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Abstract. A system for use as a machine guide dog composed of an autonomous 
vehicle and a two-mirror omni-camera for navigations on sidewalks to guide blind 
people is proposed. Methods for extracting 3D information from acquired omni-
images to localize the vehicle using landmarks of curb lines, tree trunks, stop lines 
on roads, lawn corners, signboards, and traffic cones are proposed. The methods 
are based on a space-mapping scheme and three new space line detection 
techniques. Each space line detection technique can be applied directly on omni-
images to compute the 3D locations of a specific type of space line in the landmark 
shapes. Good experimental results show the feasibility of the proposed system. 

Keywords: machine guide dog, autonomous vehicle, landmark detection, vehicle 
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1  Introduction 

There are millions of blind people in the world. Some of them use blind canes to walk on 
the road. However, blind canes can only detect obstacles at short distances. A better 
choice is to use guide dogs as shown in Fig. 1(a). However, guide dogs are very few; e.g., 
there are about 60,000 blind people but just about 30 guide dogs in Taiwan in 2012. So it 
is of great advantages if machine guide dogs can be designed for use by the blind. To 
implement a machine guide dog, one way is to use a vision-based autonomous vehicle 
which can navigate automatically in outdoor environments and keep watch over the 
camera’s field of view (FOV) to avoid collisions with obstacles. In this study, we use a 
specially-designed omni-camera with two mirrors as the vision system on an 
autonomous vehicle for this purpose. 

Localization is a critical issue in implementing a navigation system, by which a 
vehicle can move on correct paths. Willis and Helal [1] provided a navigation system for 
the blind using the RFID technology to identify building and room locations. Chen and 
Tsai [2] proposed an indoor autonomous vehicle system using ultrasonic sensors. In 
outdoor spaces, the GPS can be used as a localization system for the vehicle [3]. Also, 
Atiya and Hager [4] proposed a vision-based system which can localize a mobile robot 
in real time. To enhance localization accuracy, Lui and Jarvis [5] constructed an outdoor 
robot with a GPU-based omni-vision system possessing an automatic baseline selection 
capability. To detect landmarks in environments, Fu et al. [6] proposed a navigation 
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system with embedded omni-vision for multi-object tracking. A vehicle which achieves 
self-localization by matching omni- images was proposed by Ishizuka et al. [7]. 

 

  
(a) (b) (c) 

Fig. 1. Guide dogs and system configuration. (a) A guide dog. (b) View of system. (b) Architecture of 
camera system (upright). 

 
The goal of this study is to navigate a vision-based machine guide dog on outdoor 

sidewalks automatically. To achieve this goal, the major task is vehicle localization. The 
strategy for vehicle localization proposed in this study is to detect as many types of 
landmarks as possible along paths on sidewalks. The operation of the proposed system 
includes two stages: learning and navigation. The learning stage includes primarily the 
task of training the vehicle to acquire the along-path information useful for later vehicle 
guidance in the navigation stage. A scheme for training a vehicle for outdoor navigation 
along sidewalks is proposed first. Then, new space line detection and localization 
techniques based on the space-mapping method [9] are proposed next. These techniques 
then are applied to detect natural landmarks of lawn corner and tree trunks as well as 
artificial landmarks of signboards, stop lines on roads, and traffic cones for vehicle 
localization. Also proposed are methods for dynamically adjusting the vehicle guidance 
scheme to overcome varying outdoor lighting conditions. 

In the remainder of this paper, the proposed path learning process and navigation 
strategies will be presented in Sections 3 and 4, respectively. The proposed new space 
line detection techniques and their applications for landmark detection and localization 
will be described in Sections 4 and 5, respectively. Finally, some experimental results 
and conclusions will be given in Section 6. 

2  Learning Stage 

The purpose of the proposed learning process is to create a path consisting of nodes on a 
sidewalk to be visited by the vehicle toward a destination. At first, some landmarks are 
selected for vehicle localization. Then, the used camera system is calibrated. At last, 
some parameter information of each landmark is extracted and recorded in the path. 

