
1 

Data Hiding via XPS Documents − A New Study 
 

Mei-Hua Ho 
Department of Computer Science 
National Chiao Tung University 

Hsinchu, Taiwan 
e-mail: mei.cs97g@nctu.edu.tw 

Wen-Hsiang Tsai 
Department of Computer Science 
National Chiao Tung University 

Hsinchu, Taiwan 
e-mail: whtsai@cis.nctu.edu.tw

 
 

Abstract—A new study on information hiding via the recently-
proposed XPS (XML Paper Specification) document is 
conducted. Three data hiding methods utilizing the properties 
of the XPS document format are proposed. The first 
hierarchically divides an image in an XPS document in various 
ways for message data encoding and embedding. The second 
method superimposes specially-designed gradient patterns on 
an XPS document to hide a message. And the third method 
inserts invisible and width-adjustable ASCII codes between 
words in the text of an XPS file to embed a secret message. The 
proposed data hiding methods are used for the applications of 
covert communication, text authentication, and steganography. 
Measures to enhance the security of each method are also 
suggested. Good experimental results show the feasibility of the 
proposed methods. 

Keywords - XPS document, information hiding, covert 
communication, authentication, gradient pattern, ASCII code. 

I. INTRODUCTION 

With the progress of development in computer and 
networking technologies, digital text documents nowadays 
has become much more popular than in the past. The XPS 
document is a new text file format which is portable to any 
computer to produce identical page layouts with high 
printing and browsing qualities. It has become one of the 
major document formats used in daily communication 
between people. Because the data hiding technique is a good 
way for safe exchanges of information, it is desired to 
develop data hiding techniques via XPS documents in this 
study. To our knowledge of the literature about information 
hiding research, this work has not been attempted so far. 

Existing studies on data hiding techniques via text 
documents are not as many as those via images or videos 
because of the lack of redundant information in texts for 
embedding data. Liu and Tsai [1] utilized a change tracking 
technique in Microsoft Word documents to disguise a stego-
document as a normal collaborative document. The secret 
data are embedded by degeneration of word usages in the 
content of a cover document. Inoue et al. [2] proposed five 
techniques to embed secret data into XML documents, 
including (1) using different representations of an empty 
XML element, (2) inserting white spaces in tags, (3) 
exchanging the order of XML elements, (4) exchanging the 
order of attributes in XML elements, and (5) exchanging 
inner-tags and outer-tags. Meanwhile, Zhong, et al. [3] 
inserted secret data between indirect objects and modified 
the cross reference table in PDF files for data hiding. Also, 

Wang and Tsai [4] achieved authentication of PDF files by 
embedding authentication signals using the modified values 
of PDF object parameters, resulting in a slight difference of 
the PDF appearance that is hard to notice by human eyes. 
However, studies on data hiding via XPS documents are not 
found yet. It is so desirable to design new methods for data 
hiding via XPS documents by use of new features found in 
the XPS format. 

XPS documents contain clear logical and physical 
hierarchies, compared with other similar document formats. 
Physically, the XPS document is a compressed ZIP archive 
called a package, which consists of an XML markup file for 
each page as well as other resources including fonts, images, 
thumbnails, etc. The logical hierarchy of an XPS document 
is illustrated in Fig. 1. Every component or file stored in the 
XPS document is called a part of the package and the 
connection between parts and the document is called 
relationships. The most important part of an XPS document 
is the fixed page part because it describes how a page is 
rendered. 

XPS documents are described by an XML-based 
language, resulting in a fixed-layout document. All rules and 
elements used to compose an XPS document are specified in 
the XPS Specification [5]. The <Glyphs> and the <Path> are 
two major elements used to create graphics and texts with a 
set of attributes to describe the characteristics of graphics 
and texts, such as position, size, color, and so on. 
Accordingly, by modifying the elements or the attribute of 
elements, the page layout may be changed. Our goal in this 
study is to embed data secretly by modifying the description 
of the pages of the original XPS document without changing 
the appearance. 

