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Abstract 
Unwarping an omnidirectional image into a 

perspective-view image is easy for the 
single-viewpoint (SVP) designed catadioptric 
omnidirectional camera. But misalignment between 
the components (such as the mirror and the lens) of 
this kind of camera leads to multiple viewpoints and 
distorts the unwarpped image if the SVP constraint 
is still assumed. We release the SVP constraint for 
unwarping images taken from an omnidirectional 
camera with a hyperbolic-shaped mirror (called a 
hypercatadioptric camera below) by using the 
internal calibration information to derive new image 
unwarping equations. It is found that by reducing the 
calibration parameters to fit the SVP constraint, the 
resulting unwarpped images are almost of no 
difference from that of the ideal SVP method. We 
have so extended the unwarping ability of the 
hypercatadioptric camera to tolerate camera 
integration errors, which is useful for many 
application purposes. 
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1. Introduction 

It is well known in computer vision that 
increasing the field of view (FOV) enhances the 
visual coverage, reduces dead corners, and saves the 
computation time of a vision system, especially in 
applications such as visual surveillance and robot 
navigation. 

There are many ways to design a camera system 
consisting of lens/mirrors and CCD sensors to 
increase the FOV for a vision system [1]. An 
extreme way to expand the FOV to the full 
hemisphere is to use a catadioptric system, which is 
an integration of a convex reflection mirror, an 
orthographic (or perspective) projection lens, and a 
CCD sensor chip. A popular name for this kind of 
design is omnidirectional camera. Depending on the 
design, the surface curve of the reflection mirror can 
be conical, spherical, parabolic, or hyperbolic, and 

the lens can be of the type of orthographic or 
perspective projection. To simplify the unwarping 
process of omnidirectional images to normal 
perspective ones, a catadioptric omnidirectional 
camera is usually designed to fit the 
“single-viewpoint” (or “single center-of-projection”) 
constraint. In the above mirror/lens combinations, 
only the combination of the parabolic mirror and the 
orthographic lens or that of the hyperbolic mirror 
and the perspective lens can fit the 
“single-viewpoint” constraint. If the single- 
viewpoint constraint is not met, the locus of 
viewpoints forms what is called a “caustic” curve [2], 
and in such a case, the unwarping work is very 
complicated. When the parabolic mirror is used, we 
call it a “paracatadioptric” camera, and when the 
hyperbolic mirror is used, we will call it a 
“hypercatadioptric” camera, following the idea of 
[7]. In this study, we deal with the image unwarping 
problem for the hypercatadioptric camera. 

In this paper, we use the internal calibrated 
parameters to derive the precise mapping equations 
for the hypercatadioptric camera, which is not a 
single-viewpoint system. Here, the internal 
calibrated parameters include the pose of the camera 
with respect to the mirror (also called mirror/camera 
misalignment, which includes center-to-center 
translation and plane-to-plane rotation) as well as the 
camera intrinsic parameters. 

The calibration method used here is Tsai’s 
single-view coplanar method [5], and the calibration 
pattern is a thin-ring with 16 black-bar-marks 
equally distributing over the ring border. The inner 
diameter of the ring is equal to the bottom diameter 
of the hyperbolic mirror. The calibration pattern is 
attached at the border of the mirror, where the marks 
are projected visually directly onto the image plane. 
After the calibration work, the basic optical 
reflection law as well as the co-planar constraints of 
the mirror surface normal, the incident ray, and the 
reflected ray are applied to derive a set of mapping 
equations between a pixel in the image coordinate 
system and a point in the world space. The calibrated 
camera parameters are used as known parameters in 
these derived mapping equations. Using the derived 
mapping equations, we can unwarp precisely an 
omnidirectional image taken by the 
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hypercatadioptric camera into an image from any 
perspective view (for example, from the top view or 
the side view). 

This paper deals with precise unwarping 
problems of the non-SVP designed hypercatadioptric 
camera. Our contribution is deriving a set of 
unwarping equations using the combination of a 
simple calibration method and the basic optical 
image-formation rules. These equations are general 
forms of image mapping between an image point 
and a world point for the hypercatadioptric camera. 
With these set of equations, unwarping omni-image 
of the hypercatadioptric camera to a 
perspective-view image is not confined to the SVP 
designed type only. 

