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ABSTRACT

An obstacle avoidance method for use in
person following for vision-based autonomous land
vehicle (ALV) guidance is proposed. This method is
based on the use of vehicle location estimation and a
quadratic pattern classifier, and aims to guide the
ALV to follow a walking person in front by
navigating along a derived collision-free path.
Before generating the collision-free path, the
person’s location is obtained from extracted objects
in the image by a person detection method. The
object closest to a predicted person location is
regarded as the followed person and the remaining
objects are regarded as obstacles. The collision-free
navigation path is designed for ALV guidance in
such a way that the ALV not only can keep following
the person but also can avoid collision with nearby
obstacles. The navigation path results from a
quadratic classifier that uses the vehicle and all of
the objects in the image as input patterns. A turn
angle is then computed to drive the ALV to follow
the navigation path. Successful navigation sessions
confirm the feasibility of the approach.

Keyword: obstacle avoidance, autonomous land
vehicle guidance, person following, vehicle
location estimation, quadratic pattern classifier

1. Introduction

In recent years, many approaches to
autonomous land vehicle (ALV) guidance in indoor
and outdoor environments have been developed.
How to guide the ALV to navigate by following a
walking person in a certain environment and avoid
obstacles in the mean time is the major goal of this
study.

In the study of obstacle avoidance, some
vision-based navigation methods [1][2] for mobile
robots with obstacle avoidance capability have been
proposed. Ohya [1] used a model edge map for
vehicle navigation on a planned path. Obstacles are
detected by computing the difference between the
edges estimated from the 3D environment model and
the edges detected from the actual camera image.
The navigation system developed by Lorigo, et al. [2]
consists of three independent vision modules, an
edge module, an RGB module, and an HSV module,
for obstacle detection. The obstacle boundaries from
the individual modules are combined into a single
obstacle boundary which is converted to motor
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commands. Yang [3] used an adaptive-network-
based fuzzy classifier to define 3D obstacle regions
that must be avoided. Biewald [4] used a human-like
concept and a more qualitative world model to plan
routes. Ku and Tsai [5] used a quadratic classifier in
pattern recognition for collision avoidance in ALV
navigation in an unknown indoor environment.
When a vision-based ALV navigates by following a
person walking in front, the person has to be
detected first from the image captured by a camera.
Although the image of the person is also detected in
some pedestrian tracking systems, the approaches
[6-8] to detecting a pedestrian using the difference
between two consecutive images cannot be used in a
person following system. The image for pedestrian
tracking is acquired using a stationary CCD camera.
The difference between two consecutive images
contains the information of the moving person.
However, the camera used in person following is
mounted on the ALV and moved along the path of
the ALV. The moving person cannot be detected
using the image difference information when the
camera is not stationary.

On the other hand, after the relative position of
the person to the ALV is calculated, a trajectory for
the ALV need be generated to obtain the turn angle
of the front wheels of the ALV. Some trajectory
planning approaches [9-11] have been proposed.
Munoz and Ollero [9] combined a kinematic
visibility graph planning method, a path generation
algorithm based on beta-spline curves, and a cubic
spline speed profile definition technique to propose
a smooth trajectory planning method for mobile
robots. Shiller and Serate [10] proposed a trajectory
planning method for computing the track forces and
track speeds of planar tracked vehicles required to
follow a given path at specified speeds on horizontal
and inclined planes. Ku and Tsai [11] wused
sequential pattern recognition techniques for ALV
smooth navigation by person following. These
methods do not consider the existence of obstacles.

