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ABSTRACT 

An augmented reality (AR)-based tour guidance 

system for use in streets by computer vision techniques is 

proposed. The system can guide a user to a goal building 

and display building information and walking directions 

in an AR manner on the screen of a user-held smart phone. 

During system learning, a tour guidance map is generated, 

which includes a top-view street map and the images and 

information of the buildings along the street to be visited. 

A method for building recognition by image matching 

using speeded up robust features (SURFs) is proposed. A 

user localization method is proposed then which is based 

on building recognition around the user and novel 

applications of the camera calibration techniques used in 

computer vision. Furthermore, a method for AR-based 

guidance using a shortest path generated by the Dijkstra 

algorithm is proposed. Finally, methods for AR-based 

building-information augmentation and guidance-arrow 

generation are proposed, which overlays related 

information on the user-held mobile-device screen to 

guide the user to walk to the destination. Good 

experimental results are also presented to show the 

feasibility of the proposed system for real applications. 

Keywords: augmented reality, tour guidance, mobile 

device, vanishing points, user localization. 

1. INTRODUCTION 

The augmented reality (AR) technique can be used to 

enhance the real-world image with virtual objects or 

digital information. It becomes popular recently for uses 

in many applications because it provides an intuitive way 

for people to interact with the environment. One 

application is to develop an AR-based guidance system 

for touring in streets, which provides a user with the 

information of surrounding buildings and walking 

directions on mobile devices in an AR manner. In using 

such a kind of system during walking, AR-based guidance 

arrows are displayed on the mobile device continuously, 

which are more intuitive to follow than a conventional 

map while trying to reach a goal spot, as illustrated by Fig. 

1. In this way, a user can get a complete guidance along a 

visited street without helps from human guides and maps. 

The goal of this study is to develop such a type of 
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AR-based guidance system for touring in street areas 

using a smart phone. 
 

 
 

(a) (b) 
Fig. 1: Illustrations of AR-based tour guidance systems. (a) An 
example by MapFan [1]. (b) A snapshot of the screen of a smart 

phone used in the system proposed in this study. 
 

About AR-related works, Reitmayr et al. [2] 

presented a model-based tracking method for AR 

applications in urban environments. In Grosch [3], 

panoramic images are used in an image-based method for 

navigation in a real environment. Narzt et al. [4] proposed 

an AR navigation system which improves the depiction of 

virtual objects in a real world to assist navigation. 

Krichenbauer et al. [5] designed an AR-based user 

interface for creating 3D models for movies and games. 

About image-based AR techniques for tour guidance, 

robust features like SURF [6] are often utilized, as is done 

in this study. In addition, for AR-based guidance the most 

importance task is accurate user localization (also called 

user positioning). For this, we utilize the camera 

calibration technique proposed by Wang and Tsai [7] in 

this study. For tour guidance, Katz et al. [8] integrates an 

adapted geographic information system with different 

classes of objects useful for improving route selection and 

guidance. About the used equipment for AR, smart 

wearable devices are becoming popular, including Google 

Goggles [9], Kooaba [10], and Amazon Snaptell [11], 

which are used for identifying products. Furthermore, an 

application using a head-mounted device (HMD) was 

proposed by Kato et al. [12], which overlays virtual 

images on real objects like papers or whiteboards, etc. 

To construct the proposed AR-based street-tour 

guidance system using computer vision techniques, 

client-server architecture is adopted, with a computer 

used as the server to perform user localization, and the 

smart phone used as the client that augments guidance 

and building information on its screen. The system is 

designed to have the following capabilities. 1) “Learning” 

street paths and building information organized into a tour 
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guidance map. 2) Detecting and matching building image 

features (SURFs). 3) Conducting user localization for 

tour guidance. 4) Augmenting building and guidance 

information the mobile-device screen. 5) Planning a 

shortest path to a destination building. 6) Showing 

step-by-step guidance arrows in realtime to lead the user 

to the destination. 

The remainder of this paper is organized as follows. 

In Sec. 2, the configuration and processes of the proposed 

system are introduced. In Sec. 3, the learning process for 

constructing the tour guidance map is described. In Sec. 4, 

the proposed method for building recognition and user 

localization by image matching using SURFs is presented. 

In Sec. 5, the proposed methods for shortest-path and 

guidance-arrow generations for AR-based tour guidance 

are presented. In Sec. 6, some experimental results and 

discussions are included. Finally, conclusions and some 

suggestions for future works are given in Sec. 7. 

