
 1

AUGMENTED REALITY-BASED TOUR GUIDANCE IN STREETS BY

COMPUTER VISION TECHNIQUES USING SMART PHONES
†

1
Song-Tsung Ho (侯松圳),

2
Yu-Shiuan Tsai (蔡宇軒) and

3
Wen-Hsiang Tsai (蔡文祥)

1
Institute of Multimedia Engineering
2
Computer Vision Research Center

3
Department of Computer Science

National Chiao Tung University, Hsinchu, Taiwan

Emails: c00203@hotmail.com, whtsai@cis.nctu.edu.tw

ABSTRACT

An augmented reality (AR)-based tour guidance

system for use in streets by computer vision techniques is

proposed. The system can guide a user to a goal building

and display building information and walking directions

in an AR manner on the screen of a user-held smart phone.

During system learning, a tour guidance map is generated,

which includes a top-view street map and the images and

information of the buildings along the street to be visited.

A method for building recognition by image matching

using speeded up robust features (SURFs) is proposed. A

user localization method is proposed then which is based

on building recognition around the user and novel

applications of the camera calibration techniques used in

computer vision. Furthermore, a method for AR-based

guidance using a shortest path generated by the Dijkstra

algorithm is proposed. Finally, methods for AR-based

building-information augmentation and guidance-arrow

generation are proposed, which overlays related

information on the user-held mobile-device screen to

guide the user to walk to the destination. Good

experimental results are also presented to show the

feasibility of the proposed system for real applications.

Keywords: augmented reality, tour guidance, mobile

device, vanishing points, user localization.

1. INTRODUCTION

The augmented reality (AR) technique can be used to

enhance the real-world image with virtual objects or

digital information. It becomes popular recently for uses

in many applications because it provides an intuitive way

for people to interact with the environment. One

application is to develop an AR-based guidance system

for touring in streets, which provides a user with the

information of surrounding buildings and walking

directions on mobile devices in an AR manner. In using

such a kind of system during walking, AR-based guidance

arrows are displayed on the mobile device continuously,

which are more intuitive to follow than a conventional

map while trying to reach a goal spot, as illustrated by Fig.

1. In this way, a user can get a complete guidance along a

visited street without helps from human guides and maps.

The goal of this study is to develop such a type of

† This work was supported financially by NSC project No.

102-2221-E-009-106-.
2 Wen-Hsiang Tsai is also with the Dept. of Information Communication,

Asia University, Taichung, Taiwan 41354.

AR-based guidance system for touring in street areas

using a smart phone.

(a) (b)
Fig. 1: Illustrations of AR-based tour guidance systems. (a) An
example by MapFan [1]. (b) A snapshot of the screen of a smart

phone used in the system proposed in this study.

About AR-related works, Reitmayr et al. [2]

presented a model-based tracking method for AR

applications in urban environments. In Grosch [3],

panoramic images are used in an image-based method for

navigation in a real environment. Narzt et al. [4] proposed

an AR navigation system which improves the depiction of

virtual objects in a real world to assist navigation.

Krichenbauer et al. [5] designed an AR-based user

interface for creating 3D models for movies and games.

About image-based AR techniques for tour guidance,

robust features like SURF [6] are often utilized, as is done

in this study. In addition, for AR-based guidance the most

importance task is accurate user localization (also called

user positioning). For this, we utilize the camera

calibration technique proposed by Wang and Tsai [7] in

this study. For tour guidance, Katz et al. [8] integrates an

adapted geographic information system with different

classes of objects useful for improving route selection and

guidance. About the used equipment for AR, smart

wearable devices are becoming popular, including Google

Goggles [9], Kooaba [10], and Amazon Snaptell [11],

which are used for identifying products. Furthermore, an

application using a head-mounted device (HMD) was

proposed by Kato et al. [12], which overlays virtual

images on real objects like papers or whiteboards, etc.