The remainder of this paper is organized as 
follows. In Section 2, we review the basic concepts 
about single-viewpoint omnidirectional cameras and 
some previous works for omnidirectional camera 
calibration. The camera calibration method proposed 
in this paper is described in Section 3. In Section 4, 
the procedures of deriving the unwarping formulas 
using the calibrated data are described in detail. In 
Section 5, some experimental results with simulation 
data and real images are given. Finally, we make 
some conclusions in Section 6. 

 
2. Review of Previous Works 

For an ideal single-viewpoint omnidirectional 
camera using the parabolic mirror/orthographic lens 
combination (i.e., for a paracatadioptric camera), the 
relation between a point in space (xp, yp, zp) and its 
projected image point (xi, yi) on the image plane is as 
follows [1] (see Fig. 1 for the definitions of the 
symbols): 
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For an ideal single-viewpoint omnidirectional 
camera using the hyperbolic mirror/perspective lens 
combination (i.e., for a hypercatadioptric camera), 
the relation between a point in space (xp, yp, zp) and 
its projected image point (xi, yi) on the image plane 
is as follows [3, 4] (see Fig. 2 for the definitions of 
the symbols):  
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where 22 bac += . 
Equation (4) or (5) represents the mapping 
between a point (xi, yi) in the image plane and its 
corresponding world point (xp, yp, zp) under 
perfect single-viewpoint design and known 
system parameters. The known system 

parameters include the focal length of a parabolic 
mirror h/2 in Fig. 1 or the focal length f and the 
mirror curve parameters a, b and c in Fig. 2. In 
practical conditions, the point (xi, yi) may be 
shifted from the expected position caused by the 
lens distortion, and the mirror center may be 
misaligned to the center of the camera coordinate 
system. So, the finial position of the point (xi, yi) 
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Fig. 2 A hypercatadioptric camera 
with perspective projection. 

 

Fig. 1 A paracatadioptric camera 
with orthographic projection. 
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in the image coordinate system (which is stored 
at computer memory) is: 
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where 
22

ii yxr += , sx , sy are the scaling factors 

for the x and y directions when mapping from the 
camera coordinate to the image coordinate, (Cx , Cy) 
is the projected point of the mirror center on the 
image coordinate system, and κ1 and κ2 are the 
radial distortion factors of the lens [5, 6].  

In a conventional perspective camera system, 
which includes only a lens and a CCD sensor, the 
parameters in Equation (6) and the focal length f are 
called “intrinsic” parameters. The intrinsic 
parameters also exist in the omnidirectional camera 
system. To estimate the intrinsic parameters, the 
calibration procedure should be done before 
conducting accurate measurement or 3D 
reconstruction in a conventional perspective camera 
system or unwarping omnidirectional images into 
perspective-view images in a catadioptric 
omnidirectional camera system. In [7, 8], Geyer 
proposed closed-form solutions for the focal length, 
the image (mirror) center, and the aspect ratio (these 
are intrinsic parameters) to calibrate a 
paracatadioptric camera using a single view of three 
lines. In [9], Kang used the consistency condition of 
pair-wise tracked point features across a sequence of 
paracatadioptric images to calibrate the same 
parameters in [7, 8]. Basically, in [7, 8, 9] they dealt 
with the ideal SVP paracatadioptric camera, so the 
integration errors between the mirror and the 
lens/CCD sensor (here we call this combination as 
“camera” in the following paragraphs) were not 
considered (here, the x-y plane of the camera 
coordinate system was assumed parallel to the x-y 
plane of the mirror coordinate system). Only the 
intrinsic parameters of the cameras were taken into 
account. So, Equation (4) was still be used to 
unwarp the omnidirectional image to a perspective 
image, except that the image point (xi , yi) should be 
modified using the derived equations in their papers 
similar to the concept in Equation (6). The quality of 
the unwarped image in [7, 8, 9] is strongly depend 
on the slipping degrees from the SVP design of their 
paracatadioptric camera, although the intrinsic 
parameters of their cameras had been calibrated.   