2.  SYSTEM DESIGN AND PROCESSES 

2.1 System Design 

When using the system to visit a street, a user holds 

a mobile device to receive AR-based guidance in the 

following way. At first, the user selects a destination 

building along the street listed in a guidance map as input. 

Next, he/she takes an image of a nearby building which 

then recognized by the system as a starting point of the 

visit. Then, a path from the start point to the destination 

building is planned by the system and displayed on the 

mobile device screen to guide the user to reach the 

destination.  

To implement the proposed system, the adopted 

architecture is shown in Fig. 2, where the client device is 

a mobile device mentioned above which accesses a server 

through a wireless network. The reason why a server is 

used is to reduce the computation load of the client device 

so that realtime guidance can be accomplished. Through 

the network, the server receives images from the client 

device and conducts the works of user localization, path 

planning, etc., and returns the result to the client. 
 

Take Picture
Client-side Server-side

Send Image

Send Matching Result  
Fig. 2: The network architecture of the proposed system. 

 

2.2 Learning Process 

The learning process of the proposed system 

constructs mainly a tour guidance map for use during the 

tour guidance process. At first, a real-world map of the 

street area to be visited is drawn and associated with the 

information of buildings in the area. Also, the path to be 

followed in the tour guidance is saved as part of the map. 

Next, we walk on the path and stop in front of each 

building at a spot along the path at an appropriate 

distance from the building to start learning of the 

buildings around. The actions taken in the learning 

include acquiring a number of surrounding-building 

images by turning around 360
o
 at the spot and measuring 

manually the distances to the buildings. The resulting 

images and distance data are put into the tour guidance 

map finally.  

After this learning step, we continue to walk along 

the path and repeat the actions in the front of the next 

along-path building until the path is traversed to its end. 

Furthermore, the features in each taken image are 

detected by an SURF extraction algorithm, and used to 

build a feature table organized in the form of a k-d tree. 

2.3 Tour Guidance Process 

In the tour guidance process, the user takes a building 

image in each visit step and sends it to the server by a 

mobile device. Then, the server detects the image features 

by the SURF extraction algorithm, and matches them 

against the above-mentioned feature table. From the 

matching result, we conduct user localization, including 

computation of the user’s position and orientation, by 

computer vision techniques using vanishing points. 

Accordingly, the system augments relevant building 

information on the mobile-device screen. Or if the user is 

searching for a destination building, the system plans a 

path from the user position to the destination and shows 

the result on the mobile-device screen using step-by-step 

AR-based guidance arrows. The details will be described 

in subsequent sections. 

3. LEARNING OF TOUR GUIDANCE MAP 

3.1 Creation of Real-world Map 

In this section, we introduce some methods we 

propose to construct the tour guidance map. The data 

associated with this map, as mentioned previously, 

includes: (1) the information about the location of each 

spot where we take building images; (2) the images of the 

buildings along the path; (3) the information of the 

buildings in the street area to be visited; and (4) the 

feature table of the building images for recognition. 

At first, we get a 2D real-world map like the Google 

Map (see Fig. 3(a)) of the concerned tour area. Next, we 

associate related information with the map, which 

includes, an introduction to the street area, the name of 

each selected building, and so on. Finally, we save the 

map with data type “.jpeg” into the tour guidance map. 
 

  
(a) (b) 

Fig. 3: (a) The real-world map of the main part of the NCTU campus 

downloaded from the Google Map site. (b) The real-world map which is 

used in the process. 
 

3.2 Creation and Association of Street-image Nodes 

In this section, we present the method we propose 

for building street-image nodes as part of the tour 

guidance map for use in path planning as an algorithm 

described in the following. 

Algorithm 1. Street-image node establishment. 

Input: a selected path. 

Output: street-image nodes along the path. 
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Steps. 

1. Stand on the starting spot of a selected path in the 

street area. 

2. Record the position of the spot in the real-world 

environment into the tour guidance map. 

3. Turn around through the range of 360
o
 at the spot as 

illustrated by Fig. 4, and take an image every 45
o
, 

resulting in eight images of the surrounding buildings. 

4. Set up a street-image node whose data include the 

position recorded in Step 2 and the images taken in 

Step 3. 

5. Walk to the next position by advancing 4 meters. 

6. Repeat Steps 2 to 5 until the end of the selected path is 

reached. 

With the above algorithm carried out, for the 

example shown in Fig. 3(b), we set up totally 78 

street-image nodes and 624 images in the tour guidance 

map. 
 

