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Abstract

A vision-based approach to obstacle avoidance for
autonomous land vehicle (ALV) navigation in indoor
environments is proposed. The approach is based on the use of a
pattern recognition scheme. the quadratic classifier, to find
collision-free paths in unknown indoor corridor environments.
Obstacles treated in this study include the walls of the corridor
and the objects that appear in the way of ALV navigation in the
corridor. Detected obstacles as well as the two sides of the ALV
body are considered as patterns. A systematic method for
separating these patterns into two classes is proposed. The two
pattern classes are used as the input data to design a quadratic
classifier. Finally, the two-dimensional decision boundary of the
classifier. which goes through the middle point between the two
front vehicle wheels. is taken as a local collision-free path. This
approach is implemented on a real ALV and successful
navigations confirm the feasibility of the approach.

I.  INTRODUCTION

A. Survey of Related Studies

In recent years, autonomous land vehicles (ALV’s) have
been studied intensively. How to guide the ALV to navigate in a
certain environment and avoid obstacles in the mean time is the
major goal. In the study of obstacle avoidance, two cases can be
identified, namely, navigation in a known environment or in an
unknown one. In a known environment, the vehicle usually
generates a collision-free path in an off-line phase using the
map of an environment knowledge base and a certain scheme of
path planning, such as the A* and the breadth-first search
algorithms in Hyland and Fox{l], the dynamic programming
algorithm in Cesarone and Eman[2], the use of visibility graphs
in Acosta and Moras(3], and the potential field method in Kim
and Khosla[4].” Alternatively, some on-line methods have also
been proposed using the informatjon of the global environment
to generate a collision-free path in real time, such as the uses of
the cubic function in Onoguchi et al.[5], the B-spline curves in
Yang[6], and the least-mean-square-error classification in Wang
and Tsai[7].

In an unknown environment, the vehicle can only use
locally observed features to generate a collision-free path. Some
approaches to achieving the goal of safe navigation in an
unknown environment have been proposed, such as the method
of combining certainty grids and potential fields in Borenstein
and Koren[8], and the use of the Bug2 and Tarry algorithms in
Skewis and Lumelsky[9]. Besides, Bauer et al.[10] used the
properties of geometry and kinematics for wheel control in an
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unknown environment.

In this study, an algorithm using the quadratic classifierin
pattern recognition[11] is proposed for collision avoidance for
ALV navigation in an unknown indoor environment. This
algorithm employs real-time operations to find safe collision-
free paths. A local navigation path is calculated for each
navigation cycle. A difference from the other proposed methods
is that the path is a two-dimensional quadratic decision
boundary of the classifier by which the vehicle can be guided
smoothly. The boundary is generated by treating all obstacles
and the two sides of the vehicle body as patterns. A systematic
method is proposed for separating the patterns into two classes
for use as the design sample input for the classifier.

B. Overview of Proposed Approach
The first step of the proposed obstacle avoidance

approach for ALV navigation in a corridor environment is to
analyze the image captured by a monocular camera to find out
obstacles. Second, a collision-free path is generated by the
distribution of obstacles. Finally, a precise turning angle is
obtained for ALV wheel control at the current position using the
collision-free path. These steps are executed cyclically. The
system flowchart is shown in Fig. 1. The details are described as
follows.

Step I. Image acquirement: The front view of the vehicle is
captured by a wide-angle (8mm) camera mounted on the
vehicle. The image is used to extract relevant information
of the unknown environment.

Step 2. Obstacle detection: Image points that compose the
baselines of the obstacles. including the walls of the
corridor and the objects that appear in the way of ALV
navigation in the corridor, are detected using an obstacle
detection algorithm introduced in Section V.

Step 3. Coordinate transformation: The coordinates of the
image points obtained in Step 2 in the image coordinate
system(ICS) are transformed into the space coordinatesin
the vehicle coordinate system(VCS) using some formulas
introduced in Section II-D. These space coordinates are
all on the x-y plane in the VCS.

Step 4. Pattern generation: The patterns representing the
obstacles and the two sides of the vehicle body are
clustered into two classes using a pattern generation
algorithm introduced in Section H-B. In additional to the
two classes of patterns, some series of additional points
are included as patterns using a pattern addition algorithm
described in Section I1-C. The additional patterns are
generated according to the locations of obstacle pattems
and the vehicle width in this study. Besides, whether there
exists enough route space to allow the vehicle to g
through or not is also checked. If yes, continue; otherwise,
stop the vehicle.