If the SVP constraints can not be preserved for a 
catadioptric omnidirectional camera due to the 
integration errors between the mirror and the camera 
or the non-SVP design is adopted for the reason to 
increase the FOV [2], beside the intrinsic parameters 
of the camera need to be calibrated, the pose of the 
mirror related to the camera needs to be calibrated 
too. In [10], Aliaga developed a calibration model 
using a beacon-based pose estimation algorithm for 
the non-SVP catadioptric omnidirectional camera 
which is designed using the combination of a 

parabolic mirror and a perspective lens (Note that 
this kind of mirror/lens combination is surely 100% 
non-SVP design!). Aliaga’s camera model, like 
Tsai’s [5], has eleven parameters (5 intrinsic and 6 
extrinsic). But, the physical meanings of the 
extrinsic parameters are different from those of 
Tsai’s, with the translation vector (tx, ty, tz) 
representing the offset between the mirror reference 
plane and the image plane (CCD sensor plane), the 
rotation vector (rx, ry, rz) representing the rotation of 
the mirror reference plane with respect to an 
assumed world coordinate frame (a position of 
beacon). In Aliaga’s paper, the rotation angle of the 
mirror reference plane with respect to the CCD 
sensor plane was implicitly assumed to be zero. The 
calibrated data were used to estimate the pose of the 
catadioptric camera in a room-size environment. In 
this case, unwarping image was not necessary. In 
fact, it is very difficult to get the unwarped image in 
this kind of catadioptric camera. 

A more complete calibration procedure for a 
catadioptric camera which estimates the intrinsic 
camera parameters and the pose of the mirror related 
to the camera appeared at [11]. In [11], Fabrizio used 
the images of two known radius circles at two 
different planes in an omnidirectional camera 
structure to calibrate the intrinsic camera parameters 
and the camera pose with respect to the mirror. But, 
in [11], no discussion was made about how to use 
the calibrated parameters to modify the mapping 
Equations (4) or (5) for getting an accurate 
unwarping perspective image from an 
omnidirectional image.  

In this study, we deal with the unwarping 
problems caused by the non-SVP designed 
hypercatadioptric camera. We propose a simple 
calibration idea to get all the needed information of 
the hypercatadioptric camera using Tsai’s [5] 
calibration method. The calibrated data are used to 
derive a set of mapping equations between an image 
point and its corresponding incident line in the world. 
Then, the derived equations are applied to unwarp 
the omnidirectional image to any defined type of 
perspective image. We prove in this paper that this 
set of equations is a powerful tool to deal with any 
kinds of hypercatadioptric camera. 

 
3. Camera Calibration 
3.1 Structure of Hypercatadioptric Camera 

The structure of a hyperbolic-shaped 
omnidirectional (hypercatadioptric) camera is 
depicted in Fig. 3. The surface curve of the 
hyperbolic mirror is defined under the world 
coordinate system, b is the distance from the origin 
W to the tip of the mirror, h is the height of the 
mirror (at the center), and m is the radius of the 
mirror bottom. 

A point M(xm, ym, zm) on the mirror surface 
with respect to the origin W of the world coordinate 
system can be described by the following equations 
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according to the 3D geometry of the 
hypercatadioptric camera:  
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The optical center O(x, y, z) is defined as the 
origin of the 3D camera coordinate system, and the 
optical axis is aligned with the z-axis of the world 
coordinate system. The projection point of the 
optical axis on the image (CCD sensor) plane (z = f) 
of the camera coordinate system is Oi(u0, v0) which 
is also the center of the image plane. We set (u0, v0) 
= (0, 0). 

The mirror parameters a, b, h, and m, and the 
physical size of the CCD sensor, are obtained from 
the specifications of the hypercatadioptric camera.  
 
3.2 Details of Proposed Calibration Work 
3.2.1 Proposed calibration pattern 

In this study, we draw a calibration pattern on a 
paper ring and attach it on the mirror mount around 
the mirror border for use in the calibration work. The 
shape of the calibration pattern consists of an inner 
circle with a diameter equal to that of the mirror as 
well as 16 black marks of small line segments 
evenly distributed around the circle border. An 
example image of the attached pattern is showed in 
Fig. 4. It is noted that only 12 marks are visible in 
the FOV. 