45°

Take an image for 

each direction

 
Fig. 4 Illustration of the method which we taken images. 

 

3.3 Calibration between Street-image Nodes and 

Real-world Map 

In this study, the street area for touring is measured 

in terms of length units in the real world. But the street 

image we take has its size represented in terms of the unit 

of pixel. Therefore, a calibration between the length unit 

used in real-world data and the pixel unit used in the 

taken image is necessary. As an example, the street area 

shown in Fig. 3(b) is 190 meters in width and 111 meters 

in height in the real world, and the digital map which we 

constructed and used by the proposed system is 700 

pixels in width and 400 pixels in height. To calibrate the 

parameters between the real-world distance and the pixel, 

we conduct the following computation: 

 
pixelmeterpixelmeter /27.0700190   (1) 

which means that a pixel in the image is 0.27 meter in 

length in the real world. Also, the distance between every 

two path nodes is 4 meters in length as mentioned before, 

which may be converted into a value in terms of pixels by 

the following computation: 

 
pixelpixelmetermeter 1527.04 /   (2) 

which means the distance between two path nodes is 15 

pixels in length in the digital map. 

4. IMAGE RECOGNITION FOR USER 

LOCALIZATION 

4.1 Building Recognition by SURFs 

In the tour guidance process, the server receives 

images from the client at first. The images taken at the 

client side are of the resolution of 480 pixels in width, 

640 pixels in height; and are transformed into gray-level 

images for reducing the transfer time to the server side. 

Because the speed of the image matching process 

depends on the number of used features, we have to 

decide the range of the number of features in the image 

which should be used for the matching process. 

According to our experimental experience, the more 

features we extract for matching, the better performance 

we can obtain, but the slower the resulting speed of 

matching. So, we decide that the number of features that 

the server side detects to be in the range of 500 to 1000 

by experimental experience. 

After extracting features from the acquired image, 

we match them against the pre-constructed feature table 

associated with the tour guidance map for the purpose of 

building recognition. We adopt a k-Nearest Neighbor 

(kNN) matching method and set k as 2 to accomplish the 

purpose of building recognition. We call this way of 

matching 2NN method. Each feature extracted from the 

image received from the client side is given a similarity 

distance after it is compared with each of the features in 

the feature table. The similarity distances then are sorted 

in an ascending order. And if the smallest distance 

divided by the second smallest distance is larger than 1.5, 

we can say that the matching result of this feature is good, 

or we reject it and check the next feature. If the matching 

result between a pair of features, one in the input image 

and the other in the feature table, is good, we draw a line 

between them, meaning that the two features are similar. 

This procedure is repeated until all the features in the 

image received from the client side are processed. 

We have conducted many experiments using the 

2NN matching method. However, error analysis of the 

experimental results showed that the method is not good 

enough to deal with complicated outdoor scenes. An 

example is shown in Fig. 5, in which each feature-pair 

matching result is marked by two red circles. The left 

circle encloses a feature in the left image received from 

the client which we call the query image, and the right 

circle encloses the corresponding feature in the right 

image which is in the database, called the training image. 

The matching result of this feature pair is obviously 

erroneous. To solve this problem, we propose further a 

structure matching method, which takes the similarity 

between the structures of the features both in the query 

image and in the training image into consideration, not 

just dealing with the numerical similarity between the two 

feature sets in the two images. 
 

  
(a) (b) 

Fig. 5. The contrast image of the result after steps of algorithm 4.2(a) 
The original matching result. (b) The improvement result. 

 

More specifically, in the proposed structure 

matching method, say, we select a feature matching pair 

from the matching result, including a reference feature r1 

in the query image and a corresponding reference feature 
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r1' in the training image. A vector v1 from r1 to r1' can 

then be defined. In this way, we can also define vectors v2, 

v3, …, vn for all the remaining matched feature pairs. All 

these vectors are regarded to originate from the origin of 

a coordinate system. Then, we compute the distances d2, 

d3, …, dn of v2, v3, …, vn with respect to v1, respectively. 

If the matching of every feature pair is good, then all the 

vectors v1 through vn, when made to originate from the 

origin of the coordinate system, will point to the same 

direction and so overlap perfectly. Therefore, if the 

distance di between v1 and any vector vi with n  i  2 is 

too large, we can say that vi is distinct from v1. 

Consequently, we may discard vi because the vector is not 

similar to v1. In other words, we discard the pairs which 

do not satisfy structural similarity.  