Step S. Collision-free path calculation: A quadratic collision-
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free path is generated using some formulas derived in

Section 1I-A. The path is the decision boundary of the

quadratic classifier designed with input patterns coming

from Step 4.

Step 6. Wheel control: Proper control of the ALV front wheels
is executed according to the tuming angle computed with
some formulas derived in Section IIl based on the
collision-free path generated in Step 5. In this way, the
vehicle keeps its trajectory on a collision-free path
continually.

Step 7. Repeat Step 1 through Step 6 until there is no path way
to go through.

In the processes described above, the proposed system
does not use any environment knowledge set up in advance and
the guidance of the ALV is based on local visual information.
At least three advantages are found in this approach. Firsf, the
wrve properties of the quadratic path are used to match the
kinematic trajectory of the vehicle. Second, by following the
quadratic path it is smoother to go through unknown
mvironments with obstacles than other approaches using linear
paths. Third, the current location of the vehicle is taken into
tonsideration while generating the quadratic collision-free path.

In the remainder of this study, the proposed ALV
navigation method is described in Section Il, including a review
of the quadratic classifier in pattern recognition, the use of the
proposed approach to find collision-free paths, the generation
ind addition of patterns, and the coordinate transformations of
patterns. The vehicle wheel control according to the turning
igle for path following is described in Section III. The image
processing techniques employed for obstacle detection are
described in Section IV. Experimental results are found in
Section V. And conclusions are given in Section VI.

II. PROPOSED ALV NAVIGATION METHOD

A Principle of Using Quadratic Classifier for Finding ALV
Navigation Paths for Obstacle Avoidance
From the result of the pattern generation processes
fescribed in Sections 1I-B and II-C, we obtain two pattern
goups, L and R, each of which includes patterns representing
tbstacles, corridor walls on one side of the vehicle, and the two
sides of the vehicle body. We use the quadratic classifier to

letermine a quadratic decision boundary, A(X), between L and R.

The decision boundary is then taken as a collision-free path
which the ALV follows to achieve safe navigation. The path
does not go through the area that consists of the patterns of L or
R, and is constrained to go through the middle point between
the two front wheels of the vehicle in this study. See Fig. 2. for
n illustration, where O and O® are patterns representing
tbstacles, and I* and W are patterns representing the vehicle
body sides. Each pattern of the two pattern groups consist of x
ind y values in the vehicle coordinate system(VCS). We denote
the coordinates of the ith pattern in L as [x;" y;*]" and those of
the jth pattern in R as [x;* y;*]".

According to the theory of pattern recognition, we can
find a quadratic decision boundary between the patterns of two
tlasses to form a quadratic classifier. A general representation
of the quadratic classifier is as follows:

RX)=XTO0X + VT X « v,

o[l -l v

L

where v, is a constant, and the vector X=[x, x,]" specifies a
pattern of L or R. If A(X)<O0, it means that X belongs to L; if
h(X)>0, it means that X belongs to R; and if h(X)=0, it means
that X falls on the decision boundary.

In this study, we project patterns from the 3-D space onto
a plane represented by the corridor floor, so the dimension of
patterns are reduced from three to two. Besides, since it is
constrained that the collision-free path goes through the middle
point between the two front wheels of the vehicle, i.e., the
origin of the VCS, the value of v, in (1) can be set to zero. Now
(1) can be represented as follows:
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where A=[a, a, &;]"=[q, qi:+qx ¢2]"s X=[x, x;]", and Y=[y, y,
ysI™=[x X 67

Note that in (2), the originally quadratic equation is
simplitied to a linear one, so we can use the design technique
for linear classifiers to find the coefficients (a,, a,, a;, v;, v»).