In this study, an obstacle avoidance method for
use in person following for vision-based ALV
guidance using vehicle location estimation and
quadratic pattern classifier design is proposed. This
method aims to guide the ALV to follow a walking
person in front along a corridor with obstacles. This
goal is achieved in this study by guiding the ALV to
navigate along a derived collision-free path. First,
the translation of the ALV location at the current
sampling instant relative to that at the previous
sampling instant is estimated using the ALV control
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information. The translation is then used together
with previous person locations with respect to the
vehicle location at the previous sampling instant to
predict the person location at the current sampling
instant. After all of the objects appearing in the
image are extracted, the object closest to the
predicted person location is regarded as the followed
person and the remaining objects are regarded as
obstacles. A collision-free navigation path is then
derived for ALV guidance in such a way that the
ALV not only can keep following the person but also
can avoid collision with nearby obstacles. The
navigation path is derived by the use of the quadratic
classifier that regards the vehicle and all of the
objects in the image as input patterns. All patterns
are categorized into two groups as the input to the
quadratic classifier using a pattern generation
method proposed in this study. A turn angle is then
computed to drive the ALV to follow the navigation
path. The main ideas of this study include the
categorization of the locations of the person and
obstacles without special marks, and the use of the
quadratic classifier to generate a collision-free path
for safe person following in the navigation.

A flowchart of the proposed obstacle avoidance
method for person following is shown in Fig. 1. In
this study, we focus on the steps of the detection of
the locations of the person and obstacles, and the use
of the quadratic classifier to generate a collision-free
path. Some other details of the processes to
implement the proposed method are presented in [5].
The details of the system flowchart are described as
follows.

Step 1. Image acquisition: Capture the image of the
front view of the vehicle with a wide-angle
camera mounted on the vehicle.

2. Vehicle location estimation: Estimate the
translation of the ALV location at the current
sampling instant relative to that at the previous
sampling instant using the ALV control
information. The estimation method 1is
described in detail in Section 2.A.

Step

< I Wheel control I

i Image acquisition | X
v Collision-free path
| Vehicle location estimation l calculation
3 *
- - | Pattern addition J
[ Object detection J
*
: r Pattern |
I Coordinate J
| Person location I
v

| Person location detection |

Fig. 1. System flowchart.

Step 3. Object detection: Detect the image points
that compose the baselines of the objects,
including those of the walls of the corridor, the
followed person, and the obstacles that appear
in the way of ALV navigation in the corridor.
This step is conducted by the use of an obstacle
detection algorithm introduced in [S]. The

obstacle detection algorithm uses scan lines
and image processing techniques such as local
thresholding and region growing methods to
detect obstacles. An originality of the
algorithm is the concept that obstacles are
assumed to lie on the ground and represented
by baselines.

4. Person location prediction: Predict the

person location at the current sampling instant

using the translation of the ALV together with
the person location at the previous sampling
instant. The prediction method is described in

Section 2.B.

Step 5. Person location detection: Take the object
closest to the predicted person location as the
followed person and regard the remaining
objects as obstacles. The person detection
method is described in Section 2.C. Besides,
check whether the followed person is detected
or not. If yes, continue; otherwise, stop the
vehicle.

Step 6. Pattern generation: Categorize the patterns
representing the obstacles, the person, and the
two sides of the vehicle body into two classes
using a pattern generation algorithm introduced
in Section 3.B. Add some extra points as
patterns using a pattern addition algorithm
described in [5] to take into consideration the
width of the vehicle.

Step 7. Collision-free path calculation: Generate a
collision-free path using a quadratic classifier
described in Section 3.A. The path is just the
decision boundary of the classifier designed
with the input patterns generated in Step 6.

Step 8. Wheel control: Steer the ALV front wheels
according to the turning angle derived by a
method described in [5] based on the collision-
free path generated in Step 7. In this way, the
vehicle keeps its trajectory on a collision-free
path continually.

Step 9. Go to Step 1.

In the process described above, the proposed
system does not use any environment knowledge
given in advance; instead the guidance of the ALV is
based on local visual information only. At least five
advantages are found in this approach. First, the
locations of the person and obstacles can be
discriminated. Second, the ALV can follow the
walking person based on the collision-free path.
Third, the derived quadratic path is more precise to
match the kinematic trajectory of the vehicle than
the linear path derived by most other methods.
Fourth, by following the quadratic path it is easier to
go through obstacles without collisions than other
approaches using linear paths [5]. In this study, the
generated quadratic collision-free path goes through
the center of the ALV. This means that the ALV is
located on the collision-free path in every cycle and
need not navigate to approximate a collision-free
path that is usually a linear one. Fifth and the last,
both the current locations of the vehicle and the
person are taken into consideration while generating
the quadratic collision-free path.