 

��������	
���
��	����

��������	
���� � ��������	
���� �

������ � � �� � ������ � � � � � ������ � � �� � ������ � � �� �

� 
� � �

����

����

� � ���� ��� ��

� � 	
� �� � �

����

����

� 
� � �

� 
� � �

����

����

� 
� � �

� � 
� ���	
���

��� ���

� � � �

��������	
����������	
����������	
����������	
��

 
Figure 1.  Logical hierarchy of an XPS document. 



2 

In this study, three new data hiding methods via XPS 
documents utilizing properties found in the XPS format are 
proposed. First, it is found that an image in the XPS 
document can be partially displayed in a page by changing 
the properties which describe the image. Based on this 
observation, the first proposed data embedding method is 
designed to divide an image into various block patterns to 
encode the message data to be hidden and reconstructs the 
original image block by block to keep the same appearance of 
the image in the XPS document. The method is used for 
covert communication in this study. 

Next, it is found also that gradient patterns described 
according to the XPS specification may be made invisible 
when superimposed on an XPS document. Therefore, the 
second proposed method uses various gradient patterns to 
encode secret messages and superimpose them on documents 
without arousing notice from observers. This method is used 
for text authentication of XPS documents in this study.  

Finally, by experiments conducted in this study, it was 
found that some ASCII codes used in the text string of the 
XPS document may be made invisible by adjusting their 
advance widths. This property of the XPS document format 
is good for use in data hiding applications like steganography. 

In the remainder of this paper, the three proposed data 
hiding techniques are described in detail from Sections II 
through IV. Experimental results are also included 
respectively to show the feasibility of the proposed methods. 
Security enhancements for the proposed methods are 
discussed for each method. Finally, conclusions are made in 
the last section. 

II. DATA HIDING BY HIERARCHICAL DIVISION OF IMAGES 
IN XPS DOCUMENTS FOR COVERT COMMUNICATION 

In the XPS specification, the �Path� element can be used 
to create an area to display an image in an XPS document 
and the Data attribute can be used to describe the area of the 
image. Accordingly, an image can be partially displayed by 
narrowing the area described by the Data attribute. And by 
this function, an image can be hierarchically divided into 
blocks using multiple �Path� elements. Utilizing these 
properties, we generate block patterns with two levels of 
divisions to encode message bits, and the difference in 
appearance between the original cover image and the 
resulting stego-image is found imperceptible in this study. 
Note that the image is not really divided  division of it is 
just conducted in the XML markup of the XPS document; 
the appearance of the resulting XPS document is totally 
unaffected and so will arouse no notice from any observer 
of the image in the document. 

A. Embedding data in a cover document 
The data hiding process is based on the above 

hierarchical image division and display for message 
encoding makes use of a table designed in this study, which 
includes a list of block patterns obtained by two-level image 
divisions and a set of corresponding 3-bit codes, as shown 
in Table 1, which we call the division pattern encoding table 

subsequently. Accordingly, a message can be embedded into 
an XPS document by dividing a selected cover image in it 
into blocks with their division patterns corresponding to the 
message bits. Fig. 2 shows an illustration. The detail is 
described in the following algorithm. 

Table 1. Division pattern encoding table. 

 
 

 
(a) 

 
(b) 

Figure 2.  An image in an XPS document with a message embedded in it. 
(The edges of the blocks are emphasized on purpose in order to show the 
result.) (a) The entire image with division patterns superimposed (not seen 
in real appearance). (b) The enlarged partial view of (a) with the red 
rectangular part corresponds to a partial message S = 100 001 010 000. 

Algorithm 1. Data embedding by image division. 
Input: a secret message S, a cover XPS document D, and a 

secret key K. 
Output: a stego-XPS document D′. 
Steps: 
1. Use the secret key K as a seed to generate a sequence Q 

of random numbers. 
2. Randomize the characters of the secret message S with Q 

to get a randomized message S′, and let l denote the 
number of characters in S′. 