Let M=[Y" X""=[y, y, y; ¥, x]". The values of matrix M
come from those of the patterns of L and R. Matrix M for L and
R will be denoted as M* and M®, respectively. If the values of x,
and x, in matrix M are substituted by those of the ith point of L,
x,=x" and x,=y", we denote the resulting matrix M by M\.
Similarly, if the values of x, and x, in matrix M are substituted
by those of the ith point of R, x,=x* and x,=)}, we denote the
resulting matrix M by M}

Accordingly, the nonlinear solutions of the coefficients
for the quadratic classifier whose input design patterns come
from the points of L and R are equal to the linear solutions of
the coefficients for the linear classifier whose input design
patterns come from the points of M and M®. So, the five
coefficients of (2) can be solved and the result is as follows[11]:

[y @ a3 v "2]T=BKL+‘;"RII(’&-1U G)

where D, and Dy, and K| and Kj are the means and variances of
M- and M®, respectively, computed as follows:
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and m and n are the numbers of points of L and R, respectively.
By Equations (3) and (4), the five coefficients of (2) can
be obtained and a quadratic decision boundary, A(X), in (2) is
generated. This decision boundary is a collision-free path which
the ALV can follow, as shown in Fig. 2. In Section II-B, pattern
generation and pattern clustering for generating collision-free
paths are described.
B. Pattern Generation for Quadratic Classifier Design
After performing the pattern coordinate transformations
described in Section 1I-D, we can get the space coordinates, (x,
Yy, z), of each pattern. Because the z coordinates are all zero, we
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can project the patterns onto the x-y plane without changing the
values of the x and y coordinates. Hence in the following
analysis, only the x and y values instead of all x, y, and z values
are used, i.e., the three-dimensional coordinates in the space are
treated as two-dimensional coordinates on a plane.

Before analyzing the patterns, we first introduce the
definition of the minimum distance of the two clusters of points.
If there are two clusters, U and V, of variant points, U, and V),
where 1<i<m; 1<j<n; m is the number of points in cluster U,
and n is the number of points in cluster V, let D(U;, ;) denote
the distance between any point U; in U and any point ¥} in V.
The minimum distance between U and V, denoted as Dy, is
defined to be the minimum of all D(U, V) values, ie.,
D =minD(U, V;). The value D, will be used to determine the
width of the corridor space through which the vehicle passes
between the two clusters U and ¥ of obstacle points.

In this study, obstacles are all assumed to lie on the
ground, so there are intersections between the surfaces of
obstacles and the ground, which are called baselines in this
study. All patterns detected by the techniques described in
Section IV are considered to be the baselines of certain
obstacles, so we will now analyze the types of the distributions
of the obstacle baselines instead of the patterns. The purpose is
to group all baselines into three sets, O~, O%, and O® for use in
classifier design where the components of O and O® represent
the baselines which are located on the left and the right sides of
the y axis, respectively, and the components of O° represent the
baselines which lie across the y axis in the VCS (see Fig. 3).
And this is accomplished in this study by the following rule:

assign B, to
0", if STARTX(B,)< 0 and ENDX(B,) < 0; 3)
0¢, if STARTX(B,)< 0 and ENDX(B,)> 0,
O*, if STARTX(B,)> 0 and ENDX(B,) > 0,

where B, specifies a baseline, and STARTX(B;) and ENDX(B,)
specify the values of the x coordinates of the starting and
ending points, respectively, of B,.

On the other hand, as shown in Fig. 3, we also regard the
vehicle as two sets of patterns, I and W*, representing the
points of the projections of the left and right sides of the vehicle,
respectively, in the x-y plane of the VCS. And we want to
associate separately each of these two sets of patterns, V* and I*
with one of the sets O", O, and O* for finding the collision-free
path. A scheme for this purpose proposed in the following
considers the location of the vehicle and enforces the collision-
free path to go through the origin of the VCS, i.e., to go through
the middle point between the two front wheels of the vehicle.
The scheme is to separate the five kinds of patterns, O*, O, OX,
W, and &, into two groups, L and R, by the following rule:

’

sl = LG Ot G R=rROORORC . Wi
0C . it (0t CoR < ¢ and sLOPEOC ) > o)
e ort0f =4 ang 0L w4 and Dy 0> Wy)
or0F e gand 0L e and D | <D g 00
¢ . otherwise . - (6)
0C . it L ooF < gand sLorEO )<y

L R
,‘(‘ . or (0" =¢ and OF = ¢ and D()R_()(' >Wy)

R L
or(0" =¢ and O" = ¢ and DOL.U(' > DOR,(I“ )

¢ . otherwise .

where the SLOPE(O°) means the slope of the baseline OF, the

value W, means the width of the vehicle, the value Dg-
means the minimum distance between O' and OF, and the value
Dg*,o¢  means the minimum distance between Of and OF. The
set L is the union of V*, O, and LS, and the set R is the union of
IR OR, and RC. The idea behind the above rule is explained in
the following.