In the remainder of this paper, the approach to
obtaining the person position by the proposed person
detection method is described in Section 2. The
approach includes three steps, namely, the
estimation of the vehicle location between two
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sampling instants, the prediction of the person
position, and the detection of the person position. In
Section 3, the method for deriving the collision-free
path is described. The method includes a pattern
generation method and a path generation method. In
Section 4, some experimental results are illustrated.
Conclusions are included in the last section.

2. Proposed Detection Method of Person Location

A method for detecting the person location is
proposed in this section. In this study, all obstacles
are all assumed to lie on the ground, so the surfaces
of obstacles will contact the ground at certain spots,
which appear as line segments in most cases and will
be called baselines in this study. When all the
baselines of the objects, including the obstacles and
the followed person, in a corridor are detected in an
image, the ALV does not know which object is the
person to follow. The proposed person detection
method aims to discriminate obstacles from the
followed person.

Because the moving direction and the speed of
the person is unpredictable, the person location with
respect to the VCS at the current sampling instant
cannot be found only by vision-based information
unless the cycle time is zero. But the person location
at the current sampling instant can be estimated
using the control-based information and the person
location at the previous sampling instant. After all of
.the objects appearing in the image are extracted, the
object closest to the estimated person location by the
control-based ALV information is regarded as the
followed person and the remaining objects are
regarded as obstacles.

More specifically, as shown in Fig. 2, let P,
denote the person position and VCS; denote the
vehicle coordinate system at the beginning of cycle i
during navigation. Assume that, at the beginning of
cycle i, the x and y coordinates of the person position
at P,, with respect to VCS,, have been found. We
use the ALV control information to estimate the
translation from VCS, | to VCS;, which is then used to
compute the x and y coordinates of the person
position at P, with respect to VCS,. Also assume
that, at the beginning of cycle i+1, the x and y
coordinates of the person position at P; with respect
to VCS, have been found. Again, the ALV control
information is used to estimate the translation from
VCS; to VCS,,,, which is then used to compute the x
and y coordinates of the person positions at P, and
P; with respect to VCS,,,.

After P, , and P, are found in cycle i+1, we then
detect P,,, as follows. We first predict the person
position, called P’;,,, at the beginning of cycle i+1
using P,, and P;,. The prediction process is
illustrated in Fig. 2, where it is assumed that the
translation from P, , to P, is identical to that from P,
to P’,,,. The predicted person position is reasonable
because in the short duration between two cycles the
person may be assumed to move straightforward
with a constant speed in general. Since the x and y
coordinates of the person positions at P, , and P; with
respect to VCS,., have been computed previously,
the x and y coordinates of the person position at P,
with respect to VCS,,, can be solved accordingly.
Then, the predicted person position P’ is used to
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detect the real person position P,,. The way is to
find the object closest to P’,,, and take it as the
detected person located at P,,,.

ycs, X
Fig. 2. Illustratio we position P, P, P,,, and

;
Py

The details of the above process are described
in the following. We first state the estimation
process of the translation from VCS, to VCS,,, in
Section 2.A. Then, in Section 2.B, the derivation
process of the coordinates of the person position at
P, and P, with respect to VCS,,, is introduced,
followed by a description of the prediction process
of the person position at P’,,,. Finally, the detection
process of the person position at P, is introduced in
Section 2.C.

A. Estimation of Translation from VCS, to VCS,,,

The translation from VCS;, to VCS,, is
estimated using the ALV control information,
namely, the speed and the turn angle of the ALV,
and the time interval between two sampling instants.
These values can be obtained from the feedback
information of the ALV and then used to estimate
the kinematic trajectory of the ALV from VCS; to
VCS,,,. Accordingly, the translation and the rotation
of the two VCS’s can be obtained. The details are as
follows.

Consider the simple kinematic model for an
automobile with front and rear tires [12], as shown
in Fig. 3. The rear tires are aligned with the car body
sides while the front tires are allowed to spin about
the vertical axes. Besides, the center position
between the two front wheels is treated as the origin
of the VCS. As shown in Fig. 3, the vehicle moves a
distance S from location A to location B by turning
an angle of ¢, where A and B represent the origin of
the VCS; and that of the VCS,,,, respectively. We
assume that the vehicle speed v and the navigation
time interval ¢ of the vehicle are both known in
advance. Hence, the navigation distance S is a
constant and can be computed by S = vz.