To construct the proposed AR-based street-tour

guidance system using computer vision techniques,

client-server architecture is adopted, with a computer

used as the server to perform user localization, and the

smart phone used as the client that augments guidance

and building information on its screen. The system is

designed to have the following capabilities. 1) “Learning”

street paths and building information organized into a tour

 2

guidance map. 2) Detecting and matching building image

features (SURFs). 3) Conducting user localization for

tour guidance. 4) Augmenting building and guidance

information the mobile-device screen. 5) Planning a

shortest path to a destination building. 6) Showing

step-by-step guidance arrows in realtime to lead the user

to the destination.

The remainder of this paper is organized as follows.

In Sec. 2, the configuration and processes of the proposed

system are introduced. In Sec. 3, the learning process for

constructing the tour guidance map is described. In Sec. 4,

the proposed method for building recognition and user

localization by image matching using SURFs is presented.

In Sec. 5, the proposed methods for shortest-path and

guidance-arrow generations for AR-based tour guidance

are presented. In Sec. 6, some experimental results and

discussions are included. Finally, conclusions and some

suggestions for future works are given in Sec. 7.

2. SYSTEM DESIGN AND PROCESSES

2.1 System Design

When using the system to visit a street, a user holds

a mobile device to receive AR-based guidance in the

following way. At first, the user selects a destination

building along the street listed in a guidance map as input.

Next, he/she takes an image of a nearby building which

then recognized by the system as a starting point of the

visit. Then, a path from the start point to the destination

building is planned by the system and displayed on the

mobile device screen to guide the user to reach the

destination.

To implement the proposed system, the adopted

architecture is shown in Fig. 2, where the client device is

a mobile device mentioned above which accesses a server

through a wireless network. The reason why a server is

used is to reduce the computation load of the client device

so that realtime guidance can be accomplished. Through

the network, the server receives images from the client

device and conducts the works of user localization, path

planning, etc., and returns the result to the client.

Take Picture
Client-side Server-side

Send Image

Send Matching Result
Fig. 2: The network architecture of the proposed system.

2.2 Learning Process

The learning process of the proposed system

constructs mainly a tour guidance map for use during the

tour guidance process. At first, a real-world map of the

street area to be visited is drawn and associated with the

information of buildings in the area. Also, the path to be

followed in the tour guidance is saved as part of the map.

Next, we walk on the path and stop in front of each

building at a spot along the path at an appropriate

distance from the building to start learning of the

buildings around. The actions taken in the learning

include acquiring a number of surrounding-building

images by turning around 360
o
 at the spot and measuring

manually the distances to the buildings. The resulting

images and distance data are put into the tour guidance

map finally.

After this learning step, we continue to walk along

the path and repeat the actions in the front of the next

along-path building until the path is traversed to its end.

Furthermore, the features in each taken image are

detected by an SURF extraction algorithm, and used to

build a feature table organized in the form of a k-d tree.

2.3 Tour Guidance Process

In the tour guidance process, the user takes a building

image in each visit step and sends it to the server by a

mobile device. Then, the server detects the image features

by the SURF extraction algorithm, and matches them

against the above-mentioned feature table. From the

matching result, we conduct user localization, including

computation of the user’s position and orientation, by

computer vision techniques using vanishing points.

Accordingly, the system augments relevant building

information on the mobile-device screen. Or if the user is

searching for a destination building, the system plans a

path from the user position to the destination and shows

the result on the mobile-device screen using step-by-step

AR-based guidance arrows. The details will be described

in subsequent sections.

3. LEARNING OF TOUR GUIDANCE MAP

3.1 Creation of Real-world Map

In this section, we introduce some methods we

propose to construct the tour guidance map. The data

associated with this map, as mentioned previously,

includes: (1) the information about the location of each

spot where we take building images; (2) the images of the

buildings along the path; (3) the information of the

buildings in the street area to be visited; and (4) the

feature table of the building images for recognition.

At first, we get a 2D real-world map like the Google

Map (see Fig. 3(a)) of the concerned tour area. Next, we

associate related information with the map, which

includes, an introduction to the street area, the name of

each selected building, and so on. Finally, we save the

map with data type “.jpeg” into the tour guidance map.