Because the calibration pattern is located 
outside the reflection mirror, it is projected onto the 
image plane directly. The short-bar marks lay on the 
same x-y plane (at known z value) of the world 
coordinate system. Each inner tip coordinate (xw, yw, 
zw) of the mark relative to the origin W of the world 
coordinate can be describe as follows: 
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3.2.2 Coordinate systems for calibration 

  Fig. 5 depicts the coordinate systems and the 
definition of parameters used in this paper for the 
calibration work. In this paper, we first get the 
relation between the calibration coordinate and the 
camera coordinate, than we tranfser the relation to 
the camera coordinate and the world coordinte, 
which represents the pose of the camera with 

respect to the mirror. Here, we assume the lens and 
the CCD sensor plane (image plane) are perfect 
aligned. So, a point on the z-axis of the camera 
coordinate system is projected at the center of the 
CCD sensor, which is located at the center pixel 
(Cx , Cy) on the image coordinate(computer 
buffer). 

A point P(xw, yw, zw) of the calibration pattern 
on the calibration plane can be expressed relative to 
the origin of the camera coordinate system as 

 

Projected point:  
undistorted: (u, v) 
distorted: (ud, vd) 
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Fig 3. The structure of a hyperbolic- 
shaped omnidirectional 

(hypercatadioptric) camera. 

Fig.4 An image of the calibration pattern. 

Fig. 5 Coordinate systems  
for calibration. 

P(xw, yw, zw) 

(u, v), (ud, vd) 

Oi 

Camera coordinate, 
 origin O(x, y, z) 

yaw θ 

pitch φ 

tilt ψ 

Image coordinate 
center (Cx, Cy) 

 

Image coordinate , 
pixel (uf, vf) 

Calibration coordinate 
,origin C(0, 0, 0)  



-- 5 -- 

Equation (8). Where, R is a 3x3 rotation matrix with 
three rotation angles around the x-axis (pitch φ), 
y-axis (yaw θ) and z-axis (tilt ψ) of the calibration 
coordinate system respectly. (remark: In the book 
“Computer and Robot Vision” by Robert M. 
Haralick, φ is called as tilt, θ is called as pan and ψ 
is called as swing) Here, rotation follows by 
translation operation is adopted. 
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The projected point (u, v) of P(x, y, z) on the 

image plane (CCD sensor) is as follow: 
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  When the lens distortion (only the radial 
direction) is considered, the following relations 
should be taken into account. 
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The pixel coordinate in computer buffer is as 

follow: 

ydyfxdxf CvSvCuSu +=+= ,           (11) 

 
3.2.3 Calculating the calibration parameters 

The known calibration points (xwi, ywi, zwi) on the 
calibration plane and their projected points in the 
image coordinate system (ufi, vfi), i=0,1..n, can be 
used to solve Equations (8) to (11). The entire zwi 
equal zeros, because they are located on the 
calibration plane. In this paper, the points (ufi, vfi), 
i=0,1..n, are obtained manually by using mouse to 
click the locations in the calibration image like as 
Fig. 4.  

Using Tsai’s single view coplanar calibration 

method [5] and assuming that the parameter f is 
known from the data sheet. We get the calibration 
parameters R, T and κ1, which are the internal 
calibrated parameters mentioned in Section 1.  

 
3.2.4 Deriving the pose of the camera with respect 

to the mirror  
The rotation matrix R and the translation vector 

T derived in section 3.2.3 is the pose of the 
calibration plane with respect to the camera. In this 
paper, for deriving the modified mapping formulas 
of Equation (5), we should transfer the coordinates 
to get the pose of the camera with respect to the 
mirror. In this paper, the origin of the mirror 
coordinate system is defined at a focus point of the 
hyperbolic mirror curve (Om at Fig. 6). The camera 
origin O is related to the mirror origin Om by 
Equation (12). Assume its coordinate is (xcw, ycw, zcw) 
in the mirror coordinate system. 
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The coordinate of a point I in the camera 
coordinate system is (u, v, f). So, the point I in the 
mirror coordinate system is: 
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is obtained by reverse the signs of (φ, θ, ψ) in 
Equation (8-1), which is (φc, θc, ψc).  
 