It can be seen from the above process that the 

selection of the reference vector v1 is crucial. How to 

select it will be presented in the following algorithm 

which describes the proposed structure matching method 

mentioned above. 

Algorithm 2. Structure matching for improving 

matching accuracy. 

Input: the feature matching pairs between two images. 

Output: the feature matching pairs with more accuracy. 

Steps. 
1. Match the query image and the training image to get 

the matching-feature pairs. 

2. Find the top five pairs with the smallest distances in all 

the matching pairs. 

3. Average the corresponding vectors of the five pairs to 

get a reference vector v1. 

4. Compute the distance between vector v1 and the next 

vector, and discard the pair if the distance of the two 

vectors is too large. 

5. Repeat the above two steps to confirm that all the other 

pairs satisfy the structure relationship of the matching 

result. 

4.2 Speeding up Feature Matching 

In the previous section, we introduce the 

SURF-matching algorithm for the purpose of image 

recognition. When a huge number of image feature points 

in a database needs to be matched, the speed is usually 

slow. Specifically, the matching time grows in the order 

of O(n
2
) where n is the number of images in the database 

In order to solve this problem, we organize all the image 

features in the database into a k-d tree data structure by 

which the feature-matching time grows in the order of 

O(log2n), which is a great improvement. The complete 

steps implementing this technique are described as an 

algorithm below. 

Algorithm 3. Speeding up feature matching. 

Input: the features f1, f2, …, fn of the input image I and a 

k-d tree T of all the image features of the database. 

Output: the matching result of each fi in I, i = 1~n. 

Steps. 

1. Traverse the k-d tree T from its root node Nroot which is 

assigned initially to be the feature fi = f1, and if the first 

axis value of f1 is larger than the first axis value of T, 

then go to the right subtree of T; otherwise, go to the 

left subtree. 

2. Repeat the traversing action of Step 1 until a leaf node 

Nleaf at the bottom of tree T is reached. 

3. Set the leaf node Nleaf temporarily as the best matching 

result. 

4. Check the whole path in T from Nleaf to Nroot 

recursively, and update the best result to be the node 

which is the most similar to f1. 

5. Repeat Steps 1 through 4 with root node Nroot = fi+1 

until a matching result is found for each feature of f1, 

f2, …, fn. 

6. Count the number of the features that have been 

matched successfully for each image in the database, 

and the image whose features have been matched with 

the largest frequency is the best result. 

A series of experiments of image recognition have 

been conducted using the matching algorithms presented 

in the last two sections, and the results are shown in Table 

1, from which we can see that using a k-d tree indeed can 

improve the matching speed up to 150 times faster though 

the resulting image recognition rate is lowered a little bit 

from 96.1% down to 94.8%. 
 

Table 1. Results of image recognition rate by using SURFs. 

 
Number of 
test cases 

Number of 
correct 

recognition 

Recognition 
rate  

Average 
matching 
time (sec) 

Using a k-d tree 77 73 94.8% 1.7 

Use no k-d tree 77 74 96.1% 256 

 

4.3 Derivation of User’s Position and Orientation 

Parameters by a Calibration Object 

It is known that the parallel edges on a target object 

like the rectangular parallelepiped shown in Fig. 6 will 

appear to be vanishing lines in an image of the object, and 

that each pair of vanishing lines will extend to intersect at 

a vanishing point. The camera calibration method 

proposed by Wang and Tsai [7] uses the properties of such 

vanishing points to compute the camera’s position and 

orientation in a world coordinate system. The method was 

found in this study to be applicable subtly to solve the 

user localization problem, including computations of the 

user’s position and orientation. 

In detail, let P0 ~ P7 be the eight vertices of a target 

object, a rectangular parallelepiped, shown in Fig. 6. 

Define two coordinate systems for use here, one being a 

world coordinate system (WCS) in which the object is 

located, and the other a camera coordinate system (CCS) 

built on a camera used to take images of the object. The 

origin of the WCS is defined to be vertex P3 of the object 

with the X-axis going through edge 
2 3P P , the Y-axis 

through edge 
3 4P P , and the Z-axis through edge 

3 6P P . 

The world coordinates of the eight vertices of the object 

are known in advance by manual measurement. 
 

P0

P5

P4

P6

P7

P3

P1

P2 XY

Z

 
Fig. 6 The calibration target used in the calibration method adopted 
in this study for user localization. 
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The CCS is shown in Fig. 7 with the camera’s lens 

center L as the origin. The V-axis of the CCS is the 

optical axis of the camera and the U-W plane is parallel to 

the image plane located at V = f, with f being the camera 

focal length. The U'-axis and the W'-axis, which are 

parallel to the U-axis and the W-axis, respectively, define 

the coordinates of any point in the image plane. 
 