(a) (b)

Fig. 3: (a) The real-world map of the main part of the NCTU campus

downloaded from the Google Map site. (b) The real-world map which is

used in the process.

3.2 Creation and Association of Street-image Nodes

In this section, we present the method we propose

for building street-image nodes as part of the tour

guidance map for use in path planning as an algorithm

described in the following.

Algorithm 1. Street-image node establishment.

Input: a selected path.

Output: street-image nodes along the path.

 3

Steps.

1. Stand on the starting spot of a selected path in the

street area.

2. Record the position of the spot in the real-world

environment into the tour guidance map.

3. Turn around through the range of 360
o
 at the spot as

illustrated by Fig. 4, and take an image every 45
o
,

resulting in eight images of the surrounding buildings.

4. Set up a street-image node whose data include the

position recorded in Step 2 and the images taken in

Step 3.

5. Walk to the next position by advancing 4 meters.

6. Repeat Steps 2 to 5 until the end of the selected path is

reached.

With the above algorithm carried out, for the

example shown in Fig. 3(b), we set up totally 78

street-image nodes and 624 images in the tour guidance

map.

45°

Take an image for

each direction

Fig. 4 Illustration of the method which we taken images.

3.3 Calibration between Street-image Nodes and

Real-world Map

In this study, the street area for touring is measured

in terms of length units in the real world. But the street

image we take has its size represented in terms of the unit

of pixel. Therefore, a calibration between the length unit

used in real-world data and the pixel unit used in the

taken image is necessary. As an example, the street area

shown in Fig. 3(b) is 190 meters in width and 111 meters

in height in the real world, and the digital map which we

constructed and used by the proposed system is 700

pixels in width and 400 pixels in height. To calibrate the

parameters between the real-world distance and the pixel,

we conduct the following computation:

pixelmeterpixelmeter /27.0700190 (1)

which means that a pixel in the image is 0.27 meter in

length in the real world. Also, the distance between every

two path nodes is 4 meters in length as mentioned before,

which may be converted into a value in terms of pixels by

the following computation:

pixelpixelmetermeter 1527.04 / (2)

which means the distance between two path nodes is 15

pixels in length in the digital map.

4. IMAGE RECOGNITION FOR USER

LOCALIZATION

4.1 Building Recognition by SURFs

In the tour guidance process, the server receives

images from the client at first. The images taken at the

client side are of the resolution of 480 pixels in width,

640 pixels in height; and are transformed into gray-level

images for reducing the transfer time to the server side.

Because the speed of the image matching process

depends on the number of used features, we have to

decide the range of the number of features in the image

which should be used for the matching process.

According to our experimental experience, the more

features we extract for matching, the better performance

we can obtain, but the slower the resulting speed of

matching. So, we decide that the number of features that

the server side detects to be in the range of 500 to 1000

by experimental experience.

After extracting features from the acquired image,

we match them against the pre-constructed feature table

associated with the tour guidance map for the purpose of

building recognition. We adopt a k-Nearest Neighbor

(kNN) matching method and set k as 2 to accomplish the

purpose of building recognition. We call this way of

matching 2NN method. Each feature extracted from the

image received from the client side is given a similarity

distance after it is compared with each of the features in

the feature table. The similarity distances then are sorted

in an ascending order. And if the smallest distance

divided by the second smallest distance is larger than 1.5,

we can say that the matching result of this feature is good,

or we reject it and check the next feature. If the matching

result between a pair of features, one in the input image

and the other in the feature table, is good, we draw a line

between them, meaning that the two features are similar.

This procedure is repeated until all the features in the

image received from the client side are processed.

We have conducted many experiments using the

2NN matching method. However, error analysis of the

experimental results showed that the method is not good

enough to deal with complicated outdoor scenes. An

example is shown in Fig. 5, in which each feature-pair

matching result is marked by two red circles. The left

circle encloses a feature in the left image received from

the client which we call the query image, and the right

circle encloses the corresponding feature in the right

image which is in the database, called the training image.

