
Proceedings of 2005 International Symposium on Intelligent Signal Processing and Communication Systems

DATA HIDING IN STAINED GLASS IMAGES*

Shi-Chei HungI, Da-Chun Wu2 and Wen-Hsiang Tsai' 3

'National Chiao Tung University
2National Kaohsiung First University of Science and Technology

3Asia University

ABSTRACT

New methods for automatic generation of stained glass images
as well as for data hiding in such images are proposed. Glass
regions in stained glass images are generated by randomly
sprinkled seeds and a region growing technique. The number of
nodes of a tree constructed for pixel grouping in a glass region is
used for data hiding in a stained glass image. A complete
process for secret communication using the above technique is
also proposed. Experimental results show the feasibility of the
proposed methods.

(a)

(b)
Fig. 1. Stained glass window and images.
(a) Detail of The Crucifixion, St. James
Church, Staveley, UK by Neil Ralley. (b)
Some results of Mould's method.

1. INTRODUCTION

Stained glass windows are composed of glass pieces, which are
of different shapes, colors, and sizes. According to the
investigations by Armitage[1] and Osborne[2], stained glass
windows first appeared in the 7th century, had heyday at the
16th century, and still being built today. Fig. l(a) shows the
detail of a stained glass window. Although creating mosaic-
effect images, composed of geometric elements such as small
images, tiles, and glass pieces, is a new research topic in recent
years, little attention has been paid to the historical successor to
the mosaic, the stained glass image. Mould [3] proposed an
algorithm for stained glass image creation. The method starts
with an initial segmentation of a source image by an image
processing system called EDISON proposed in [4, 5, 6]. Then,
the segmented regions are manipulated and smoothed by erosion
and dilation operators [7, 8]. Finally, a displacement map
representing imperfections in the glass is created and leading is
applied between the tile boundaries accordingly. Fig. 1(b) shows
some results of Mould's method.

Researches on data hiding in images are mostly based on
pixel-wise or block-wise operations and few image features are
used. In this study, we propose a new method to create stained
glass images that are suitable for data hiding. The method is
based on the use of a new tree structure of image pixels. The
proposed process for stained glass image creation is described in
Section 2. The technique for data hiding by slight glass cracking
is proposed in Sections 3 and 4. Some Experimental results are
shown in Section 5. Section 6 concludes this paper with some
suggestions for future works.

2. PROPOSED STAINED GLASS IMAGE CREATION

In the proposed process for creating stained glass images which
are suitable for data hiding, first we quantize each pixel value of
an input color image into three bits, one bit per R, G, or B
channel. Next, we filter off the noise appearing during
quantization by a voting filter. The way we do for this is to
accumulate, for each pixel, the numbers of pixel colors within a
square which is centered at the pixel. Then we reset the color of
that pixel to be the color which has the maximum accumulation
value. After these two steps of image preprocessing, the input
image is partitioned into several color regions. An example is
shown in Fig. 2, in which (a) is an input image and (b) is the
quantization result. Here the square size is lIx 1 1. Fig. 2(c) is the
result after filtering. We name Fig. 2(c) a color region image.

Continuing the image creation process, we sprinkle seeds
on the color regions and apply a new region growing scheme on
each seed. A random number generator is used for seed
sprinkling.

In Section 2.1, a tree structure of glass regions and the
above-mentioned region growing scheme will be described. By
the region growing technique, we can grow glass regions from
the sprinkled seeds. In the final step, we search for gaps which
are of large areas among the created glass regions and fill up the
gaps with extra glass regions. We name this process glass region
gap filling, which will be discussed in Section 2.2. Finally, a
stained glass image is created with glass colors specified by the
seed positions and the input image.

0-7803-9266-3/05/$20.00 ©2005 IEEE.

* This work was supported partially by the NSC Project, Advanced
Technologies and Applications for Next Generation Information
Networks (II), with Project No. NSC93-2752-E-009-006-PAE and
partially by NSC Project No. NSC 94-2422-H-468-001.

December 13-16, 2005 Hong Kong

- 129 -

Authorized licensed use limited to: National Chiao Tung University. Downloaded on March 13, 2009 at 22:36 from IEEE Xplore. Restrictions apply.