According to the existences of the three kinds of baselines,
0", OF, and Of, denoted as N, NC, and MR, we get eight
different kinds of their combinations, each denoted by (M, N,
NR), where the definitions of N*, N€, and M are as follows:

r_Jo. it OR=g

5 Jo it =4 o foifo =g p
N _[ # _{ |, it oR=p

I, if Ot=g, 1. if OC=g,

In grouping the three kinds of baselines and the two kinds of
vehicle patterns into two sets L and R, all possible merges of
eight kinds of combinations of the baselines with the two kinds
of vehicle patterns need be considered. The following are the
descriptions of all of the different situations:

1. (0, 0, 0): O, OF, and O® are all nonexistent, so set L=/* and
R=VX.

2.(0, 0, 1): Only O® exists, so set L=F* and R=I* U OR

3. (1,0, 0): Only O" exists, so set L=V O" and R=IR.

4. (0, 1, 0): Only OF exists, so we check the slope of OF. Ifitis
larger than zero, then set L= O and R=W* © otherwise,
set L=}* and R=V® U OF. This enforces the vehicle to pas
the obstacle specified by O from the right-hand side or the
left-hand side of OF, considering the slope of O° (see Fig
4).

5.(1, 0, 1): Only OF is nonexistent, so we calculate the space
width between O" and OR. If Dt o* <W,, with ¥, being the
width of the vehicle, then stop the vehicle; otherwise, st
L=V*U O" and R=V* U OR. This enforces the vehicle to g
through the space between O" and O® (see Fig. 5).

6. (0, 1, 1) : Only O" is nonexistent, so we check the space
width between O and O® to see whether it is larger than the
width of the vehicle or not. If DS,k >H,, then set L=y
O and R=W* U O®; otherwise, set L=i* and R=W* U (Fy
OR. This enforces the vehicle to pass the wider corridor
space, considering the space width between O° and O® (s
Fig. 6).

7. (1, 1, 0) : Only O® is nonexistent, so we check the spact
width between O" and OF to see whether it is larger than the
width of the vehicle or not. If Dgt,,¢ >H,, then set L=ty
O" and R=* U OF; otherwise, set L=* U O U O ad
R=V®_ This enforces the vehicle to pass the wider corridor
space, considering the space width between O" and O° (se¢
Fig. 7).

8. (1, 1, 1) : All of OY, OF, and OR exist, so we calculate the
space width between O" and OF, and that between O° and
O in order to find the wider corridor space to go through. I
max(Dqg",o, Do<,0")<H\,, then stop the vehicle; otherwise, if
Dqtof > DoS\o, then set L=P* U O and R=1* U O°u O&if
Dgbof € DoS,oh, then set L=0 O U O and R=FR U}
This enforces the vehicle to go through the space between
0" and OF, or between O° and O® (see Fig. 8).

The above analysis is concluded by Rule (6). The spae
between the two groups, L and R, is guaranteed to be wid
enough to allow the vehicle goes through. L and R are used &
part of the input for designing the quadratic classifier described
in Section II-A. In addition to L and R, some additional pattems
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generated using a pattern addition algorithm described in

Section [I-C next constitute the remaining part of the input for

designing the quadratic classifier.

C. Addition of Patterns for Creating Safe Distance between
Obstacles and ALV Navigation Paths

Because the vehicle has width in real implementation and
the collision-free path generated is enforced in this study to go
through the middle point of the two font wheels of the vehicle,
it is found necessary to create some artificial points as
additional patterns for designing the classifier in generating
collision-free paths. To illustrate this, check the two different
situations, one without and the other with a series of additional
points, S, as shown in Fig. 9. In Fig. 9 (a), although a correct
path is generated, the space specified by the width ¥ between
the path and the obstacle O is smaller than half of the vehicle
body width, W, / 2, so that the vehicle cannot pass the object
without collision. On the contrary, in Fig. 9 (b) due to the
addition of the series of dotted points, S, as extra patterns,
which is parallel to the obstacle O° with a distance of W, / 2,
the generated path will allow sufficient space (with a distance
large than W, / 2 to OF) for the ALV to pass the obstacle O°
without collision. In short, the additional point series works to
keep a safe distance between obstacles and the collision-free
path so that the generated path guarantees that no collision will
occur.