The translation specified by the values x and y
in the VCS, is acquired by the following equations

(5]
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Fig. 3. Analysis of the path S, through which the
vehicle navigates from location A to B by

turning an angle of 4.
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where R is the rotation radius, d 1s the distance
between the front wheels and the rear wheels, » and
P are the corresponding angle and the secant line of
S, respectively, and ¢ is the turning angle of the
front wheels. According to Equations (1), the
translation (x, v) from VCS, to VCS,,, is computed to
be as follows:
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Next, we state the derivation process of the
rotation angle, denoted as ¢, from VCS, to VCS,,,.
Since the direction vector of the vehicle head in the
VCS is that of the Y-axis of the VCS, the angle ¢ can
be obtained by calculating the angle between the
direction vector of the vehicle head at the position A
and that at the position B, as shown in Fig. 3. Thus,
the direction vector v, of the vehicle head at the
position A with respect to VCS, can be written as

v,= (0, 1). (4)

In addition, as shown in Fig. 4, the direction
vector v, of the vehicle head at the position B with
respect to VCS, can be derived from the direction
vector v, of the front wheels of the vehicle at the
position B in the following way. First, since the
vector v, is the tangent of the trajectory of the ALV,
it can be obtained to be as follows [14]:

Vy = (d +y, dcotg - x). (5)

Then, because the angle between vectors v, and
v, 18 the turn angle ¢ of the vehicle, the vector v, can
be calculated to be as follows:

v =)= cosg  sing L
s=l oy *|-sing cosg
= (yeosg+ xsing, dsing + ysing - xcosg +d cotgcos ).

r
A0, 0y,
Fig. 4 Illustration of ¢ and ¢.

Hence, the angle ¢ between the two direction
vectors v, and v, can be calculated according to the
following equation:

v,y :|v1’4|v4‘<cosw. (7)

By substituting (4) and (6) into (7), the angle ¢
can be derived to be as follows:
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B. Prediction of Person Position at P’,,,

In this section, we describe the derivation
process of the coordinates of the person position at
P, and P, with respect to VCS,,,, followed by a
description of the prediction process of the person
position at P’,,. As shown in Fig. 5, let ' and )

denote the coordinates of the person position at P,
with respect to VCS,. Similarly, let ¢ and y

represent the coordinates of the person position at P,
with respect to VCS,;. Assume that the coordinates
(x',» »,) and (x, y/) with respect to VCS, have
been obtained. The translation (x, y) and the rotation
angle ¢ from VCS; to VCS,.,, obtained in the
previous section, can be used to calculate the
coordinates (x'*!, ;') and (x/*'. ') of the person
position at P, and P, with respect to VCS,.,
respectively, by the following equations:

['1 0 0][cosg sing 0
[("" e l]:[.r,', Vi l]»{o 1 O}-[—sinqp cosg O (9)
-x -y 1 0 0 1
1 0 O0]|[ coseg sing 0
[‘\',"l p l]:[x: v l]« 0 1 0||-sing cosp Of (10)
=x =w 1 0 0 1

In (9), the center of VCS, is translated to that of
VCS,., so that the coordinates of P, , with respectto
VCS,,, have to decrease the translation (x, y). In
addition, the direction of VCS, is rotated to be the
same as that of VCS,,, according to the angle ¢
Hence, the coordinates (x!, ') of P with
respect to VCS,,, can be obtained in (9). In the mean
time, the coordinates (', ') of P, with respectto

VCS.., 1s obtained in (10).
B b0
‘?:'I’ynl)




Fig. 5 Illustration of the coordinates of P,,, P, and
P’.., with respect to VCS, and VCS,,,.