W

V

U
f

W’

U’

Z

Y

X

L

 
Fig. 7 Two coordinate systems: camera coordinate system UVW and 

world coordinate system XYZ. 
 

We now define the camera parameters with respect 

to the WCS. Suppose that the camera lens center L is 

located at world coordinates (xc, yc, zc), and the pan, tilt, 

and swing angles of the camera are θ, φ, ψ, respectively. 

Based on these parameters, two matrices, one for 

translation and the other for rotation, used in the 

world-to-camera coordinate transformation can be 

defined in the following way: 

1 0 0 0

0 1 0 0

0 0 0 1

1c c c

T

x y z

 
 
 
 
 
 

; 
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For brevity of representation, matrix M is denoted 

alternatively as 
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where A through I are those in the corresponding entries 

of the matrix M in Eq. (3). Now, the coordinate 

transformation between the two coordinate systems, from 

the world coordinates (x, y, z) to the camera coordinates 

(v, u, w), can be written simply as 
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That is, we have 

( ) ( ) ( )c c cu D x x E y y F z z      , 

( ) ( ) ( )c c cv A x x B y y C z z      , 
 ( ) ( ) ( )c c cw G x x H y y I z z      . (6) 

So for any point p at coordinates (x, y, z) in the WCS, 

according to the imaging geometry of the pinhole camera 

model, the coordinates (u', w') of its corresponding 

projection point p' in the image can be computed as: 

   






 


v
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And the vanishing point Vx = (ux
', wx

') in the x-direction 

can be computed according to Eqs. (6) and (7) with x 

approaching infinity in the following: 
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From matrix M defined in Eq. (3), the above equation can 

be reduced to be 
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Similarly, by Eqs. (6) and (7) with y approaching 

infinity, the vanishing point Vy = (uy
', wy

') in the 

y-direction can be derived to be 
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And the coordinates of the vanishing point Vz = (uz
', vz

') 

in the z-direction can be computed similarly to be 
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The equations derived above are for use in 3D 

applications, but for our study here we are dealing with 

2-D cases because we may assume that the user takes 

images in a normal posture such that the camera held by 

the user is vertical to ground and facing the target. 

Accordingly, we can set both the tilt and swing angles φ 

and ψ of the camera to be 0. In accordance, the equations 

for computing the vanishing point Vy = (uy
', wy

') in the 

y-direction derived previously in Eqs. (10) can be 

simplified to be 
 

 
cos

, , 0
sin

y yu w f




 
    

 
. (12)

 

By using Eq. (12) above, we can derive the pan angle θ, 

which may be considered as the user’s orientation, to be  

 
)atan( 

yu

f


 . (13)

 

In addition, we nay regard the user’s position as that 

of the camera lens center with world coordinates (xc, yc, 

zc). Suppose that P1 at coordinates (x1, y1, z1) and P2 at 

coordinates (x2, y2, z2) are any two known points in the 

WCS and that their corresponding projection points in the 

image plane are P1
' at coordinates (u1

', w1
') and P2

' = 

(u2
', w2

'), respectively. By Eq. (8) we have 
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Any three of these four equations can be selected to 

derive analytic solutions for the camera position 

parameters xc, yc, and zc. Here we take Eqs. (14), (15), and 

(16). The three equations can be transformed into 

 1 1 1 1

2 2 2 2

3 3 3 3
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Then, solving the three simultaneous linear equations in 

Eqs. (18), we get unique solutions for xc, yc, and zc as: 
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4.4 Derivation of User Position and Orientation  

The above derivations of user orientation and 

position and (xc, yc, zc) are based on the use of a 

calibration object which is a rectangular parallelepiped. It 

is found in this study that instead of using inconveniently 

a target object in the guidance process for user 

localization, the image matching result can be utilized as 

a substitute for the target object. Actually, the matching 

result can be processed further to find appropriate 

vanishing points on which the user localization process 

described in the last section can be applied. 