2.1  Learning of Selected Landmarks 
When the vehicle navigates for a time period, mechanic errors will accumulate to 

cause imprecise odometer readings of the vehicle location and orientation. To solve this 
problem, Chou and Tsai [8] proposed methods for detecting light poles and hydrants as 
landmarks to localize the vehicle. In this study, we select additionally two types of 
natural landmarks, tree trunk and lawn corner, and three types of artificial landmarks, 
signboard, traffic cone, and stop line on the road. With these additional types of 
landmarks, more information along the path can be used for vehicle localization, and so 
the vehicle can be guided more reliably to the destination. We “learn” these landmarks 



by driving the vehicle to get close to each of them and recording the vehicle direction 
with respect to the nearby curb line as well as the vehicle location with respect to the 
landmark. 

2.2  Construction of Pano-mapping Table as Camera Calibration 
The used camera system as illustrated in Figs. 1(b) and 1(c) consists of a perspective 

camera, a lens, and two reflective mirrors of different sizes, all integrated into a single 
structure. We call the big mirror Mirror B, and the small Mirror S, respectively. The 
camera system is slanted for an angle of to enlarge the imaged frontal scene portion. 

To “calibrate” the camera system, we use the space-mapping method proposed by 
Jeng and Tsai [9] by creating a pano-mapping table to record the relations between the 
locations of image points and those of the corresponding world-space points. A light ray 
is assumed to go through each world-space point P with an elevation angle α and an 
azimuth angle θ, be reflected by the mirror of the camera system, and be projected onto 
the omni-image plane as a point p at coordinates (u, v), as illustrated in Fig. 2. The pano-
mapping table, like the one shown in Table 1, specifies the relation between the 
coordinates (u, v) of the image point p and the azimuth-elevation angle pair ( of the 
corresponding world-space point P. 
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Table 1. A pano-mapping table used for the omni-camera.
 1 2 3 … S 

1 (u11, v11) (u21, v21) (u31, v31) … (uS1, vS1) 

 2 (u12, v12) (u22, v22) (u32, v32) … (uS2, vS2) 

 3 (u13, v13) (u23, v23) (u33, v33) … (uS3, vS3) 

 4 (u14, v14) (u24, v24) (u34, v34) … (uS4, vS4) 

 … … … … … 

 T (u1T, v1T) (u2T, v2T) (u3T, v3T) … (uST, vST) 
 

Fig. 2. Omni-imaging principle. 

3  Navigation Stage 
After learning the navigation path like that shown in Fig. 3, we use it to guide the vehicle. 
The path includes a series of nodes, through which the vehicle can move to the 
destination. More details are described in the following sections. 

3.1  Navigation Strategy Adopted in This Study 
The vehicle presumably could localize itself by the on-board odometer readings to 

conduct node-based navigation; that is, the three readings (Px, Py, P) provided by the 
odometer might be used as the vehicle pose to identify the vehicle position and 
orientation in a global coordinate system (GCS) at each path node, and so can be utilized 
to navigate the vehicle correctly on the path. However, these odometer values are in 
general imprecise because of the mechanic errors accumulated during the navigation. 
Therefore, a vehicle localization process should be conducted at each node. The 
proposed strategy for this purpose includes two major steps: (1) adjust the erroneous 
vehicle orientation by the use of the detected curb line orientation; and (2) correct the 
vehicle position by the use of the estimated pre-selected landmark location. Note that the 
GCS is defined on the sidewalk for each navigation session with the start vehicle 
position as the origin, and the forward moving direction of the vehicle as the vertical axis. 



3.2  Vehicle Localization by Selected Landmarks 
To reduce the influence of accumulated mechanic errors, we conduct vehicle 

localization by the use of curb lines and landmarks as mentioned. Specifically, when the 
vehicle arrives at a node with inaccurate odometer readings (Px'', Py'', P''), according to 
the first step of the above-mentioned vehicle localization strategy, we detect the straight 
curb line in the acquired omni-image, and compute its orientation  ' with respect to the 
moving direction of the vehicle [8], as illustrated in Fig. 4. Comparing ' with the 
recorded curb line orientation  in the learned path data, we compute the deviation of the 
vehicle orientation as  =  ′ –  and adjust the vehicle orientation for the amount of  
to obtain a calibrated vehicle orientation P' computed as P' = P''  . 
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Fig. 3. Illustration of learned navigation path. Fig. 4. Computing current vehicle location. 