3. Separate S′ into a series of 3-bit segments s1, s2, …, sk 
according to the following steps. 
3.1 Add a bit 0 at the end of the 8-bit code representing 

each character ci, resulting in a 9-bit segment ci′. 



3 

3.2 Separate ci′ into 3-bit segments s3i+1, s3i+2, and s3i+3, 
where 0 ≤ i ≤ l − 1. 

3.3 Add a 9-bit ending signal consisting of three 3-bit 
segments of the forms sk+1 = 000, sk+2 = 000, sk+3 = 
001 at the end of sk, where k = 3×l. 

4. Map the 3-bit segments s1, s2, …, sk+3 into a series of 
division patterns p1, p2, …, pk+3 according to Table 1. 

5. Add a unit block denoted by p0 at the beginning of the 
series of division patterns. 

6. Perform the following steps on the cover document D. 
6.1 Decompress the XPS file of D. 
6.2 Find a minimum number N such that N2 ≥ k+4. 
6.3 Select an image I in D and modify the XML markup 

file describing I to divide I in the following way. 
6.3.1 Divide image I into n×n blocks, B0, B1, …, 

Bn×n−1. 
6.3.2 Divide each block Bi, 0 ≤ i ≤ n×n−1, according 

to the corresponding division pattern pi, until 
the patterns pk+1, pk+2, and pk+3 corresponding 
to the ending signal are reached and processed. 

6.4 Call the final divided image I the stego-image, and 
denote it by I′. 

7. Recompress D (with I′ in it) with the modified XML file 
to get a stego-XPS document D′. 

B. Extracting data from a stego-document 
The extraction process is similar to the embedding 

process but conducted essentially in a reverse order. First, 
we extract the unit block embedded at the beginning of the 
stego-image to get the information of the block size of the 
division patterns so that we can decode all the remaining 
division patterns in the stego-image. The decoding process 
stops when the ending signal is extracted. Hence, even when 
we do not know the length of the secret message, we still 
know where the end of the message is in the stego-image. 
By using the same secret key, we can recover the correct 
message. 

Algorithm 2. Extracting data from a stego-image. 
Input: a stego-document D′ and the secret key K used in 

Algorithm 1. 
Output: a secret message S. 
Steps: 
1. Decompress the stego-document D′. 
2. Find the XML markup file in D′ which describes a 

stego-image I′. 
3. Extract the first block from I′, supposed to be a unit 

block, and get its height and width. 
4. Extract all subsequent division patterns p1, p2, …, pk 

from I′ until the division patterns pk+1, pk+2, and pk+3 

corresponding to the 9-bit ending signal are 
encountered. 

5. Decode the division patterns p1, p2, …, pk into 
corresponding 3-bit segments s1, s2, …, sk according to 
Table 1. 

6. Concatenate every three segments s3i+1, s3i+2, and s3i+3 
into one and discard the last bit of it to get an 8-bit 
character ci, where 0 ≤ i ≤ l−1. 

7. Concatenate c0, c2, …, cl−1 into a string S′. 
8. Use the secret key K to generate a random number 

sequence Q and use Q to reorder S′ to get the desired 
secret message S as output. 

C. Experimental results 
Fig. 3 shows an example of the experimental results 

where a message “I want to tell you a secret” is embedded 
by Algorithm 1 into an image of the XPS document shown 
in Fig. 3(a), resulting in the stego-document of Fig. 3(b) 
which looks identical to Fig. 3(a). Fig. 4 shows message 
data extraction results using Algorithm 2 with correct and 
wrong keys. The experimental results show that the 
proposed method is effective for covert communication 
applications. 

 

 
(a) 

 
(b) 

Figure 3.  Data hiding by division of images in XPS documents. (a) 
Original XPS document. (b)�Stego-document. 