Hence in this study, in addition to the image points of the
detected obstacles and the two sides of the vehicle body, a
series of additional points at a distance of ¥, / 2 to the obstacles
are also included as patterns. According to the three kinds of
baselines, 0%, OF, and OR, three kinds of series of additional
points, S%, S, and S*, are generated, respectively. As shown in
Fig. 10, the additional points S* are generated in such a way that
for each point P in O, there is a corresponding point O in S*
with Q being on the right-hand side of P at a distance of W, /2.
S%is generated similarly except each point in S® is put to the left
of its corresponding one in O%. As shown in Fig. 11, S€ is also
generated similarly except that each point in SC is put at the
lower side of its corresponding one in O°. Additionally, S*, S,
and S* are assigned to be in the same classes (L or R) as O, O,
and O, respectively, so Rule (6) for generating L and R should
now be modified as follows:

set L=LuS*uUl®, R=R US*URS,
with

L*=5%and R*=¢
or L°=¢ and R®=5°

if 0%el;
if 0° eR.

where L’ and R” are the L and R in (6), respectively.
D. Pattern Coordinate Transformations

In this study, the ALV navigation environment is
described by the following three coordinate systems, as shown

inFig. 12.

1. The image coordinate system (ICS): denoted as u-w. The
origin 1 is the image plane center and the u-w plane
coincides with the image plane. Any point in the image is
specified by the coordinates (u, w).

2. The camera coordinate system (CCS): denoted as U-V-W.
Every camera has a camera coordinate system and its origin
C is attached to its lens center. The V-axis is the optical axis
and the U-W plane is the same as that of the ICS. Any point
related to the origin C in the space is specified by the

coordinates (U, V, W).

3. The vehicle coordinate system (VCS): denoted as x-y-z. The
origin V is at the middle point of the line segment which
connects the two contact points of the two front wheels of
the vehicle with the ground. The x-axis and y-axis are on the
ground and parallel to the short side and the long side of the
vehicle body, respectively. The z-axis is vertical to the
ground. Any point related to the origin V in the space is
specified by the coordinates (x, y, z).

The transformations between the ICS, CCS and VCS are
described as follows (see Fig. 13). Assume that any point P in
the image plane has the CCS coordinates (u,, -f, w,) where (u,,
w,) specify the coordinates in the ICS and f is the focus length.

We get the VCS coordinates (x,, y,, z,) of point P in the
image[12] as

x, =u,(cosGcosy +sinOsingsiny)+ f(sinfcos g) +
w,(sin@sin g cos y + cosfcosy) +x,

¥y = u,(sin@cosy +cosOsin g siny) - f(cosfcos g)-
w,.(cos@singcosy +sin@siny)+ y,

=, = u,(cosOsiny) - f sing+w,(cos@cosy)+z,

where (x4, 4 z) are the VCS coordinates specifying the
translation vector from the origin of the VCS to the origin of the
CCS, 6 is the pan angle, ¢ the tilt angle, and ¥ the swing
angle, of the camera with respect to the VCS. In addition, the
equation of a line LP, which passes the lens center and P, is

x—xd - )’—yd _ :_:d -k (7)
*P~Xd YP~Ya ‘P4

As shown in Fig. 13, let point P be the intersection point
of the plane z = 4 and the line LP. By substituting z = # into
Equation (7), the desired VCS coordinates (x5 Vs 2, ) Of point
p’ can be solved to be

®)

In this study, the origin V of the VCS is on the ground, so
the plane z = 0 is on the ground. All obstacle points on the
ground possess the property 4 = 0, so the coordinates of such
points in the VCS detected in Section IV can be obtained by
Formula (8) with A= 0.

III. PATH FOLLOWING

In Section II, collision-free paths, A(X), for obstacle
avoidance are generated to be the decision boundary of the
quadratic classifier. When the vehicle navigates by following
the quadratic path, A(X), it can pass the obstacles safely. In this
section, we describe a method proposed in this study for
generating an optimal turning angle by which the vehicle can
control the wheels to follow on the quadratic path, A(X), in
every navigation cycle.

Before investigating the computation of the turning angle
for the wheels, the kinematic trajectory of the vehicle is
introduced first. If the behavior model of the vehicle is
understood, the location at which the vehicle arrives can be
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estimated. As shown in Fig. 14, the vehicle moves a distance S
from location A to location B by turning an angle of &. We
assume that the speed, V, and the navigation time, 7, of the
vehicle are both known. So, the navigation distance S is a
constant computed by

S=IT.