(a) (b) (c)
Fig. 2. Preprocessing of a given image. (a) The original image.
(b) A quantized image of (a). (c) A filtered image of (b).

2.1. Region growing process and tree structures of glass
regions

In this section, we describe the proposed tree structure of glass
regions for region growing. The tree structure is shown in Fig.
3(a). A tree node is either an interior node or a leaf node. An
interior node has child nodes and a leaf node does not. We
classify the tree nodes into two types, succeeding node and
expanding node. Expanding nodes are the first or last nodes in a
node level. In Fig. 3, we indicate expanding nodes by thicker
borders and succeeding nodes by thinner borders. As shown in
Fig. 3(a), each expanding node has at most two child nodes, one
being an expanding node and the other a succeeding node. On
the other hand, a succeeding node has at most a child node. And
the child node is also a succeeding node.

(Node Level C) L0 * Root Node

L Interior Node

tS / ::: Leaf Node

Succeeding Node

------- Glass Edge

L6 Color Region

(a)

E3 EN 121 E3, XL, r-A

\e, 3
X

Li \
_F_yi+l

(b) (c)

Ed(e), Li I

t $$ Sy L~~~i+l Stt

(d) (e)

E31ij/ L

Li+l

Ii
/ Li+

rn --

-,%

(f)

Fig. 3. Tree structure of glass regions. (a) A tree of a glass
region, (b), (c), (d) and (e) examples of Steps 2 and 3 in
Algorithm 1.

2.1.1. Process ofgrowingfor glass region

The proposed region growing process starts by rooting four trees
in each seed, which are denoted by Nt, Et, St, and Wt,
respectively. The four trees are then expanded in four directions,
namely, north, east, south, and west, respectively, by a tree
growing process to be described in Section 2.1.2. All the trees of
all the sprinkled seeds are grown simultaneously and one level
after another. After the tree growing processes of the four trees
terminate, the leaf nodes of the four trees are linked to form the
boundary of the associated glass region.

2.1.2. Process oftree growing

The proposed tree growing process is illustrated in Algorithm 1.

Algorithm 1: tree growing.
Input: a tree root R.
Output: a tree, GRT, which is grown from R.
Steps:
Step 1 Add two expanding nodes in node level L1 as the child

nodes ofR. Set the states of them as interior nodes.
Step 2 For each node level Li, where i . 2, perform the

following steps:
2.1 For each interior node, Nin , in Li, generate a child

node which is interior and succeeding. Denote it by
cis.
2.1.1 Check whether Cis is out of bound by the

following way.
2.1.2 If Nint and Cis are not in the same color region,

regard Cis as out of bound and
A. discard Cis from Nint;
B. trasfer Nin from an interior node to a leaf node.

2.1.3 If the depth of Cis is greater than the depth of
its neighboring sibling, then

A. discard Cis from Nint;
B. trasfer Nin from an interior node to a leaf node.

2.2 For each interior node NintE which is also an
expanding node, generate diagonally a child node
which is interior and expanding. Denote it by Cie.
2.2.1 Check whether Ci, is out of bound by the

following way.
2.2.2 If NintE and Ci, are not in the same color region,

regard Cie as out of bound and discard Ci, from
NintE-

2.2.3 If the depth of Ci, is greater than the depth of
its neighboring sibling, then discard Ci, from
NintE-

2.3 Check whether the growing process is converged by
the following way:
if there are child nodes generated in Steps 2.1 and
2.2, then
2.3.1 regard GRT as non-converged, accumulate the

value of i by 1, and go back to the beginning of
Step 2; otherwise,

2.3.2 regard GRT as converged, output GRT, and
terminate the growing process.

Figs. 3(b) and (c) show an example of Step 2.1.1. As shown
in Fig. 3(b), four succeeding nodes are produced in Li,,. The
rightmost one is located in a color region different from where
its parent node is located. So, we regard this node as out of
bound, discard it from its parent node, and transfer its parent

- 130 -

I

Authorized licensed use limited to: National Chiao Tung University. Downloaded on March 13, 2009 at 22:36 from IEEE Xplore. Restrictions apply.

node from an interior node to a leaf node. Figs. 3(d) and (e) is an
example of Step 2.2.1. As shown in Fig. 3(d), only one node is
produced in Li,,. Because the rightmost expanding node in Li has
been transferred into a leaf node in Step 2.1.1, we will not
extend this node any more. As shown in Fig. 3(e), the generated
child node is located in a color region different from where its
parent node is located, so we discard it without transferring its
parent node to a leaf node.