 



4 

D. Security considerations and enhancements 
In the proposed method, the secret key and the division 

pattern encoding table are known only by both the sender 
and the receiver beforehand. Thus, a malicious user cannot 
extract the secret message successfully without the correct 
secret key. However, he/she may observe the regularity of 
the patterns and guess the secret message by trial and error. 
He/she may disturb or replace some division patterns 
existing in the stego-document, resulting in extracting a 
wrong message. To prevent these situations in advance, in 
addition to using a secret key to randomize the secret 
message content before embedding it (Step 2 of Algorithm 1), 
we may also use the key to reorder the binary value entries of 
the division pattern encoding table. Furthermore, the 
encoding table may be redefined randomly using different 
division patterns or be extended randomly to represent codes 
with lengths larger than 3 bits, both ways controlled by 
anther key. 

III. AUTHENTICATION OF XPS DOCUMENT CONTENTS BY 
SUPERIMPOSITION OF VARIABLE GRADIENT PATTERNS 

We have developed in this study an authentication 
process based on the second proposed data hiding method 
using variable gradient patterns, not only to detect whether 
an XPS document has been tampered with or not, but also to 
highlight which part of the texts has been changed. 

 
 

 
(a) 

 
(b) 

Figure 4.  Data extraction from stego-document. (a) Extraction result 
using right key. (b) Extraction result using wrong key. 

In more detail, linear gradient patterns created by using 
the XML markup language in the XPS can be superimposed 
onto the pages of XPS documents. Invisibility of the 
patterns is achieved by changing the transparency for the 
document. An example is shown in Fig. 5. Accordingly, we 
design a table, called gradient pattern encoding table, which 
includes a list of gradient patterns and a set of 
corresponding codes, as shown in Table 2. Thus, an XPS 
document can be protected by transforming authentication 
signals into several linear gradient patterns which are 
superimposed invisibly onto every page of the document. 

 

 
Figure 5.  A protected XPS document with variable gradient patterns 
superimposed (the patterns are shown for illustration; they actually are 
transparent in the real case). 

Table 2. Gradient pattern encoding table. 

 

A. Authentication signal generation and embedding 
To generate authentication signals, we use a hash 

function to create equal-length digests of text segments and 
other information contained in the �Glyphs� element. Also, 
we create additionally a digest of a user key and combine it 
with the authentication signals to prevent the authentication 
signals from being forged. As a result, the text content and 
even its position in the XPS document can be protected. The 
details are described in the following algorithms. 

Algorithm 3. Authentication signal generation and 
embedding by variable gradient pattern supervision. 

Input: a secret key K, a hash function f (such as MD5), and 
an XPS document D to be protected. 



5 

Output: a protected XPS document D′. 
Steps: 
1. Use the secret key K as an input to the hash function f to 

generate a 64-bit digest K′. 
2. Choose an unprotected text segment T in the original 

document D (with all text segments in D regarded as 
unprotected initially). 

3. Use T as an input to the hash function f to generate a 64-
bit digest T′. 

4. Perform the exclusive-OR operation � to K′ and T′ to get 
a 64-bit authentication signal S = K′�T′. 

5. Separate the bits of S in to a series of 4-bit segments t1, 
t2, …, t16. 

6. Map t1, t2, …, t16 into a series of gradient patterns p1, 
p2, …, p16 according to Table 2. 

7. Starting at the beginning of the text segment T, 
superimpose p1, p2, …, p16 sequentially onto T in D 
invisibly by adjusting the transparency parameter value. 

8. Repeat Steps 2 through 7 until all text segments are 
protected. 

9. Recompress the modified D to get a protected XPS 
document D′. 

B. Authentication signal extraction and verification 
To authenticate a protected XPS document D′, we use 

the same secret key and hash function as those used in 
Algorithm 3 to compute an authentication signal for each 
current text segment T in D′. Also, we extract the 
authentication signal from the gradient patterns 
superimposed on T. The compute authentication signal is 
then compared with the extracted one to decide whether T 
has been modified or not. More details are described in the 
following algorithm. 

Algorithm 4. Authentication signal extraction and 
verification. 

Input: the secret key K and the hash function f used in 
Algorithm 3, and a protected XPS document D′. 