4. Back-Projection of Image Point 

From Section 3, the correct camera model for 
image formation is depicted as Fig.6. In Fig.6, the 
angle of pitch φc, yaw θc and tilt ψc are the negative 
values of the calibrated rotation angle of pitch φ, 
yaw θ and tilt ψ in Fig. 5. When the pose of the 
camera with respect to the mirror is determined at 
section 3.2.4 after calibration, the unit vector (wx, wy, 
wz) of the incident ray on the mirror surface point 
M(xm, ym, zm) can be uniquely determined by a point 
(u, v) at the image plane. In the following paragraphs, 
all the formulas derived are based on the mirror 
coordinate system.  

Two constraints are used in this paper to derive 
the relation between (wx, wy, wz) and (u, v).  

(1) The surface normal ň and points P, M, O 
are co-planar. 

 (2) The reflection law of mirror should be held. 
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4.1 Unit Normal Vector ň  

The unit normal vector at point (xm, ym, zm) is: 
 ň = [sinδ cosϕ , sinδ sinϕ , -cosδ]T. 
Where: 

m

m

x
y1tan−=ϕ                     (14) 

224

22

224
cos,sin

m

m

m

m

rca

raa

rca

br

+

+
=

+
= δδ (15) 

 

4.2 Co-Planar Constraint 
The points O(xcw, ycw, zcw), P(xw, yw, zw), M(xm, ym, 

zm) and normal vector ň should fit the co-planar 
constraint, Fig.7 shows this case. 
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The co-planar constraint holds for: 
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4.3 Reflection Law of Mirror 

Refer to Fig.7, the angle ρ between MP and ň is 
equal to the angle ρ between MO and ň. The 
reflection law holds for  
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So, Equation (22) becomes: 

ρδϕδϕδ coscossinsincossin =−+ zyx www   (23) 
 
4.4 Calculating Unit Vector (wx, wy, wz)  

If (xn, yn, zn) is not equal (0, 0, 0), Equation (21) 
also hold for 
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The norm of the unit vector should be equal 1, so 
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Using Equations (23), (24) and (25), we can solve 
the three unknown wx, wy and wz. 
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Fig.7 Co-planar vectors and cross product. 

M(xm, ym, zm) 

Optic center 
O(xcw, ycw, zcw) 

I(u, v)-> (ui, vi, zi) 

pitch φc 

yaw θc 
tilt ψc 

P(xw, yw, zw) 

M(xm, ym, zm) 

Fig.6 Real camera model. 

Calibration plane Oc 

Origin (W) of the world  
coordinate system 

Origin (Om) of the mirror 
coordinate system 
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We get 

mxmy BwAw +=                 (26-2) 

Set 

32

2

32

21

sinsincos
cos

,
sinsincos

)cos(sinsin

mm

m
m

mm

mm
m

KK
K

D

KK
KK

C

ϕδδ
ρ

ϕδδ
ϕϕδ

−

−
=

−

+
=

       (26-3) 

We get 

mxmz DwCw +=                 (26-4) 
Equation (25) and (26-1) to (26-4) can use to solve 

the unit vector (wx, wy, wz).  
 

4.5 Relation between (u, v) and (xm, ym, zm) 
The coordinate of point I in the camera 

coordinate system is (u, v, f). So, the point I (ui, 
vi, zi) in the mirror coordinate system can be 
calculated by Equation (13). 

Because that the points O, I, and M lay on 
the same line. (See Fig. 6) 

cwm

cwm

cwi

cwi

xx
yy

xu
yv

−

−
=

−

−
=φtan     (27) 

Equation (27) can be rewritten as: 
φφ tantan mcwcwm xxyy +−=     (27-1) 

Set  
φtan1 cwcw xyK −=             (28-1) 

cwi

cwi

xu
zz

K
−

−
=

)(
2                 (28-2) 

23 KxczK cwcw −+=            (28-3) 
2

2
222

4 )tan1( KabK −+= φ       (28-4) 

32
2

1
2

5 tan KKaKbK −= φ         (28-5) 
2

3
22

1
222

6 KaKbbaK −+=     (28-6) 
We get 

4

64
2

55

K

KKKK
xm

−±−
=       (28) 

Using (27) and (28), we can get ym.  
Using Equation (7), we can get zm. 

