′.

Output: the secret message S hidden in P′.

Steps:

1. Find the first eight usable white-space characters in

P′ and decode them according to Table 2 to get two

bytes of data which contains the number n of the

characters embedded in P′ by the scheme of white

space coding.

2. Find the subsequent n usable white space characters

in P′, h1, h2…, hn.

3. Transform h1 through hn into binary pairs according

to Table 2, and concatenate them to get secret data S1.

4. Scan P′ and find out all the text matrices embedded

in P′ by the scheme of inserting invisible texts by

detecting the existence of the prefix “999” in the

value e of each checked matrix.

5. Extract sequentially the decimal numbers g1, g2…, gk

from the values of e and f in the text matrices found

in the last step.

6. Transform g1 through gk into 3-bit segments

according to Table 3, and concatenate them to get

secret data S2.

7. Concatenate S1 and S2 to get secret data S′.

8. Decrypt S′ with the input key K to recover the

desired secret message S.

4. EXPERIMENTAL RESULTS

In order to implement the proposed method for

covert communication, we designed a user interface

written in the language of Java. It supports the following

three ways to hide and recover secret messages:

1. using the proposed white space coding technique

only;

2. using the proposed technique of inserting invisible

texts only;

3. using the proposed method of combining the two

techniques together.

In our experiments, we used the combined method

of the third way above. Some results of our experiments

are shown in Figures 2 through 6. Figure 2 shows the

window of the user interface with a secret message and a

user key as input, which mean that the user embeds the

secret message in a cover PDF by the proposed

combined method. The result of the secret recovery with

a correct user key is shown in Figure 3. The cover PDF

is shown in Figure 4 and the stego-PDF is shown in

Figure 5. Comparing the two figures, no change can be

seen on the displayed PDF documents. In addition,

Figure 6 shows the result of the secret recovery with an

incorrect user key.

5. CONCLUSIONS

In this paper, two different data hiding techniques

via PDF files and a method for covert communication by

combining the two techniques have been proposed. The

first technique is based on a white space coding using

codes in the PDF file which appear to be white spaces.

The second a technique inserts invisible texts into PDF

files via the use of artificially created text matrices

which appear outside the visible area of the displayed

PDF document and so are invisible to the observer of

the document. Secret keys are used to enhance the

security of the embedded data.

The data embedding capacity of the first data

hiding technique is limited by the number of usable

white-space characters in the cover PDF while the size

of the cover PDF will not change after data embedding

because we do not insert any other data in it. The data

embedding capacity of the second technique is unlimited

so that we can embed a large amount of secret data. If

the secret message is short enough, we may just use the

first technique; else, the second technique is used

subsequently to embed the remaining secret data.

No matter which technique or both are uses to

implement covert communication, it has no influence on

the display of the PDF file so that people cannot be

aware of the existence of the hidden data. Even if an

illicit user knows that there is a secret message in the

PDF file, the covert message can be protected by a user

key, and the illicit user still cannot extract the original

secret message. The proposed methods are feasible, as

proved by the good experimental results.

Future researches may be directed to applying the

proposed data embedding techniques to other

information hiding applications, like copyright

protection by watermarking, secret authentication,

information sharing, etc.

REFERENCES

[1] Adobe Systems Incorporated, PDF Reference,

Sixth Edition, Addison-Wesley, California, USA,

Nov. 2006.

[2] S. Zhong and T. Chen, “Information steganography

algorithm based on PDF documents,” Computer

Engineering, vol. 32, no. 3, pp. 161-163, Feb.

2006.

[3] S. Zhong, X. Cheng and T. Chen, “Data hiding in a

kind of PDF texts for secret communication,”

International Journal of Network Security, vol. 4,

no. 1, pp. 17-26, January 2007.

[4] X. Liu et al., “A steganographic algorithm for

hiding data in PDF files based on equivalent

transformation,” Proc. of 2008 International

Symposiums on Information Processing, pp. 417-

421, Moscow, Russia, May 23-25, 2008.

[5] J. T. Wang and W. H. Tsai, “Data hiding in PDF

files and applications by imperceptible

modifications of PDF object parameters,” Proc. of

2008 Conf. on Computer Vision, Graphics &

Image Proc., Yilan, Taiwan, Aug. 24-26, 2008.

Figure 2. Window of user interface.

Figure 3. The result of secret recovery with correct user

key.

Figure 4. A cover PDF.

Figure 5. The stego-PDF of the cover PDF of Fig. 4.

Figure 6. Result of secret recovery with incorrect key.