The translation specified by the values m and / can be acquired
by the following equations[13]:

m= Pcosu, I=Psinu, P=RyJ2l-cosr).

d T ©
:m_ u=-2——5—5, r=

where R is the rotation radius, d is the distance between the
front wheels and the rear wheels, r and P are the corresponding
angle and secant line of S, respectively, and & is the turning
angle of the front wheels.

According to Formula (9), the translation (m, /) of the
next location with respective to the current one is computed as
follows:

m=

s ITsi
2(1 - cos—‘ L :n 0) cos(l— 5= Tsin 5),

sind 2 2d
e .d 2(]_coslTsm5) sin(f——&— PTsmé)
siné d b 2d

So, m and [/ are determined by the vehicle length d, the vehicle
speed V, the navigation time 7, and the turning angle & of the
front wheels. In this study, the length and speed of the vehicle
are constants, and the navigation time set as the interval
between the issues of two system commands is also a constant.
So, the turning angle & determines the values of m and /
alone.

When the coordinates of location B are generated, the
system can estimate the possible locations at which the vehicle
arrives. We hope that the coordinates, m; and /, of the next
location of the vehicle are as close as to the collision-free path
h(X). Let the coordinates, m, and /;, specify the location closest
to the path h(X). The previous analysis tells that the best
coordinates, m, and /,, which keeps the vehicle away from
collision by following the collision-free path, can be obtained
by selecting a proper turning angle. The turning angle of the
vehicle is limited in this study to be within thirty degrees to the
left or right. It is computed as follows:

s e|-l?:)rf..,.nn||h('\v‘x= s e{-ﬂ...,}ﬂ]'xﬁgxi <17 (10)
> eI_.w““M|a,m,1 vagmily +ayl? + vy« vty]
in which X, = [m, /]" and |A(X))| specifies the absolute value of
the sum of X;"Q.X; and VX,

According to the property of the quadratic classifier, if
h(X) <0, then X belongs to the left-hand side of A(X); if A(X) >
0, then X belongs to the right-hand side of A(X); and if A(X) = 0,
then X falls on A(X). The closer the location specified by the
coordinates (m;, /) to the path A(X), the smaller the absolute
value of h(X). Hence, m, and /, make the absolute value of A(X)
minimum.

After getting the turning angle & by Equation (10), the
vehicle immediately controls the front wheels to turm &
degrees and keeps moving forward until the next control

command is received. It is in this way that the vehicle keeps on
the collision-free path to achieve collision avoidance and
navigation in real time.

IV. OBSTACLE DETECTION

In this study, obstacles are assumed to lie on the ground
and represented by baselines. Obstacles that have to be detected
include the walls of the corridor and the objects that appear in
the way of ALV navigation in the corridor. By the result of
obstacle detection, the space coordinates of obstacles are
computed and the vehicle uses this information to find a saf¢
collision-free path. We use only a monocular camera to detect
obstacles in the corridor for real-time computation. Additionally,
the properties of baselines, which are the intersections of
obstacles and the ground, are used to compute the three
dimensional coordinates of the obstacles because all the points
on the baselines have the property that the heights are zero.

In this section, an obstacle detection method is roposed.
The points that compose the baselines of obstacles are detected
by local thresholding since the gray levels of the obstacles and
those of the ground are generally different. Each baseline
consists of a cluster of points. After baseline points are detected,
region growing is used to collect the baselines. The details of
the obstacle detection method are described as follows.

Step 1. Determining a threshold value and performing local
thresholding. First, compute the average gray value, denoted
as GAVG, of the image. The purpose of computing the
GAVG first is to understand the lighting of the environment
and give a reference in determining the threshold value, V.
This makes the detection of obstacles more stable. When the
GAVG value is high, it means that the environment is bright
and the contrast is strong, so a lower TV value is set up, and
vice versa. More specifically, we set TV as TV = TH - GAVS,
where TH is a preselected constant value obtained from
experimental experience.