Since we assume that the translation from P,
to P, is identical to that from P; to P’,,, the
coordinates (x ,, ) of the predicted person

position at P’,, with respect to VCS,, can be
calculated to be as follows:

X, =2x" = x, (11)
(12)

i+l i+l

Yin =2y =yl
C. Detection of Person Position at P,,,

When the predicted person position P’ is
obtained, the person position P,,, can be detected, as
mentioned previously, to be the object closest to
P’..,. However, each candidate object is necessarily
just a point in shape; it is a group of points
composing a baseline segment. Therefore, a more
sophisticate method is adopted in this study, based
on the use of the mean and the variance of the
detected baselines. The mean D of the baseline of an
object represents the position of the object and its
value is obtained by the following equation:

1& 1&
p==5m,=—STx y] =l wl" o
m = m =\

where m is the number of the points that
compose a baseline of an object and M =[x y|”

represents the coordinates of those points from the
top view of the VCS. The calculated mean of the
object is used to compute the Euclidean distance to
the position P’,,. Since the coordinates x’,, and
y'is, of the position P’,,, have been obtained, the
Euclidean distance H between the mean D and the
position P’;,, can be obtained by the following
equation:

H:\/(XI) _x,'u)z"' (yD—y'I”)z'

The obtained distance H is taken as one of
features to detect the person position P;,,. As shown
in Fig. 6, if an object is the person that we want to
detect, its distance H will be smaller than a given
threshold value T,. On the other hand, the variance K
of the points that compose a baseline of an object is
taken as another feature and its value can be
obtained by the following equation:

K= %i,/(M, —DY (M, - D).

Since the length of the baseline of a person is
smaller than that of a wall and an obstacle in general,
the variance K of the person will be smaller than a
given threshold value 7. Hence, the proposed
method for detecting the position P, includes two
steps and is described in the following. In the first
step, we check whether the variance K and the
distance H of an object are smaller than the
thresholds value T and T, respectively. The
conditions may be written as follows:

(14)

(15)

Fig. 6. Illustration of the detected person position
P;,, and the distance threshold value 7.

K<T and
HST.I'

(16)
(17)

When all detected objects are tested using the
two conditions (16) and (17), three situations might
happen. The first situation is that no object satisfies
both of the two conditions. It means that the ALV
misses the followed person. In this case, the ALV is
stopped. The second situation is that just one object
satisfies both of the two conditions. The object is
then taken as the followed person at P, ,. The last
situation is that more than one object satisfies both
of the two conditions. Then, the object with the
smallest distance H is chosen to be the person to
follow. That is, in the second step, when the distance
H between P’,,, and an object P is the smallest, the
object P is regarded as the followed person at P,
and the remaining objects are regarded as obstacles.
If the object with the smallest distance is an obstacle
instead of the followed person, the followed person
can not be detected around the area that is predicted
using the proposed method in Section 2-B. Hence,
the ALV will stop in the next cycle and restart to
detect an moving object as the followed person.

3. Proposed Collision-free Path Generation
Method for Obstacle Avoidance in Person
Following

In this section, the guidance method for
obstacle avoidance in person following is proposed.
The goal of this method is to generate a collision-
free path that passes through the location of the
followed person and the middle point between the
two front wheels of the vehicle without hitting the
obstacles. This goal is achieved using the proposed
pattern generation method and the path generation
method described in the following.

In the proposed path generation method, the
decision boundary of the quadratic classifier is
treated as the generated collision-free path. When
the quadratic classifier is applied, there need two
classes of patterns for use as the input. On the other
hand, the proposed pattern generation method
provides a systematic way to categorize all patterns
into two groups L and R. These patterns include the
baseline of obstacles, two sides of the vehicle body,
and two series of artificial patterns generated on the
left-hand and the right-hand sides of the person
location. The pattern generation method is proposed
in Section 3.A.In Section 3.B, the formula of the
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quadratic classifier is described.

A. Pattern Generation for Quadratic Classifier
Design

In this section, a pattern generation method is
proposed to categorize all patterns into two groups L
and R, which include two kinds of obstacle patterns
O* and OF, two kinds of vehicle patterns V* and V*,
and two kinds of person patterns P“ and P in the
VCS. The details of the processing step are
described in the following.