 
Afterward, we start to detect the landmark of the current node, if recorded, and 

obtain its position (lx. ly) with respect to the vehicle coordinate system (VCS) (the details 
described later). According to the learned landmark position (Lx, Ly) in the GCS recorded 
in the path data and the calibrated vehicle orientation P', we compute the current vehicle 
position (Px', Py') by the following equations (see Fig. 4 for an illustration): 
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Finally, we replace the odometer readings, (Px'', Py'', P''), with the above corrected 
vehicle pose parameters (Px', Py', P') and navigate the vehicle forward to the next node. 

4  Natural Landmark Detection for Vehicle Localization 
It is found in this study that the uses of space lines are sufficient to localize many types 
of landmarks. However, compared with the result of using images acquired by the 
traditional projective camera, the projection of a space line onto an omni-image taken by 
an omni-camera is not a line but a conic-section curve [10]. Wu and Tsai [10] proposed a 
method for detecting directly such curves in omni-images of an H-shaped landmark used 
in automatic helicopter landing. In this study, we propose instead new space line 
detection techniques based on the space-mapping method [9] using pano-mapping tables. 
An essence of the proposed techniques is to utilize the space plane which goes through 
the space line and the center of the mirror of the omni-camera, instead of trying to obtain 
directly the conic section curve in the omni-image. More details are described next. 



4.1  Line Detection Using Pano-Mapping Table 
Assume that a pano-mapping table has been set up for the omni-camera, and that a 

space line L to be detected is projected by Mirror B onto the omni-image with G being a 
point on L. A light ray going through G is projected by Mirror B onto the omni-image to 
become an image point I as shown in Fig. 5. The mirror center OB and G together form a 
vector VG' = [Gx', Gy', Gz']

T where T means “transpose.” The components of VG' can be 
described in terms of the azimuth and elevation angles  and  of the light ray as: Gx' = 
coscos; Gy' = cossin; Gz' = sin. Also, as mentioned previously, to increase the 
frontal FOV, we have slanted the camera system up for the angle of . So, there is a 
transformation between the coordinates (X′, Y′, Z′) of the original camera coordinate 
system (CCS) and the new coordinates (X, Y, Z) of the slanted CCS, described by: 
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so that VG' = [Gx', Gy', Gz']
T, after being slanted with the above transformation, becomes 

VG = [Gx, Gy, Gz] with Gx = coscos; Gy = cossincos and Gz = cossin + 
sincos. Then, as shown in Fig. 6, let IL be the conic section curve resulting from 
projecting the space line L onto the omni-image, and Q be the space plane going through 
L and the mirror center OB. Also assume that the coordinates (X, Y, Z) describe a point 
on Q, and that NQ = (l, m, n) describe the normal vector of Q. Because NQ and VG are 
perpendicular to each other, we have: 

 NQVG = (l, m, n)(Gx, Gy, Gz) = lGx + mGy + nGz = 0. (3) 

where “” denotes the inner product operation. By Eq. (2), we can rewrite Eq. (3) as: 
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However, Eq. (4) consists of three unknown parameters l, m, and n which describe the 
normal vector of Q. Assuming n  0, we may divide Eq. (4) by n to get: 

 B + Aa0+ a1 = 0 (5) 
where 

A = m/n; B = l/n; 

0
(cos sin cos sin sin )

(cos cos )
a

    
 

   



; 1

( cos sin sin cos )

(cos cos )
a

   
 

   



. (6) 

 

 
Fig. 5. A space point with elevation α & azimuth . Fig. 6. A space line projected in omni-image. 



Chou and Tsai [8] proposed a method to localize a vertical line with respect to the 
vehicle (actually, with respect to the CCS on the vehicle). The vertical line, called the LY 
line hereafter, is parallel to the Y-axis line in the GCS. See Fig. 7 for an illustration. In 
this study, we extend their method to localize two more specific lines: one parallel to the 
X-axis, called the LX line; and the other parallel to the Z-axis, called the LZ line. We now 
derive equations for use to localize these three types of lines. 