Output: an authenticated XPS document D″. 
Steps: 
1. Use the secret key K as an input to the hash function f to 

generate a 64-bit digest K′. 
2. Choose an unauthenticated text segment T in the 

protected XPS document D′ (with all text segments in D′ 
regarded as unauthenticated initially). 

3. Use T as an input to the hash function f to generate a 64-
bit digest T′. 

4. Perform the exclusive-OR operation � to K′ and T′ to 
get a 64-bit string T″ = K′� T′, called computed 
authentication signal. 

5. Extract the gradient patterns p1, p2, …, p16 which were 
presumably superimposed onto the text segment T. 

6. Map the gradient patterns p1, p2, …, p16 to the 
corresponding 4-bit segments t1, t2, …, t16 according to 
Table 2. 

7. Concatenate t1, t2, …, t16 into a 64-bit string S, called 
extracted authentication signal. 

8. Compare the extracted authentication signal S with the 
computed authentication signal T″: if S = T″, then regard 
T as authentic; otherwise, as modified and highlight T in 
the display of document D′. 

9. Repeat Steps 2 through 8 until all text segments in D′ are 
authenticated. 

10. Take the resulting D′ as an authenticated XPS document 
D′′ with highlighted text segments if there is any. 

C. Experimental results 
An example of the experimental results of XPS document 

authentication is shown in Fig. 6. Fig. 6(a) shows the input 
XPS document. After the authentication signals were 
generated and embedded in it by Algorithm 3, the resulting 
document looks all the same and is not shown here. Fig. 6(b) 
shows a tampering result which includes some fake words. 
Fig. 6(c) shows the authentication result after Algorithm 4 
was applied to Fig. 6(b). All the fake words were detected 
correctly and marked in red. The experimental results show 
that the proposed method is feasible for protection of XPS 
documents. 

D. Security considerations and enhancements 
Using the proposed authentication method, the text 

content of an XPS document can be protected: as long as 
either the text content or the authentication signals are 
modified, we can detect the modification and point out 
which part of the text is suspicious. In addition, because we 
involve a secret key in the process of generating the 
authentication signals, it is hard for a malicious user to forge 
the authentication signals even when he/she knows the 
proposed algorithm. 

However, an obvious leak in security here is that the 
malicious user may create a fake text segment in the stego-
document by replacing both a text segment and its 
corresponding authentication signals with the fake text 
segment and the corresponding authentication signals 
computed from the same XPS document. To solve this 
problem, we may use an additional secret key to randomize 
the positions where the authentication signals are 
superimposed; only when a user has this secret key can 
he/she find where the authentication signal corresponding to 
any text segment is embedded in the stego-document. 
Furthermore, we may use a third key to randomize the 
content of the gradient pattern encoding table (Table 2) so 
that without the key correct gradient patterns cannot be 
generated before being superimposed on text segments, thus 
preventing a malicious user from creating fake authentication 
signals to cheat. 

IV. DATA HIDING BY WIDTH-ADJUSTABLE INVISIBLE 
ASCII CODES IN XPS DOCUMENTS 

The third proposed data hiding method utilizes texts in 
XPS documents as a cover channel. Specifically, when a 
�Glyphs� element in the XPS specification is used to create 
a text segment, its UnicodeString attribute contains the 
string of text rendered by the <Glyphs> element, and its 



6 

Indices attribute specifies a series of glyph indices and their 
attributes used for rendering the glyphs in the text segment. 
The simplest syntax to represent a glyph is: 

GlyphIndex, AdvanceWidth; 

 

 
(a) 

 
(b) 

 
(c) 

Figure 6.  Authentication of XPS documents. (a) Original document. (b) A 
tampered version of (a) with some words modified. (c)�Authenticated result 
with the fake texts detected and marked in red. 

where the GlyphIndex entry, being optional, is the index of 
the glyph in the font and the AdvanceWidth entry indicates 
the placement for the subsequent glyph, relative to the origin 
of the current glyph. 