In this study, all detected objects except the
followed person are treated as obstacles. The
baseline of an obstacle is categorized into one of two
sets O* and O® according to a derived reference line
L1 in the VCS. As shown in Fig. 7, the reference line
L1 passes through the person’s position P and the
origin of the VCS. With the coordinates x'*! and

y'*! of the person’s position obtained in Section 2.C,

il

the formula of the reference line L1 can be derived
to be as follows:
i+1

Zitl v 2 ().

i+1

Ll= y-
i+

X
L1 Y
L R
0[‘\ P \)R
yt VR

Fig. 7. Two kinds of obstacles O* and O*, two kinds
of vehicle patterns ¥* and V%, and two kinds of
person patterns P- and P® in the VCS.

(18)

If a point (x, y) is located on the left-hand side
of the line L1, the value of L1 with respect to (x, y)
is smaller than zero. Hence, if the mean of the
baseline of an obstacle is on the left-hand side of the
reference line L1, i.e., if L1 < 0, the baseline of the
obstacle is assigned to a component of the set O".
Here, the mean position of the baseline points of an
obstacle represents the position of the obstacle. On
the contrary, if the mean position of the baseline
points of the obstacle is on the right-hand side of L1,
i.e., if L1 > 0, the baseline of the obstacle is assigned
to a component of the set OF. That is, the baseline B,
of an obstacle can be categorized by the following
rule:

assign B, to [0". if LI(D(B))<0; (19)

O*, if LI(D(B,))> 0.

where D(B,) represents the mean of the baseline B, of
the obstacle.

In the following, we state the proposed method
for generating two sets P“ and P® of patterns to
represent the left-hand side and the right-hand side
of the person position, respectively. The scheme
makes the decision boundary pass through the
person’s position so that the collision-free path can
be used as a navigation path in person following. As
shown in Fig. 7, the person’s position P is taken to

be the mean of the baseline of the person. Each of
the two generated pattern sets P- and P* are designed
to be composed of a series of points that are located
on the left-hand or the right-hand sides, respectively,
of the position P. The distance between the pattern
set P* and the position P, and the pattern set PX and
the position P are both 30cm. The length of P* or P*
1s also 30cm.

Besides the pattern sets Of, Of, P* and P*, as
shown in Fig. 7, we regard the points of the
projection of the left-hand and the right-hand sides
of the vehicle body in the x-y )E)lane of the VCS as
two sets of patterns V- and V¥, respectively. This
scheme makes the collision-free path to go through
the origin of the VCS, i.e., to go through the middle
point between the two front wheels of the vehicle.

Now, we describe how to associate separately
each of the pattern sets ¥* and ¥* with the person
pattern sets P- and P?, and the obstacle pattern sets
O" and O® for finding the collision-free path. The
scheme for categorizing the six kinds of patterns O,
OF, Pt, PRVt and V¥ into two groups L and R is
based on the following rule:

L=0"uVtuUPh, (20)
and
R=0%uV*uP” (21)

More specifically, the left vehicle pattern set
V' is associated with the left person pattern set P
and the obstacle pattern set O°. On the other hand,
the right vehicle pattern set V* is associated with the
right person pattern set P® and the obstacle pattern
set OF. In this way, the two groups L and R are
obtained, which are then used as the input to the
classification designed by the way described in the
next section. '

B. Quadratic Classifier for Path Generation

From the result of the pattern generation
processes to be described in Sections 3.A, we can
obtain two pattern groups L and R, each of which
includes patterns representing obstacles, corridor
walls on one side of the vehicle, the two sides of the
vehicle body, and that of the person. In this study,
the quadratic classifier is used to generate a
quadratic decision boundary A(X) between L and R.
The decision boundary is taken as a collision-free
path that the ALV follows to achieve safe navigation
in person following. Since the generated path is
limited to go through the middle point between the
two front wheels of the vehicle (i.e., through the
origin of the VCS) in this study, as shown in Fig. 8,
the decision boundary A(X) will approach the
person’s location without hitting the obstacles. The
vehicle can thus safely follow the person by
navigation along the derived collision-free path 4(X).
The details for generating the decision boundary are
described as follows.