The direction vector of LY is DY = [0, 1, 0]T. Therefore, Eq. (3) leads to 0×l + 1×m+ 0
×n = 0, ;or equivalently, m = 0, and so Eq. (5) can be reduced to be: 

 B = a1. (7) 

For our cases here, the direction vector of the LX line is DX = [1, 0, 0]T. So, Eq. (3) leads 
to 1×l + 0×m+ 0×n = 0, or equivalently, l = 0, and so Eq. (5) can be reduced to be: 

 A = a1/a0. (8) 

About LZ line detection, the direction vector of the LZ line is DZ = [0, 0, 1]T. So, Eq. (3) 
leads to 0×l + 0×m+ 1×n = 0, or equivalently, n = 0, and so Eq. (4) can be reduced to be: 

 l + m  a0 = 0. (9) 
or equivalently, 
 a0 = K (10) 
where 
 K = l/m. (11) 

For each case above, to detect the LX, LY, or LZ line in the omni-image M directly 
with the tilt angle  of the camera system known in advance, the following steps are 
performed: 1) apply binarization and edge detection operations to M to obtain edge 
points in M; 2) set up a 1D Hough space H of the parameter A, B, or K; 3) for each edge 
point p with coordinates (u, v), look up the pano-mapping table of the omni-camera to 
obtain the azimuth-elevation angle pair (, ) of the world-space point P corresponding 
to p; 4) compute a0 and a1 according to Eqs. (6); 5) for each cell c in H with value A, B, 
or K, if Eq. (8), (7), or (10) is satisfied, then increment the count of c by one; 6) find the 
maximum cell count in H with value Amax, Bmax, or Kmax which, according to Eqs. (6) and 
(11), are equal to m/n, l/n, or l/m, respectively. 

Note that in the above algorithm, we do not really detect the line LX, LY, or LZ (in the 
form of a conic section) but just its related parameter A, B, or K described by Eq. (8), (7), 
or (11), respectively. 

 

  

Fig.7. Three specific space lines. Fig. 8. An LY line projected onto two mirrors. 

4.2  3D Data Computation Using Detected Space Lines 
Based on the detected parameters of the three types of space lines described above, 

we can derive the 3D locations of each type of space line, as described subsequently. 



(A) 3D data computation using an LY line 
As shown in Fig. 8, an LY line is projected by Mirrors B and S onto the image 

plane to form lines IL1 and IL2, respectively. The center OB of Mirror B is assumed to be 
located at coordinates (0, 0, 0) in the CCS. The position of the center OS of Mirror S may 
be described in terms of the slant angle of the camera system and the baseline value b 
between the two mirrors as (0, bsin, bcos) in the CCS. Let the two space planes going 
through LY and the centers of the two mirrors, OB and OS, respectively, be denoted as Q1 
and Q2. Also, let G be a point on LY with coordinates (X, Y, Z), and the normal vector of 
Q1 be described by N1 = [l1, m1, n1]

T. Denote the vector from the origin OB at coordinates 
(0, 0, 0) to G at coordinates (X, Y, Z) as VG1 which is just VG1 = [X, Y, Z]T. Then, since NB 
and VG1 are perpendicular, we have VG1N1 = 0, leading the following equation: 

 l1X + m1Y + n1Z = 0.  (12) 
Furthermore, we know that the mirror center OS is at coordinates (0, bsin, bcos). Also, 
suppose that the normal vector of Q2 is denoted by N2 = [l2, m2, n2]

T. Since point G is on 
the LY line, it is also on Q2, meaning that the vector VG2 from OS to G is just VG2 = [X, Y 
 bsin, Z  bcos]T. So, by a similar reasoning using the fact VG2N2 = 0, we get: 

 l2X + m2(Y  bsin + n2(Z  bcos) = 0. (13) 

Since the direction vector of LY is DY = [0, 1, 0]T, meaning that m1 = m2 = 0, the above 
two space planes described by (12) and (13) can be reduced to be 

 B1X + Z = 0; B2X+ (Z  bcos) = 0, (14) 

with B1 = l1/n1 and B2 = l2/n2 which can be obtained by the 1D Hough transform process 
mentioned previously. Solving (14), we can obtain the following desired solutions for X 
and Z to specify the location of a point P on the LY line, or simply, just that of LY on the 
X-Z plane in the CCS (or equivalently, on the ground): 

 X = bcos/(B2  B1); Z = B1bcos/(B2  B1). (15) 

(B) 3D data computation using an LX line 
As shown in Fig. 9, the process for 3D computation using an LX line is similar to the 

case of using an LY line. The two planes Q3 and Q4 may be described by: 

 l3X + m3Y + n3Z = 0; l4X + m4(Y  bsin + n4(Z  bcos) = 0 (16) 

where N3 = [l3, m3, n3]
T and N4 = [l4, m4, n4]

T represent the normal vectors of Q3 and Q4, 
respectively. Also, the direction vector of the LX line is DX = [1, 0, 0]T so that l3= l4 = 0, 
and so Eqs. (16) can be reduced to be 