In this algorithm, Steps 2.1.2 and 2.2.2 are used for keeping
the depth differences of neighboring leaf nodes less than or
equal to one. The reason for doing that is shown in Fig. 3(f). In
Fig. 3(f), the depth difference of the neighboring two leaf nodes
is four. The solid line in Fig. 3(f) is the edge defined by the two
leaf nodes. We can see that this edge overlaps another color
region. It will result in overlapping glass regions when the
growing process terminates. That is why we have to keep the
depth differences of neighboring leaf nodes to be smaller than or
equal to one by Steps 2.1.2 and 2.2.2. Finally, in Step 2.3, we
decide whether to terminate the growing process or not. If the
process terminates, the derived tree will be part of a glass region
in the stained glass image we created.

5(a), we remove the two deepest nodes in tree Nt of the glass
region. Fig. 5(b) is the result of removing the two nodes. We can
see the resulting cracks in the glass region where the nodes are
removed. There are four trees contained in a glass region, but not
all the four trees can be used for data hiding. The number of
nodes of a tree must be large enough so that data can be
embedded by removing tree nodes.

(Root
U (Seed)

=Nt

EWt
> L \E v v v v C C a 9 r;1 rv \ iM M M M < s m s St2 ' i mT T/r /< L ~~~~~~~t CO ,A L LE

(a) (b)
2.2. Process of glass region gap filling

At the beginning of the proposed glass growing process, we
sprinkle seeds as tree roots randomly. It will result in more than
one seed sprinkled in a color region. On the contrary, it might
also happen that no seed is sprinkled in a color region, causing
some gaps among the glass regions. So, we have to perform a
further step to fill these gaps. We name this step the gap filling
process. Initially, we scan the tree map. If there is no tree node
within a square range of size 8x8 pixels, we put an additional
seed at the center of that square and apply the proposed glass
region growing process on it. Fig. 4 is the final stained glass
image of the input image of Fig. 2(a).

3. CONCEPTS BEHIND PROPOSED DATA HIDING
TECHNIQUE

The feature we utilize for data hiding in stained glass images is
the number of nodes in a tree of a glass region. By removing the
deepest nodes, we can hide data in a stained glass image.
However, this method will result in cracks at the edges or
corners of glass regions, though still acceptable. As shown in Fig.

Fig. 5. An example of removing nodes for data hiding. (a) A
glass region. (b) A glass region with data embedded.

4. DATA HIDING BY GLASS BOUNDARY CRACKING

The core concept of data hiding by modification of the number
of tree nodes is illustrated in Fig. 6. Initially, we compute the
remainder, REM, of dividing the number of tree nodes, TNN, by
a divisor, DIV. The value ofREM will thus range between 0 and
DIV-1 as shown in the following formula:

REM= TNNmod DIV, 0 < REM<DIV-1. (1)
Then, we divide the range ofREM into several sub-ranges. Each
sub-range is regarded to represent a specific bit code. In the case
of Fig. 6, the bit code contains two bits, so we divide the range
into four sub-ranges which represent the bit codes 00, 01, 10,
and 11, respectively. In other words, the number of sub-ranges,
NSR, is computed by the following formula:

NSR=2 , (2)

where bitN is the number of bits we want to embed in an
effective tree. Furthermore, because each sub-range includes
several REM values, tolerance of detection errors can be
achieved. Take Fig. 6 as an example. Each sub-range includes
three REM values. No matter what the value of REM is (zero,
one, or two), it means that we have embedded bit code 00 in the
associated tree. The three rest sub-ranges may be deduced by
analogy. Finally, the value ofDIV can be computed as follows:

DIV= SSR xNSR, (3)
where SSR is the number ofREM values spanned by a sub-range.
So, the value of DIV in Fig. 6 is 3 x 4 = 12. After deciding the
values of bitN and SSR, the data embedding and extraction
methods can be described as follows.

Fig. 4. The final stained glass image.

- 131 -

Authorized licensed use limited to: National Chiao Tung University. Downloaded on March 13, 2009 at 22:36 from IEEE Xplore. Restrictions apply.