Step 2. Determining the start and end columns for vertical scans
of the image. The purpose is to detect the left and righ
corridor boundary in the bottom line of the image. The
values are assigned to the initial and end values of Step 3,
We scan the bottom line in the image from the center to the
left and to the right bounds, called the left scan line and the
right one, respectively. See Fig. 15 for an illustration. Let
P\, be the first point in the left scan line such that |gi(/, 0)-
gl(l-1, 0)] > TV, where gl(i, /) means the gray level of the
image point at (i, j). Let P, be the first point in the righ
scan line such that |g/(r, 0) - gl(r+1, 0)] > TF. Obstack
detection is performed on the image area between the ff
and the rth columns.

Step 3. Detecting the baselines of the obstacles. The image is
vertically scanned in a way described by the following steps
from the /th column to the rth column.

Step 3.1 Scan the ith vertical line of the image from botton
to top. Let P;; be the first point in the scan line such tha
1gl(i, j) - gl(d, j+1)| > TV. If this point is found, continue,
otherwise, go to Step 3.3.

Step 3.2 Region growing is performed to combine the
clusters of points that compose the baselines. The points
detected in Step 3.1 are merged with other points detected
in the previous cycles to form the desired baselines. The
criterion for merging a newly detected point wih
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previously detected points is to check if the new point is

within the 15x15 neighborhood of any previously detected

point. If the point is independent of others or if a group of
points is small in size to compose a baseline, the points are
treated as noise and discarded.

Step 3.3 Move the scan line to the (i+1)th column and go to

Step 3.1.

The above algorithm detects the intersection points of the
obstacles and the ground to form the baselines of the obstacles.
An example of results is shown in Fig. 16, in which the white
points are the detected points and the white lines consisting of
the white points are the resulting baselines of the obstacles.
Some other detected points on the ground which cannot
compose a baseline are treated as noise and are ignored.

V. EXPERIMENTAL RESULTS

The proposed method has been implemented on a real
ALV. Figures 17 through 19 show some experimental results in
a real indoor corridor environment. Every figure includes two
parts (a) and (b). Part (a) is a real image captured by a wide-
angle camera. The white points in (a) are the patterns of the
detected obstacles and the white lines consist of the patterns of
the obstacles. Part (b) shows the x-y plane of the VCS. All the
coordinates of the patterns of the obstacles and the vehicle in
the VCS are shown. Besides, the generated collision-free path
that goes through the origin of the VCS is also shown in (b).
Note that some quadratic paths have two parts (such as the two
curves of a hyperbola); only the ones going through the vehicle
are the desired ones. According to the generated path, a
modification of the turning angle is also computed, which is
described in the caption of (b).

Fig. 17. shows that the vehicle keeps moving forward
with a small left turn when left and right obstacles, O* and OF,
exist. Fig. 18 shows the case with O" only, in which the vehicle
urns the wheels to the right-hand side of O". Fig. 19 shows that
the vehicle passes the right-hand side instead of the left-hand
e of OF since the space width between O- and OF is too
narrow to allow the vehicle to go through.

The above cases and a lot of other experiments show that
this approach indeed can find out safe collision-free paths.
Additionally, in continuous navigations, this approach also
proved to be able to modify the turning angles of the vehicle
wheels in real time to achieve the purpose of obstacle avoidance.
An example of continuous navigations is shown in Fig. 20,
which is a top view of the experimental environment and the
ALV location in all the navigation cycles. The velocity of the
vehicle is 31.75 cm per second that is equivalent to 1.14 km per
hour. This velocity is acceptable in many application indoor
mvironments. In addition, the vehicle modifies the turning
igle every 1.5 seconds such that this approach can deal in
reasonable response time with common obstacles which might
tause collisions in indoor environments.

VI. CONCLUSIONS

In this study, a vision-based obstacle avoidance approach
for ALV navigation has been proposed. The vehicle can detect
tbstacles, including walls and objects in the way, in an
inknown indoor environment and safe collision-free paths can
be generated from quadratic classifier design in real time.
According to the collision-free path, the vehicle can modify the

turning angle of the wheels to achieve the purpose of collision
avoidance. Besides, a systematic method has been proposed for
generating input patterns for classifier design to compute safe
quadratic paths.