 A1Y + Z = 0; A2(Y  bsin + (Z  bcos) = 0  (17) 

 

 
Fig. 9. An LX line projected onto two mirrors. Fig. 10. An LZ line projected onto two mirrors. 



 
where A1 = m3/n3 and A2 = m4/n4 which can be obtained by the 1D Hough transform 
process mentioned previously. Eqs. (17) may be solved to get the values of Y and Z as 
follows to specify the location of a point G on the LX line in the Y-Z plane of the CCS: 

 Y = (A2bsin + bcos)/(A2  A1); Z = A1(A2bsin + bcos)/(A2  A1). (18) 

 (C) 3D data computation using an LZ line 
Similarly, as shown in Fig. 10, Q5 and Q6 may be described by: 

 l5X + m5Y + n5Z = 0; l6X + m6(Y  bsin) + n6(Z  bcos) = 0 (19) 

where N5 = [l5, m5, n5]
T and N6 = [l6, m6, n6]

T represent the normal vectors of Q5 and Q6, 
respectively. Eqs. (19) are equivalent to 

 K1X + Y = 0; K2X + (Y  bsin = 0, (20) 

where K1 = l5/m5 and K2 = l6/m6. Also, the direction vector of the LZ line is DZ = [0, 0, 1]T, 
meaning that n5 = n6 = 0, and so Eqs. (2) can be solved to get the values of X and Y as 
follows to specify the location of a point G on the LZ line on the X-Y plane in the CCS: 

 X = (bsin)/(K2  K1); Y = (K1bsin)/(K1  K2). (21) 

4.3  Tree Trunk Detection and Localization 
Before we can apply the formulas derived previously to conduct localization of a tree 

trunk, we have to solve the varying lighting problem occurring during image acquisition, 
which often causes failures of tree trunk detection. For this, we binarize the input image 
by moment-preserving thresholding [11] and conduct image segmentation to obtain a 
group G of candidate feature points. To ensure goodness of the result, we apply principal 
component analysis (PCA) to G. Specifically, as shown in Fig. 11 we compute the 
following data: the center C of the points in G; the height h of C; the eigenvalue pair (1, 
1) of the covariance matrix of the points in G; the eigenvectors e1 = [u1, v1]

T and e2 = [u2, 
v2]

T corresponding to 1 and 2, respectively; the length ratio  of G in terms of the two 
eigenvalues:  = 1/2; and the orientation  of G:  = tan1(v1/u1). Then, we utilize the 
three parameters h, , and  to describe the shape of the tree trunk, and check the 
correctness of the extracted tree trunk points by matching these computed parameter 
values against those “learned” in the learning phase and recorded in the path data  
if the resulting match measure is within a preset tolerance, then the extracted feature 
point group G are regarded correct and used for vehicle localization; otherwise, the 
vehicle is moved a little bit around to conduct a repetition of the above process. 

To localize a tree trunk, we regard the tree trunk axis as a vertical space line and 
apply the previously-proposed LY line localization technique to compute its location with 
respect to the vehicle. Specifically, we extract the centers C1 and C2 of the two groups G1 
and G2 of tree trunk feature points appearing in the image regions of Mirrors S and B, 
respectively, in the input omni-image, and regard them as projections of a single space 
point G on the LY line, as mentioned in Section 4.1. More detailed steps include: 1) 
compute the coordinates (u1, v1) and (u2, v2) of centers C1 and C2, respectively; 2) use (u1, 
v1) and (u2, v2) to look up the pano-mapping table to get the respective elevation-azimuth 
angle pairs (1, 1) and (2, 2) of C1 and C2; 3) use Eqs. (6) and (7) to compute the two 
parameters B1 and B2; 4) use Eqs. (15) to compute the location of the tree trunk axis 



described by X and Z with respect to the vehicle. An example of tree trunk detection and 
corresponding vehicle localization results is shown in Fig. 12. 
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Fig.11. Principal component analysis for tree 
trunk detection. (a) Principal components, e1 
and e2. (b) Orientation . 

Fig. 12. Tree truck detection and localization. 
(a) Extracted tree axis. (b) Computed tree 
location (red spot) with respect to vehicle. 