Specifically, after matching the query image Iq with 

the training image It using SURFs, we discard the pairs 

which are not similar, and get two feature-point sets Fq 

and Ft, where each feature point in Fq has a corresponding 

point in Ft. Then, we choose randomly four pairs of 

corresponding feature points from Fq and Ft and use them 

to find a projection relationship from Iq to It by a 

homographic transformation defined by the following 

equation: 
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where (xi, yi), i = 1~4 and (xi', yi'), i = 1~4 are the 

coordinates of the four chosen points pi in Fq and those of 

the corresponding four chosen points pi
' in Ft; and hij are 

the elements of the homography matrix H specified as 

follows: 
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Eqs. (20) describes a linear system which may be solved 

to obtain the elements hij in matrix H. However, H so 

computed might not be good enough because the the four 

matching-point pairs (pi, pi
') were chosen randomly. 

Therefore, we check the goodness of the computed H by 

the following way: (1) map the coordinates (xj, yj) of each 

feature point pj in Fq by H in the following way: 
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to get a pair of coordinates (xj
”, yj

”); (2) compute the 

distance dj between the computed coordinates (xj
”, yj

”) 

and the coordinates (xj
', yj

') of the feature point pj
' in Ft 

corresponding to pj; (3) if d is smaller than a pre-selected 

threshold t, then we call this feature-point pair (pj, pj
') an 

inlier; otherwise, an outlier; (4) if the number of inliers is 

larger than two times that of the outliers, then take the 

current H as a good homography matrix and exit, 

otherwise, take another set of 4 feature-point pairs from 

Fq and Ft again and repeat the above steps until done. 

Next, to show the mapping specified by the 

computed homography matrix H clearly for visual 

inspection, we apply H to find the projection of the four 

corners of the query image Iq onto the training image It, 

and draw the result as a red or green quadrilateral like the 

three examples shown in Fig. 8. From the drawn red 

quadrilateral overlaid on the training image in each 

example, we can see that the four corner points of the 

query image appear respectively at the correct 

corresponding points in the training image. Furthermore, 

the upper and lower sides of the red quadrilateral, though 

appearing in the training image, actually are exactly the 

vanishing lines of the query image. Therefore, we 

compute the coordinates (uy
', vy

') of the intersection point 

of the two vanishing lines for use as a vanishing point 

which is finally used for user localization as described 

previously to get the orientation and position of the user 

as described by Eqs. (13) and (19). 

 

  
(a) (b) 

 
(c) 

Fig. 8 Three examples of projection from the query image (left) to the 

training image (right) drawn as a red or green quadrilateral. 

5.  AUGMENTED REALITY-BASED 

TECHNIQUES FOR BUILDING INTRODUCTION 

AND STREET GUIDANCE 

5.1 Augmenting Names and Information of Buildings 

on User-view Images 

In this section, we describe the method we propose 

to calculate the position of a concerned building 

appearing on the user’s mobile-device screen according to 

the image matching result, and augment accordingly the 

corresponding building information at a correct position 

on the mobile-device screen. 

Firstly, the position for building-information 

augmentation on the mobile-device screen is computed 

according to the drawn red quadrilateral mentioned 

previously. The top-left corner of the red quadrilateral is 

used as the anchor point for displaying the augmented 

information, as illustrated by the example shown in Fig. 

9(a). And if the top-left corner of the red quadrilateral is 

out of the image, then the anchor point is taken to be just 

the top-left corner of the mobile-device screen, as 
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illustrated by the example shown in Fig. 9(b). Afterwards, 

we augment at the anchor point relevant building 

information, which includes the building’s name, distance, 

and orientation, as illustrated by the two examples shown 

in Fig. 9. Of course, other more relevant information may 

also be shown. 
 

  
(a) (b) 

Fig. 9 Using top-left corner of quadrilateral as anchor point for 

information augmentation. 
 

5.2 Path Planning and AR-based Guidance 

The proposed AR-based street guidance process in 

concept is based on the use of a path planned by use of 

the Dijkstra algorithm from the user’s current position to 

a selected destination which is a building along the street. 

More specifically, at first the user is asked to select a 

building to visit as the destination node Nd, and then to 

take an image of the nearest building around him/her in 

the street for user localization. Next, the user’ current 

position yielded by the user localization process is taken 

as the start node Ns, and the Dijkstra algorithm is applied 

to plan a path from Ns to Nd. Then, AR-based street 

guidance is started in a pedestrian dead reckoning (PDR) 

fashion. That is, the user is guided to the next node Ni in 

the planned path and asked to take an image of the nearby 

building there for the system to conduct user localization 

to confirm his/her arrival at Ni correctly. The system then 

updates the user position as the current node and guides 

the user to the next node Ni+1 in the planned path. Such a 

process is repeated until reaching the destination node. 