As shown in Fig. 8, let O* and O be two groups
of patterns representing obstacles, P* and P* be
those representing the followed person, and V* and
V® be those representing the vehicle body sides. In
this study, O*, P* and V" belong to the group L, and
OFf, P* and V* belong to the group R. Each pattern in
the pattern group consists of x and y values in the

232



VCS. We denote the coordinates of the ith pattern in
L as [x,‘ yf]’and those of the jth pattern in R as

[ AT

decision boundary A(X)
PL R
OL\ \OR

vt VR
Fig. 8. A two-dimensional decision boundary, A(X),
passing through the origin of the VCS (i.e.,
through the middle point of the two vehicle
wheels) and the person’s location, is found by
the quadratic classifier.

According to the theory of pattern recognition
[13], we can find a quadratic decision boundary
between the patterns of two classes to form a
quadratic classifier. A general representation of the
quadratic classifier is written as follows:

HX)=X"0X+V X +v,,

Q=[Q11 q12:|, V={V1:|, (22)
D I Y

‘where v, is a constant, and the vector X=|x xz]’

specifies a pattern of L or R. If A(X) < 0, it means
that X belongs to L; if A(X) > 0, it means that X
belongs to R.

Since the collision-free path is limited to go
through the middle point between the two front
wheels of the vehicle, i.e., the origin of the VCS, the
value of v, in (22) can be set as zero. The formula of
the decision boundary A(X) in Equation (22) can be
represented as follows [5]:

2 2 2
%ﬂ:xﬂpwvﬂx=zz%4x+zwn
=1

)% ly,+2vt =ATy+vTx (23)
Z[a’x a ay v Vzl)’l Y2 Y3 ox xz]T.
where
A:[al a, a:]r=[‘I11 92 t 4y ‘122]’ X=[xl xz]T’

and }’:[)/l Y: ,V)]T= [’rl: XX, Xz:JT'

We can use the technique for designing a linear
classifier to find the coefficients (@, , @&, , @3, v,, v,)
as follows.

Let M:[y" X"]": Iy, The
values of matrix M come from those of the
patterns of L and R. Matrix M for L and R will be
denoted as M* and M®, respectively. Substitute the
values of x, and x, in matrix M by those of the ith
point of L, x =x/ and x,=y', and denote the
resulting matrix M by M. Similarly, substitute the
values of x, and x, in matrix M by those of the ith
point of R, x =x® and x,=)f, and denote the
resulting matrix M by M.

Vi % x:] &£

Accordingly, the nonlinear solutions of the
coefficients for the quadratic classifier whose input
design patterns come from the points of L and R are
equal to the linear solutions of the coefficients for
the linear classifier whose input design patterns
come from the points of M* and M®. So, the five
coefficients in Equation (23) can be solved [5] and
the result is represented as follows:

[al a, a; Vv V:]r=l:lKL+lKn:| (DR_D[.)'

22 (24)

where D, and D;, and K, and K, are the means and
variances of M" and M*, respectlvely, and are
computed as follows:

LSS 4 () 4 o)
L3l o (a4 AT

n
(M.L-DL) T kgL (MR~DR)-(M‘-R~DR)T.
izl

(25)
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and m and n are the numbers of points of L and R,
respectively.

By substituting Equation (25) into (24), the five
coefficients of A(X) in Equation (23) are obtained so
that the quadratic decision boundary A(X) is
generated. The ALV can navigate along the derived
collision-free path A(X) to achieve safe navigation
by person following. ;

4. Experimental Results

The proposed method has been implemented on
a real ALV to follow a walking person, as shown in
Fig. 9. The ALV, as shown in Fig. 10, is four-
wheeled with two motors controlling the front and
rear wheels, respectively. The width and the length
of the ALV are 40 cm and 120 cm, respectively. The
length between the front wheels and the rear wheels
of the ALV is 82 cm. The structure of the vehicle
system is introduced in detail in [5]. In our
experiments, images taken by the image frame
grabber are 512 x 486 pixels in resolution. The
velocity of the vehicle is 31.75 cm per second that is
equivalent to 1.14 km per hour. This velocity is
acceptable in many applications in indoor
environments. In addition, the vehicle modifies the
turning angle every 1.5 seconds. Because the speed
of the person has to be smaller than that of the ALV,
the maximum speed of the person is about 31.75
cm/sec. Besides, in the experiment, one situation
that the followed person does not appear in the
captured image may cause the instability of the ALV.
This case is discussed and solved using a proposed
method in [14].