The use of quadratic paths instead of linear ones produces
more smoother paths and prevents dead-reckoning navigation to
increase the flexibility of ALV applications in unknown
complex environments with obstacles. Additionally, quadratic
paths also match the ALV trajectory better than linear ones. A
method for computing the optimal turning angle to avoid
collisions in real time has also been proposed. The proposed
approach has been implemented on a real ALV and a lot of
successful navigations confirm the feasibility of the approach.
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Fig. 1. System flowchart.
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Fig. 2. A two-dimensional decision boundary, A(X), passing
through the origin of the vehicle coordinate system (the
middle point between the two front wheels of the vehicle), is
found for the quadratic classifier.
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Fig. 3. Three kinds of obstacles, O%, OF, and O%, and two kinds
of vehicle patterns, ¥ and VX, in the vehicle coordinate
system (VCS).
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Fig. 4. Only OF exists. (a) The slope of OF is larger than zero, so
O° and W* are collected into the same group, and the vehicle
will pass from the right-hand side of O°. (b) The slope of O°
is less than zero, so O° and W are collected into the same
group, and the vehicle will pass from the left-hand side of
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Fig. 5. Only OF is nonexistent. When the space width between
O" and OF is larger than the width of the vehicle, W,, the

vehicle is enforced to go through the space between O" and
R
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Fig. 6. Only O" is nonexistent. (a) When the space width
between O and O® is larger than W,, the vehicle is enforced
to go through the space between O and O® which are not
collected into the same group. (b) When the space width
between O° and OR is less than W,, the vehicle is enforced
to pass from the left-hand sides of O° and O® which are
collected into the same group.
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Fig. 7. Only O® is nonexistent. (a) When the space widh
between O" and OF is larger than W,, the vehicle is enforced
to go through the space between O“ and OF which are not
collected into the same group. (b) When the space width
between O' and OF is less than W,, the vehicle is enforced
to pass from the right-hand sides of O* and O which are
collected into the same group.
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Fig. 8. All OY, OF, and OF exist. (a) The space width between
O and O" is larger both than W, and than that between (f
and OF, so the vehicle is enforced to go through the space
between O and the group of O and OF. (b) The space
width between OF and O® is larger both than W, and than
that between O° and O%, so the vehicle is enforced to g
through the space between O® and the group of O and 0.
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Fig. 9. Two different situations without and with a series of
additional points. (a) If the distance, W, between obstacles
and the navigation path, A(X), is smaller than a half of the
width of the vehicle, W, / 2, the vehicle will collide with the
obstacles when it follows the path A(X). (b) Adding a series
of points guarantees that the distance, W, is larger than W,/
2, 50 no collision will occur when the vehicle follows the

path A(X).
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Fig. 10. Two series of additional points, S- and S¥, are included
as patterns before generating decision boundary, 4(X). Each
point in S* is put to the right-hand side of its corresponding
one in O" at a distance of W, / 2. Each point in S* is put to

the left-hand side of its corresponding one in Of at a
distance of ¥ /2.

(@ (b)

Fig. 11. The additional points S are generated in such a way
that for each point P in OF, there is a corresponding point Q
in S¢ with O being on the lower side of P at a distance of Iy,
/2. (a) Case 1: the slope of OF is larger than zero. (b) Case 2:
the slope of OF is less than zero.
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optical axis
Fig. 12. The three coordinate systems, including the image

coordinate system(ICS), the camera coordinate system(CCS)
and the vehicle coordinate system(VCS).

image plane |
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Fig. 13. lllustration of the coordinate transformations between

the camera coordinate system(CCS) and the vehicle
coordinate system(VCS).

!

Fig. 14. Analysis of the path, S, which the vehicle navigates
from location A to location B by turning an angle of & .
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Fig. 15. Determining the start and the end columns, using the

left scan line and the right scan one, respectively, for vertical
scans of the image.

Fig. 16. An example of obstacle detection results.

(b)

Fig. 17. Experimental result of generated collision-free path for
a case with left and right obstacles, O" and O. (a) Detection
result of left and right walls. (b) Top view of obstacles and
generated path. The turning angle is 2 degrees to the left.

/

/

(b)
Fig. 18. Experimental result of generated collision-free path for
a case with left obstacles, O". (a) Detection result of left wall.

(b) Top view of obstacles and generated path. The turning
angle is 9 degrees to the right.

Fig. 19. Experimental result of generated collision-free path for
a case with obstacles, O" and OF. (a) Detection result of left
wall and obstacle on the ground of the corridor. (b) Top

view of obstacles and generated path.The turning angle is 18
degrees to the right.

Fig. 20. A top view of the experimental indoor environment and
an ALV continuous navigation, in which each black circle
indicates the location of the vehicle in a navigation cycle .
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