Guidance of the user in each step of this process is 

accomplished by showing a guidance arrow on the 

use-held mobile-device screen. More details are described 

in the following algorithm. 

Algorithm 4. AR-based guidance by path planning 

using the Dijkstra algorithm. 

Input: a user identified by the proposed system. 

Output: guidance of the user to a destination node. 

Steps. 

1. Ask the user to select a building he/she wants to visit 

as the destination node Nd. 

2. Ask the user to take an image of a nearby building for 

recognition to conduct user localization, and use the 

resulting user position as the start node Ns. 

3. Find a shortest path P by the Dijkstra algorithm from 

Ns to Nd, and let the nodes in the path be denoted as 

{N1, N2, …, Nn} where N1 = Ns and Nn = Nd. 

4. Set i = 1 and get the initial node Ni = N1 = Ns in P. 

5. Guide the user from node Ni to the next node Ni+1 in P 

by drawing an AR-based guidance arrow on the user’s 

mobile-device screen pointing to a direction Darrow 

computed in the following way: 

5.1) compute the next-node direction Di from Ni to Ni+1; 

5.2) take to be the reading of the electronic compass 

built in the user-held mobile device as the current 

user’s direction Duser 

5.3) compute the guidance-arrow direction Darrow in 

terms of Di and Duser according to Algorithm 5 

(described in the next section). 

6. While the user is walking, update the direction Darrow 

of the guidance arrow in the following way and display 

it continuously: 

6.1) update the value of Duser by checking the new 

reading of the electronic compass; 

6.2) compute a new direction Darrow
' for the guidance 

arrow in terms of the data of both the next-node 

direction Di and the updated Duser according to 

Algorithm 5 (described in the next section). 

7. Ask the user at the just-reached spot (not necessarily 

Ni+1) to take an image of a nearby building again for 

recognition to conduct user localization, and check the 

yielded user’s position to perform one of the following 

four cases: 

7.1) if the user has not arrived at node Ni+1, go to Step 6; 

7.2) if the user has arrived at node Ni+1, then set i = i + 1 

and go to Step 5; 

7.3) if the user has arrived at the destination node Nn, 

then go to Step 8; 

7.4) if the user has arrived at a node Nother other than 

Ni+1 and Nn, then set Nother as a new start node Ns, 

and go to Step 3 to re-plan a new path and start a 

new guidance session. 

8. Show the message “GOAL” as well as an introduction 

to the destination building on the mobile-device scree. 

In the above algorithm, checking if the user has 

arrived at a certain node Ni is accomplished by checking 

if the user position is within a certain range of the node. 

5.3 Generation of AR-based Guidance Arrow 

In Steps 5 and 6 of Algorithm 4, a guidance arrow is 

generated and overlaid on the street-scene image acquired 

by the mobile-device camera and shown on the device 

screen to guide the user to the next node or to the 

destination in the planned path. The direction Darrow of the 

arrow is computed is computed according to Algorithm 5 

described in this section.  

Algorithm 5. Generation of a guidance arrow. 
Input: the current node Ni of the planned path P (which 

is also the user’s current location), the next node Ni+1 

of P, and the user’s direction Duser taken to be the 

electronic-compass reading value. 

Output: a proper guidance arrow drawn on the device. 

Steps. 
1. Compute the direction Di from Ni to Ni+1. 

2. Select a proper guidance arrow according to Di and 

Duser in the following way: 

2.1) if 45
o
(Di – Duser)<45

o
, select a forward arrow; 

2.2) if 45
o
(Di  Duser)<135

o
, select a left-turn arrow; 

2.3) if 135
o
(Di  Duser)<225

o
, select a backward arrow; 

2.4) if 225
o
(Di  Duser)<315

o
, select a right-turn arrow. 

3. Update the arrow to point to the correct direction and 

draw it on the user’s mobile-device screen. 

6. EXPERIMENTAL RESULTS 

An area taken for conducting AR-based tour guidance 

experiments in this study is an avenue in the campus of 
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National Chiao Tung University with five large buildings 

alongside. An experimental result of the guidance process 

using the proposed system along a path in the tour area is 

shown in Fig. 10. The interface for selecting the 

destination building is shown in Fig. 10(a). Fig. 10(b) 

shows an arrow guiding the user to the next node. Fig. 

10(c) shows an updated arrow when the user turned left. 