 
5. Experimental Results  
5.1 Unwarping of Simulation Scene to Perspective 

View 
5.1.1 Warping of a pseudo target to 

omnidirectional image 
We use the real calibration data obtained in 

section 3.3.3, which are translation T(-2.99, 0.96, 
88.67) (the unit is mm) ; rotation R(0.013, 0.035, 
0.007) (the unit is radian); kappa κ1=0.0; and focal 
length f=2.9 mm, and the mapping equations 
obtained in section 4 to wrap a pseudo target 
depicted as Fig.8 to a hypercatadioptric 
omnidirectional image. The target has a grid map 
with 1.0x1.0 m2 grid and 20.0x20.0 m2 map size. A 
L-shape wall with 1.0 m height and 2.8 m width in 

each side is placed near the center of the grid map.  
 

The target is put under our hypercatadioptric 
camera and the z-axis of the target coordinate system 
and the mirror coordinate system are aligned. The  

z-axis distance of the center of the target and 
the center of the mirror is 2.0 m. The warping 
picture is a 640 x 480 pixel2 image as Fig.9. 

5.1.2 Results of unwarping the pseudo image 
To test the correctness of our derived equations, 

we set two kinds of view planes as Fig.10 depicts; 

20 m 

20 m 

Fig. 8 A pseudo target of size 20 
m x 20 m, with a L-shape 
wall at center position. 

Optic center 
 O(xcw, ycw, zcw) 

P(xw, yw, zw) 

M(xm, ym, zm) 

Fig.10 View planes for viewing 
the perspective 
unwarping image in the 
real world.  

Fig.9 The warping image of the pseudo 
target in Fig.8. 
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each one is a rectangle region, to capture the 
unwaring (back-projection) rays emanating from the 
image plane. The rectangle region is divided into m 
x n (for example, 320 x 240 for side view) units 
representing a m x n pixel2 image of perspective 
view of the warped target image. 

Fig. 10 shows examples of the view plane 
setting. The top view region is set as a 4.0 x 4.0 m2 
region lying on the x-y plane and the z-axis is 
aligned to the z-axis of the mirror coordinate system 
with 2.0 m below the origin of the mirror coordinate 
system. Fig.11 (a), (b), and (c) are the unwarping 
results with different settings for testing the 
correctness of our derived equations in this paper. 
We can see in Fig.11 (a) that our derived equations 
are perfectly recovering the warping image in Fig. 
12 within the setting view plane region if the camera 
is calibrated. Fig.11 (b) and (c) tell us that 
insufficient calibration of the hypercatadioptric 
camera will suffer distorted unwarping image. 
Fig.11 (d), (e), and (f) are the unwarping results with 
assumption that the camera is a perfect designed 
single-viewpoint system. And so, equation (5) is 
used to unwarp the target image. The real sensor size 
should be 3.2 x 2.4 mm2 and the unwarping image is 
as Fig.11 (d). But, we can see in Fig.11 (d) that the 
unwarping region is really small! So, for comparison 
reasons, we set other sensor size as Fig.11 (e) and (f) 
to observe the results. Note that the setting of Fig.11 
(e) and (f) are unreasonable for a real CCD sensor. 

 Fig.12 shows examples of a side view setting. 
The side view region is set with 0.5π degree view 
direction at the x-y plane with center distance 2.0/√2 
m apart from the z-axis of the mirror coordinate 
system and the z-axis range from 0 to -2.0m with 

respect to the origin of the mirror coordinate system.  
Fig.12 (a) to (d) are the four directional views with 
our derived equations.  Fig.12 (e) and (f) are the 
same directional view with (b) and (c), but with SVP 
equation (5). It can be seen that the vertical lines are 
tilted in Fig.12 (e) and (f). 