4.4  Lawn Corner Detection and Localization 
Because the lawn corner is too obscure to be recognized in the omni-image, the 

proposed lawn corner detection process is divided into two stages. When the vehicle 
arrives at a proper position for the detection work, a space line forming one side of the 
corner, appearing as a horizontal space line L1 on the ground, is detected and localized 
firstly. Then, the vehicle is guided to turn left, and the other side of the corner, appearing 
to be another horizontal line L2 perpendicular to L1, is detected and localized as well. 
The two space lines L1 and L2 then are drawn in the input omni-image to cross each other 
to form a corner. Finally, we compute the 3D data of the corner as the localization result.  

The details of this process for estimating the coordinates (Xg, Yg, Zg) of the lawn 
corner in the GCS (global coordinate system) include: 1) acquire an omni-image I1 of the 
lawn; 2) apply image thresholding and edge detection operations to I1 to obtain an edge 
point image I1' of the lawn boundaries; 2) apply the previously-described 1D Hough 
transform to I1' to detect a side boundary L1 of the lawn as an LX line and compute its 
corresponding parameters A1 and A2; 3) use Eqs. (18) to compute the values of Y and Z 
as Y = h1 and Z = d1 which specify the height of the lawn with respect to the CCS and 
the distance of the lawn boundary L1 to the vehicle, respectively; 4) turn the vehicle for 
an angle of 90o and conduct the above steps to obtain two other values of Y and Z as Y = 
h2 and Z = d2 for the other lawn boundary L2; 5) assign values to the coordinates (Xg, Yg, 
Zg) of the lawn corner by Xg = d2, Yg = (h1 + h2)/2, and Zg = d1. An example of the 
results of lawn detection and localization using the above process is shown in Fig.13. 

 

  
(a) (b) (c) (d) 

Fig. 13. Results of lawn corner detection and localization. (a) and (b) Lawn images taken in two 
perpendicular directions. (c) and (d) Lawn boundary detection results. 

5  Artificial Landmark Detection for Vehicle Localization 

The artificial landmarks we use in this study include curb line, signboard, stop line on 
roads, and traffic cones. Their uses for vehicle localization are described now. 



5.1  Proposed Technique for Curb Line Following 
To conduct vehicle navigations on sidewalks, Chou and Tsai [8] proposed a 

technique to localize curb lines with respect to the vehicle. In this study, we propose a 
new method to localize the curb line by the use of the projection of the curb line onto the 
image region of Mirror B in the omni-image. More specifically, we get the feature points 
of the curb line using its color information. Then, we detect the two boundary lines of 
the curb which has a certain width. In the resulting edge-point image, we use the 
previously-proposed LZ line detection method to find the two boundary lines. Then, we 
choose the inner boundary line of the curb to compute its location with respect to the 
vehicle. By the parameter K1 obtained by the previously-described 1D Hough transform 
and the height h of the center of Mirror B, we can know from Eqs. (20) that X = Y/K1. 
Also, it is obvious that Y = h, so we can get the following data of the curb line: 

 X = h/K1; Y = h. (22) 

An example of the experimental results of curb detection and corresponding vehicle 
location estimation using the proposed localization method are shown in Fig. 14. 

 

 
(a) 

 
(b) 

Fig. 14. An example of curb line detection and localization results. (a) Curb line segmentation result. (b) 
Computed curb line location (yellow spot) with respect to vehicle position (blue spot). 

5.2  Signboard Detection and Localization 
The idea of the proposed signboard detection method is to extract the signboard 

contour and apply the same technique as that used for tree trunk detection described 
previously. Due to the obvious signboard color, we use the HSI color model to extract 
the signboard shape from an image. Besides, varying lighting conditions often influence 
the hue and saturation features of the HSI colors of the landmark. Based on learned 
signboard contour information, a dynamic color thresholding scheme is proposed in this 
study to adjust the saturation threshold value Sth to be within a fixed range [S0, S1] for the 
purpose of guaranteeing consistent signboard contour segmentation, where S0 and S1 are 
learned in advance in different lighting conditions in the learning stage. An experimental 
result of signboard segmentation by dynamic thresholding is shown in Fig. 15. 
 

  
   (a) (b) (a) (b) 

Fig. 15. Results of signboard segmentation. (a) 
Result using fixed threshold. (b) Result using 
proposed dynamic thresholding. 

Fig. 16. Signboard localization. (a) Result of 
extracting LY line of signboard (b) Computed 
signboard position (green spot). 