An example of the captured image is shown in
Fig. 11, in which the detected baselines are drawn as
white lines. Figures 12 through 16 show some
experimental results in a real indoor corridor
environment. Each of Figs. 12 and 13 include two
parts (a) and (b). Part (a) is a real image captured by
a wide-angle camera. The white lines in (a) are
composed of the patterns of the detected obstacles.
Part (b) shows the x-y plane of the VCS. All the
patterns representing the obstacles, the followed
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person, and the vehicle in the VCS are shown as
white points. The generated collision-free path that
goes through the origin of the VCS and the person
position is also shown in (b). According to the
generated path, a modification of the turning angle
can be computed using the path following method
described in [5].

As shown in Fig. 12, two walls and the
followed person are detected and the collision-free
path is correctly generated. As shown in Fig. 13, the
generated collision-free goes through the way
between the wall and the obstacle. If the distance
between the followed person and obstacles i1s smaller
than a width of the vehicle body, the person patterns
are not treated as input to generate a collision-free
path. As shown in Fig. 5.14, since the distance
between the followed person and a wall is smaller
than the width of the vehicle body, the generated
collision-free path does not pass through the location
of the followed person so that the vehicle will avoid
collision with the wall when it navigates along the
path. An experimental result showing the ALV
successively following a walking person without
collision in the corridor is shown in Fig. 15. The
sequence of the captured images is shown in Fig.
15(a). The corresponding x-y planes of the VCS with
respect to the captured images are illustrated in Fig.
15(b). Fig. 16 includes another sequence of
experimental images showing the ALV following a
person in the corridor.

Fig. 9. The vehicle is guided automatically to follow
a person who ‘walks in front of the vehicle.

~%)

Fig. 10. The prototype Fig. 11. An example of
ALV used in this baseline detection
study. results.

(a) (b)
An experimental result of the generated
collision-free path. (a) Detection result of walls
and the followed person. (b) Top view of
obstacles and a generated path.

Fig. 12.

(2) (b)

Fig. 13. Another experimental result of generated
collision-free path. (a) Detection result of a
wall, the followed person, and an obstacle on
the ground of the corridor. (b) Top view of
obstacles and a generated path.

(a) (b)

Fig. 14. An experimental result shows that the
distance between the followed person and a
wall is smaller than the width of the vehicle
body. (a) Detection result of walls and the

followed person. (b) Top view of obstacles and

a generated path.

b

Fig. 15. A sequence of e>(<p)erimental images in the
corridor of a real indoor environment. (a)
Captured images. (b) Top views of obstacles
and generated collision-free paths with
respect to the captured images.

[l §
y o

L

Fig. 16. A sequence of experimental images in the
corridor of a real indoor environment.

5. Conclusions

In this study, an obstacle avoidance method for
use in person following for vision-based ALV
guidance has been proposed. The approach is based
on the use of vehicle location estimation and the
quadratic pattern classifier, and enables the ALV to
follow safely a walking person through corridor
environments with obstacles by navigating along a
derived collision-free path. In this approach, the
estimated translation of the vehicle location from the
previous sampling intant to the current one is used to
predict the person location at the current sampling
instant. The object closest to the predicted person
location is regarded as the followed person and the
remaining objects are regarded as obstacles. After
obtaining the person's location from extracted
objects by the proposed person detection method, a
collision-free path can be generated by a path
generation method. The navigation path is generated
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from a quadratic classifier that uses the vehicle and
all of the objects in the image as input patterns. All
patterns are categorized into two classes to be the
input to the classifier using a pattern generation
method. The collision-free navigation path is
designed for ALV guidance in such a way that the
ALV not only can keep following the person but also
can avoid collision with nearby obstacles. This
approach has been implemented on a real ALV.
Successful and safe navigation sessions confirm the
feasibility of the approach.
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