 
5.2 Unwarping of Real Scene to Perspective 

View 
Fig.13 and Fig.14 are the Unwarping results of 

real image (Fig.4) taken by the calibrated camera in 
this paper. The parameter settings of  Fig.13 and  
Fig.14 are the same as Fig.11 and  Fig.12, except 
that the pseudo simulated warping image is replaced 
by the real image of Fig.4. We observe that the 
unwarping results of  Fig.13 (a) and  Fig.14 (a) 
are not as best as the simulation pseudo scenes in 
Fig.11 (a) and Fig.12 (a). Two reasons can interpret 
these results: (1) there are residual errors after 
camera calibration, (2) the “ external”  calibration 
between the mirror coordinate system (used in this 
paper as the world coordinate system) and the real 
world (for example: the room) coordinate system has 
not be done. We believe that if using precise 
calibration pattern created at the same time that the 
hypercatadioptric camera is manufactured to replace 
the experimental paper-made pattern in this paper, 
the residual errors of calibration will be reduced. 
The problem caused by (2) is not serious; it can be 
removed using traditional calibration. If we careful 
align parallelism of the mirror plane with the floor of 
the room, the problem caused by (2) almost can be 
ignored.  

 
6. Conclusions 

   In this paper, the image unwarping of the non 

Fig.11 Unwarping image of Fig. 9 (Top view) 
� (a),(b),(c) are results using equations derived from 

this paper with different T (Tx, Ty, Tz) and R (Rx, Ry, 
Rz) setting. Here, (a) has the same T and R as Fig. 9 
used. In (b), we set Rx=Ry=Rz=0. In (c), we further 
set Tx= Ty =0 (assume perfect alignment). 

� (d),(e),(f) are results using equation (5), with 
different CCD sensor size. Here, an ideal 
single-viewpoint designed hypercataoptric camera 
is assumed. In (d), sensor size is 3.2x2.4 mm2, (e) is 
1.6x1.2 mm2, and (f) is 0.8x0.6 mm2.  

Fig. 12 Unwarping image of Fig. 9 (Side view) 
� (a),(b),(c),(d) are results using equations derived 

from this paper with the same T and R as Fig.9 
used. Here, (a) is viewing from 1.5π to 2.0π, (b) is 
viewing from 1.0π to 1.5π, (c) is viewing from 
0.5π to 1.0π, and (d) is viewing from 0.0π to 0.5π. 

� (e),(f) are results using equation (5) with different 
viewing angle. (e) is the same as (b), (f) is the 
same as (c). Here, an ideal single viewpoint 
designed hypercataoptric camera is assumed. In 
(e) and (f), the sensor size is 0.8x0.6 mm2.  
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single-viewpoint hypercatadioptric camera is studied. 
We use the calibration information to derive the 
precise unwarping equations for the 
hypercatadioptric camera no matter it is SVP 
designed or not. The derived equations are validated 
to have the same performance as a perfectly 
designed SVP camera when deducing the calibration 
parameters to fit the SVP constraints. Furthermore, 
we show the benefits of our method beyond the SVP 
method with a little deviation from the SVP 
constraints by setting Rx one degree rotated. From 
the simulated results, we confirm the correctness of 
our method. 
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Fig. 14 Unwarping image of real scene Fig.4 
(Side view) 

� (a),(b),(c),(d) are results using equations derived from 
this paper with the same T and R as Fig. 9 used. Here, (a) 
is viewing from 1.5π to 2.0π, (b) is viewing from 1.0π to 
1.5π, (c) is viewing from 0.5π to 1.0π, and (d) is viewing 
from 0.0π to 0.5π. 
� (e),(f) are results using equation (5) with different 

viewing angle. (e) is the same as (b), (f) is the same as 
(c). Here, an ideal single viewpoint designed 
hypercataoptric camera is assumed. In (e) and (f), the 
sensor size is 0.8x0.6 mm2.  

Fig. 13 Unwarping image of real scene Fig. 4 
(Top view) 

� (a),(b),(c) are results using equations derived from 
this paper with different T (Tx, Ty, Tz) and R (Rx, Ry, 
Rz) setting. Here, (a) has the same T and R as Fig. 
9 used. In (b), we set Rx=Ry=Rz=0. In (c), we 
further set Tx= Ty =0(perfect alignment). 
� (d),(e),(f) are results using equation (5), with 

different CCD sensor size. Here, an ideal single 
viewpoint designed hypercataoptric camera is 
assumed. In (d), sensor size is 3.2x2.4 mm2, (e) is 
1.6x1.2 mm2, and (f) is 0.8x0.6 mm2.  