Based on the above properties, we can insert some ASCII 
space or control codes between words and specify the 
advance width to be zero so that these codes become 
invisible and do not occupy any space in the display of an 
XPS document. Such codes are said to be null. Fig. 7 shows 
an example hiding such null codes into a text segment. By 
experiments conducted in this study, it was found that only 
four ASCII codes, 09, 0A, 0D, and 20, are acceptable in the 
UnicodeString attribute without generating errors. These four 
ASCII codes are used to encode message bits according to a 
table as shown in Table 3, which we call ASCII code 
encoding table. 

 
 

 
Figure 7.  An example of hiding white spaces by adjusting advance width. 

 

Table3. ASCII code encoding table. 

 
 

 
 

A. Embedding message data in a cover document by ASCII 
code encoding 
In the third proposed data hiding method, first the input 

secret message in binary form is randomized by using a 
secret key and separated into bit pairs, which are then 
transformed according to the ASCII code encoding table 
(Table 3) into corresponding codes of 09, 0A, 0D, and 20. 
These ACSII codes finally are inserted between the words in 
the UnicodeString attributes of the text segments in the 
cover document, with their advance widths in the Indices 
attribute being set to be zero. This results in a stego-XPS 
document file with the secret message being embedded. The 
stego-document, when displayed, shows no difference in 
appearance from the original cover document, thus arousing 
no notice from people. 

Algorithm 5. Data embedding by ASCII code encoding. 
Input: A secret message S in binary form, a cover XPS 

document D, and a secret key K. 
Output: A stego-document D′. 
Steps: 



7 

1. Count the number l of bits in the message S and the 
number n of text segments in the cover document D. 

2. Compute the value m = l/2n as the number of bit pairs 
to be embedded into each text segment in D. 

3. Use the secret key K as a seed to generate a sequence Q 
of random numbers. 

4. Randomize the bits of S with Q to get a randomized bit 
string S′. 

5. Separate S′ into pairs of bits, s1, s2, …, sk, each being one 
of 00, 01, 10, and 11, where k = l/2. 

6. Encode each bit pair si according to Table 3 to get a 
corresponding ASCII code ci, which is one of 09, 0A, 
0D, and 20. 

7. Insert m ASCII codes between the words in the 
UnicodeString attribute of each text segment in D if the 
number of between-word spaces is larger than m; 
otherwise, insert the excessive bit pairs at the end of the 
UnicodeString attribute. 

8. Insert a parameter “,0;” into the corresponding position 
of each inserted ASCII code in the Indices attribute, with 
the parameter meaning that the advance width is zero 
and the glyph index is not specified. 

9. Repeat Steps 7 and 8 until all ASCII codes c1 through ck 
are embedded. 

10. Recompress D with the modified text segments to get a 
stego-document D′ as output. 

B. Extracting data from a stego-document 
The message data extraction process is essentially a 

reverse version of the embedding process, and is described 
in the following. 

Algorithm 6. Data extraction process. 
Input: a stego-XPS document D′ and the secret key K used 

in Algorithm 5. 
Output: a secret message S. 
Steps: 
1. Extract a sequence of ASCII codes c1, c2, …, ck, (one of 

09, 0A, 0D, and 20) from each text segment in the 
document D′ where the advance width of each ci is zero. 

2. Transform c1, c2, …, ck, into a sequence of corresponding 
bit pairs s1, s2, …, sk (one of 00, 01, 10, and 11) 
according to Table 3. 

3. Concatenate s1, s2, …, sk into a string S′. 
4. Use the secret key K as a seed to generate a sequence Q 

of random numbers. 
5. Use Q to reorder the bits of S′ to get the desired secret 

message S as output. 

C. Experimental results 
Fig. 8 shows an example of the experimental results of 

applying Algorithm 5 to hide a message, where Fig. 8(a) 
shows the original cover XPS document, and Fig. 8(b) 
shows the resulting stego-image, which looks identical to 
Fig. 8(a). Fig. 9 shows the message extraction results carried 
out by Algorithm 6. The experimental results show the 
feasibility of the proposed method. 