00 01 10 11
0 1 2 3 4 5 6 7 8 9 10 11

REM

sub-range
Fig. 6. Illustration of concept of data hiding in stained glass

images.

4.1. Data embedding and extraction

If we want to embed a bit code into an effective tree, we adjust
the value of REM to be the center of the sub-range of REM
which represents the bit code we want to embed. Take Fig. 6 as
an example. Assume that the value ofREM is 9 and the bit code
we want to embed is 01. The sub-range representing bit code 01
is the second one which centers on the REM value of 4. So the
number NNR of nodes to remove from the tree for embedding bit
code 01 is computed as follows:

NNR= REM- central value of target sub-rangel = 19 - 41 = 5.

By removing the deepest five nodes from the target tree, bit code
01 can be embedded.

The process of extracting data from a tree is simply to
compute the value ofREM and find the sub-range into which it
falls. The corresponding bit code is the one we want to extract.

5. EXPERIMENTAL RESULTS

Fig. 7 shows some experimental results of data hiding in a
stained glass image. Figs. 7(a) and (b) are stained glass images
without and with data embedded, respectively. Figs. 7(c) and (d)
are the details of the upper left corners of Figs. 7(a) and (c),
respectively. By comparing Figs. 7(c) and (d), we can find that
the glass regions of (d) are cracked slightly. Fig. 7(e) is a secret
message extracted from Fig. 7(b). The message is identical to the
one we embedded. Fig. 7(f) is the secret message extracted from
Fig. 7(b) with a wrong key. We can see that the text shown in
Fig. 7(f) is disordered and meaningless. This proves that the key
used in the proposed creation process really works.

6. CONCLUSIONS AND FUTURE WORKS

In this study, we have proposed methods for stained glass image
creation and data hiding. These two topics are integrated into
one which is then solved by a single approach in the proposed
methods, so that a common user can easily generate stained glass
images and embed data in them. We utilize the data hiding
method for embedding secret messages to achieve the goal of
secret communication. However, it may also be applied to
embed watermarks and authentication signals which can help us
to achieve the goal of copyright protection and image
verification, respectively. According to our research, we can
claim that if there is an image feature of an art image that can be
modified and detected, there will be a corresponding data hiding
technique.

[2] Osborne, J., Stained Glass in England. Alan Sutton
Publishing, Phoenix Mill, 1997.

[3] Mould, D., "A Stained Glass Image Filter," Proceedings of
the 14th Eurographics workshop on Rendering, Leuven,
Belgium, 2003, pp. 20-25.

[4] Christoudias, C., Georgescu, B., and Meer, P., "Synergism in
low-level vision," International Conference on Pattern
Recognition 4, 16 Aug. 2002, pp. 150-155.

[5] Comanicu, D. and Meer P., "Mean Shift: A Robust Approach
Toward Feature Space Analysis," IEEE Trans. Pattern Anal.
Machine Intell., 24, 4 May 2002, pp. 603-619.

[6] Meer, P. and Georgescu, B., "Edge Detection with
Embedded Confidence," IEEE Trans. Pattern Anal. Machine
Intell., 23, 12 Dec. 2001, pp. 1351-1365.

[7] Arthur, R. and Weeks, J., "Fundamentals of Electronic Image
Processing," SPIE Optical Engineering Press, Bellingham,
1996.

[8] Shapiro L. and Stockman G. Computer Vision. Prentice-Hall,
Upper Saddle River, 2001.

(c)
I S_ = I g oF 0 ~~~~~~~~~~~~~~~~~...

ScehIdn in stained glass images is u.~~4JD ~~Ot vhO$~

(e)
Fig. 7. Experimental results of data hiding in stained glass image.

(a) A stained glass image without hidden data. (b) (a)
with secret message embedded. (c) Details of (a). (d)
Details of (b). (e) Secret message extracted from (b). (f)
Extraction result of (b) with a wrong key.

7. REFERENCES

[1] Armitage, E. L., "Stained Glass: History, Technology, and
Practice," Newton, Charles T. Branford Company, 1959.

- 132 -

(d)

Authorized licensed use limited to: National Chiao Tung University. Downloaded on March 13, 2009 at 22:36 from IEEE Xplore. Restrictions apply.