Figs. 10(d) and (e) are two results of guiding the user to 

the next nodes after updating the user’s location. Fig. 10(f) 

shows the message “GOAL” augmented on the device 

screen when the user arrived at the destination. 
 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 10. An example of intermediate experimental results of a guidance 

process conducted by use of the proposed system. 
 

Some more experimental results of image recognition 

by the method proposed in Sec. 4 are shown in Fig. 11. 

Figs. 11(a) and (b) are two input images which were 

taken by the user. They also appear in the left parts of 

Figs. 11(c) and (d), respectively. The right parts in Figs. 

11(c) and (d) are the recognition results in which red 

quadrilateral rectangles are drawn to verify the 

correctness of the matchings. Two more examples are 

shown in Figs. (e) through (h). 

7. CONCLUSIONS 

A system for AR-based tour guidance along streets 

has been proposed for use on a user-held mobile device. 

The system shows an augmented arrow in every guidance 

step on the mobile-device screen to lead the user to a goal 

building, and augment the building information on the 

screen for inspection. Techniques proposed to design such 

a system include a method for street-building recognition 

SURF matching; a method for speeding up feature 

matching using a k-d tree; a computer vision-based 

method for user localization; a method for path planning 

by the Dijkstra algorithm; and a method for creating 

guidance arrows in realtime to lead the user to the 

destination. The experimental results have revealed the 

feasibility of the proposed system for real applications. 

Future studies may be directed to user localization 

with street images taken with tilt angles; use of other 

devices to implement the system, likes Google glass; 

providing a more convenient way to learn the 

environment map and an automatic way to construct the 

database; conducting experiments under different weather 

conditions and in various street scenes, etc. 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
(g) 

 
(h) 

Fig. 11 Results of image recognition. 

REFERENCES 
[1] MapFan.com. (2015, June). “MapFan AR Global,” [online], 

available: https://www.mapfan.com/iphone /arg/  
[2] G. Reitmayr and T. W. Drummond, “Going out: robust 

model-based tracking for outdoor augmented reality,” Proc. 
IEEE/ACM Int. Symp. on Mixed & Augmented Reality, 2006, Santa 
Barbara, CA, pp. 109-118, Oct. 2006. 

[3] T. Grosch, “PanoAR: Interactive Augmentation of 
Omni-Directional Images with Consistent Lighting,” Proc. CV/CG 
Collaboration Techniques & Applications, INRIA Rocquencourt, 
France, pp. 25-34, 2005.  

[4] W. Narzt, G. Pomberger, A. Ferscha, D. Kolb, R. Muller, J. 
Wieghardt, H. Hortner, and C. Lindinger, “Augmented reality 
navigation systems,” Universal Access in the Inform. Soc., Vol. 4, 
Issue 3, pp 177-187, March 2006. 

[5] M. Krichenbauer, G. Yamamoto, T. Taketomi, C. Sandor, H. Kato, 
“Towards Augmented Reality User Interfaces in 3D Media 
Production,” Proc. IEEE/ACM Int. Symp. on Mixed & Augmented 
Reality, 2014, Munich, Germany, pp. 23-28, Sept. 2014. 

[6] Herbert Bay, T. Tuytelaars and L. Van Gool, "SURF: Speeded Up 
Robust Features," Proc. 9th European Conf. on CV, Graz, Austria, 
pp. 404-417, May 2006. 

[7] L. L. Wang and W. H. Tsai, "Camera calibration by vanishing lines 
for 3D computer vision," IEEE Trans. PAMI, Vol. 13, No. 3, pp. 
370-376, March 1991. 

[8] B. Katz, et al. “Navig: Augmented reality guidance system for the 
visually impaired,” Virtual Reality, Vol. 16, No. 4, pp. 253–269, 
June 2012. 

[9] Google. (2015, March). “Google Goggles: use pictures to search the 
web,” [online], available: http://www.google.com/mobile/goggles 

[10] Kooaba. (2015, March). “Kooaba Visual Search: get instant product 
information,” [online], available: http://www.kooaba.com. 

[11] Amazon. (2015, March). “Amazon Remembers: create a visual list 
of products,” [online], available: http://www.amazon.com/gp/ 
remembers. 

[12] H. Kato and M. Billinghurst, “Marker Tracking and HMD 
Calibration for a Video-based Augmented Reality Conferencing 
System,” Proc. IEEE & ACM Int. Workshop on Augmented Reality, 
San Francisco, CA, pp. 85-64, Oct. 1999. 

https://www.mapfan.com/iphone%20/arg/