 
(a) 

 
(b) 

Figure 8.  Data hiding by ASCII code encoding. (a) Original XPS 
document. (b)�Stego-document. 

D. Security considerations and enhancements 
The secret key used in the proposed method described 

above is assigned by a user. Thus, even when a malicious 
user knows the proposed algorithm, the secret message 
cannot be extracted successfully without the key. However, a 
weakness here is that a malicious user may disturb the secret 
message by inserting or replacing some ASCII codes 
embedded in a stego-document. As a result, the extracted 
message, even with a correct key, will be erroneous. 

To prevent this situation, we may duplicate the embedded 
codes multiply and determine the positions where these 
additional codes are embedded by the secret key as well. 
Then, when extracting the secret message, we can compare 
all the extracted duplicated ASCII codes and determine the 
correct message by voting. In this way, even part of the 



8 

secret message has been modified, we still can extract the 
message correctly. Moreover, we may use additionally the 
document authentication method (Algorithms 3 and 4) to 
protect not only the contents of XPS document but also the 
contents of the secret message. More specifically, we may 
transform the secret message into corresponding gradient 
patterns as authentication signals and superimpose them on 
the XPS document. The positions where these gradient 
patterns are superimposed can be determined by the user key. 
As a result, we may decide whether the secret message has 
been tampered with or not by the authentication signal 
verification process described by Algorithm 4. 

 

 
(a) 

 
(b) 

Figure 9.  Data extraction from stego-document. (a) Extraction result 
using right key. (b) Extraction result using wrong key. 

V. CONCLUSION 

In this study, we investigate the new problem of 
information hiding via XPS documents and proposed three 
new data hiding techniques for different applications. First, 
a data hiding method for covert communication based on the 

novel use of a division pattern encoding table to encode the 
secret message has been proposed. Also, to verify the 
integrity and fidelity of the text contents of XPS documents, 
an authentication method based on a data hiding technique 
has been proposed, which generates variable gradient 
patterns as authentication signals and superimpose them 
onto an XPS document invisibly. Finally, a data hiding 
method using width-adjustable invisible ASCII codes in the 
XPS document has been proposed for the application of 
steganography, in which a secret message is encoded by 
certain invisible ASCII codes found in this study and 
embedded into between-word spaces by adjusting their 
advance widths to be zero. Moreover, measures to enhance 
the security of each proposed method have also been 
suggested. The experimental results show the feasibility of 
the proposed methods and the appearance of the XPS 
document is totally unaffected after the proposed methods 
have been applied. Future studies may be directed to 
investigating more features of the XPS document 
specification and designing accordingly more data hiding 
methods for information hiding applications. 

REFERENCES 
[1] T. Y. Liu and W. H. Tsai, “A new steganographic 

method for data hiding in Microsoft Word documents 
by a change tracking technique,” IEEE Transactions on 
Information Forensics and Security, vol. 2, no. 1, pp. 
24-30, March 2007. 

[2] S. Inoue, K. Makino, I. Murase, O. Takizawa, T. 
Matsumoto, and H. Nakagawa. “Proposal on 
information hiding method using XML,” Proceedings 
of 1st NLP and XML Workshop, Tokyo, Japan, Nov. 
2001. 

[3] S. Zhong, X. Cheng, and T. Chen, “Information 
steganography algorithm based on PDF documents,” 
Computer. Engineering, vol. 32, no. 3, pp. 161-163, 
Feb. 2006. 

[4] C. T. Wang and W. H. Tsai, “Data hiding in PDF files 
and applications by imperceivable modifications of 
PDF object parameters,” Proceedings of 2008 
Conference on Computer Vision, Graphics and Image 
Processing, Ilan, Taiwan, Aug. 2008. 

[5] Microsoft Co., XML Paper Specification, Version 1.0, 
Oct. 2006. 

 