 
After the signboard is segmented successfully, by regarding the vertical signboard 

axis as an LY line perpendicular to the ground, we apply the method we use for detecting 



and localizing the tree trunk described previously in Sec. 4 to compute the position of the 
signboard axis for vehicle localization. The details are omitted due to the page limit. An 
example of the results of such vehicle localization using a signboard is shown in Fig. 16. 

5.3  Stop Line Detection and Localization 
Besides landmarks on the sidewalk, we may also use those on the road for vehicle 

localization. One of the landmarks commonly seen on the road is the stop line which is 
used in this study as well for vehicle localization. Because the stop line on the road has 
obvious color information (mostly white), we also utilize the HSI color model to extract 
it. Then, we detect its boundaries in the input omni-image. Finally, we detect two 
parallel LX lines and one perpendicular LZ line in the edge-point image as illustrated in 
Fig. 17(a), using the previously-proposed 1D Hough transform, to obtain the parameter 
information of the entire boundary shape for use in vehicle localization. An experimental 
result is shown in Figs. 17(b) and 17(c). 

 

  
(a) (b) (c) 

Fig. 17. Result of stop line detection and localization. (a) Result of extracting stop line boundaries 
as LX and LZ lines. (b) Computed positions of stop line (yellow and red spots). 
 

5.4  Traffic Cone Detection and Localization 
When engineering works are conducted on sidewalks, the workers usually put traffic 

cones near the working area to warn people. For this type of situation, we propose to 
detect traffic cones and use them as landmarks. The proposed method for traffic cone 
detection is similar to that for stop line detection. But here we detect one LZ line and one 
LX line to carry out the detection of the traffic cone base which is of the shape of a square. 
After detecting the boundary lines of the traffic cone base, we apply the previously-
mentioned 1D Hough transform to compute two parameters, A1 and K1, for use in 
computing its location. Besides, we also utilize traffic cone corner to compute a LY line 
by which we can draw a vertical line to illustrate the position of the traffic cone in the 
omni-image. An experimental result of detecting the traffic cone using the proposed 
method is given in Fig. 18. 

 

 
(a) 

 
(b) 

Fig. 18. Result of traffic cone localization. (a) Result of extracting LX, LY, and LZ lines of traffic 
cone (b) Computed position of traffic cone (yellow spot) with respect to vehicle.



6  Experimental Results 
The experimental environment was a sidewalk in National Chiao Tung University as 
shown in Figs. 19(a) and 19(b). In each navigation session, the vehicle started from an 
identical spot on the sidewalk just like in the learning process and navigated along the 
recorded navigation path nodes mainly by the curb line following technique. Then, the 
vehicle detected the pre-learned landmarks and localized their positions to adjust its 
odometer readings at each visited path node until reaching the appointed terminal node. 
Many successful navigation sessions have been conducted. A path map with recorded 
vehicle positions at the visited nodes of one navigation session is shown in Fig. 19(c). 

Furthermore, we have tested the precision of vehicle localization in the experiments. 
We computed the errors between the actual positions of the landmarks measured 
manually and the positions of the landmarks computed by the proposed localization 
techniques for eight navigation sessions. The average error percentage of the estimated 
landmark position is 7.52% of an average landmark distance of about 200cm, which 
shows that the precision of the proposed system is satisfactory for real applications, 
considering the width of the sidewalk which is about 400 cm. 

 

 
(a) (b) (c) 

Fig. 19. Experimental environment and a path map. (a) A view of environment. (b) An 
illustration of environment. (c) A path map resulting from a navigation session. 

7  Conclusions 
Construction of a machine guide dog using a two-mirror omni-camera and an 
autonomous vehicle has been proposed, for which several methods have been proposed: 
1) by the use of a learning interface designed in this study, a trainer can guide the vehicle 
to navigate on a sidewalk and construct a navigation path conveniently; 2) two new 
space line detection techniques based on the space mapping method have been proposed; 
3) several landmark detection techniques have been proposed for conducting vehicle 
navigation; and 4) to conduct the landmark detection works more effectively in the 
outdoor environment, techniques for dynamic threshold adjustments have also been 
proposed. Good landmark detection results and successful navigation sessions on a 
sidewalks show the feasibility of the proposed methods. Future researches may be 
directed to detecting pedestrians or bike riders; designing a camera with a smaller size; 
recognizing traffic signals to go through road crossings; etc. 
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