The matching result of this feature pair is obviously

erroneous. To solve this problem, we propose further a

structure matching method, which takes the similarity

between the structures of the features both in the query

image and in the training image into consideration, not

just dealing with the numerical similarity between the two

feature sets in the two images.

(a) (b)

Fig. 5. The contrast image of the result after steps of algorithm 4.2(a)
The original matching result. (b) The improvement result.

More specifically, in the proposed structure

matching method, say, we select a feature matching pair

from the matching result, including a reference feature r1

in the query image and a corresponding reference feature

 4

r1' in the training image. A vector v1 from r1 to r1' can

then be defined. In this way, we can also define vectors v2,

v3, …, vn for all the remaining matched feature pairs. All

these vectors are regarded to originate from the origin of

a coordinate system. Then, we compute the distances d2,

d3, …, dn of v2, v3, …, vn with respect to v1, respectively.

If the matching of every feature pair is good, then all the

vectors v1 through vn, when made to originate from the

origin of the coordinate system, will point to the same

direction and so overlap perfectly. Therefore, if the

distance di between v1 and any vector vi with n i 2 is

too large, we can say that vi is distinct from v1.

Consequently, we may discard vi because the vector is not

similar to v1. In other words, we discard the pairs which

do not satisfy structural similarity.

It can be seen from the above process that the

selection of the reference vector v1 is crucial. How to

select it will be presented in the following algorithm

which describes the proposed structure matching method

mentioned above.

Algorithm 2. Structure matching for improving

matching accuracy.

Input: the feature matching pairs between two images.

Output: the feature matching pairs with more accuracy.

Steps.
1. Match the query image and the training image to get

the matching-feature pairs.

2. Find the top five pairs with the smallest distances in all

the matching pairs.

3. Average the corresponding vectors of the five pairs to

get a reference vector v1.

4. Compute the distance between vector v1 and the next

vector, and discard the pair if the distance of the two

vectors is too large.

5. Repeat the above two steps to confirm that all the other

pairs satisfy the structure relationship of the matching

result.

4.2 Speeding up Feature Matching

In the previous section, we introduce the

SURF-matching algorithm for the purpose of image

recognition. When a huge number of image feature points

in a database needs to be matched, the speed is usually

slow. Specifically, the matching time grows in the order

of O(n
2
) where n is the number of images in the database

In order to solve this problem, we organize all the image

features in the database into a k-d tree data structure by

which the feature-matching time grows in the order of

O(log2n), which is a great improvement. The complete

steps implementing this technique are described as an

algorithm below.

Algorithm 3. Speeding up feature matching.

Input: the features f1, f2, …, fn of the input image I and a

k-d tree T of all the image features of the database.

Output: the matching result of each fi in I, i = 1~n.

Steps.

1. Traverse the k-d tree T from its root node Nroot which is

assigned initially to be the feature fi = f1, and if the first

axis value of f1 is larger than the first axis value of T,

then go to the right subtree of T; otherwise, go to the

left subtree.

2. Repeat the traversing action of Step 1 until a leaf node

Nleaf at the bottom of tree T is reached.

3. Set the leaf node Nleaf temporarily as the best matching

result.

4. Check the whole path in T from Nleaf to Nroot

recursively, and update the best result to be the node

which is the most similar to f1.

5. Repeat Steps 1 through 4 with root node Nroot = fi+1

until a matching result is found for each feature of f1,

f2, …, fn.

6. Count the number of the features that have been

matched successfully for each image in the database,

and the image whose features have been matched with

the largest frequency is the best result.

A series of experiments of image recognition have

been conducted using the matching algorithms presented

in the last two sections, and the results are shown in Table

1, from which we can see that using a k-d tree indeed can

improve the matching speed up to 150 times faster though

the resulting image recognition rate is lowered a little bit

from 96.1% down to 94.8%.

Table 1. Results of image recognition rate by using SURFs.

Number of
test cases

Number of
correct

recognition

Recognition
rate

Average
matching
time (sec)

Using a k-d tree 77 73 94.8% 1.7

Use no k-d tree 77 74 96.1% 256

4.3 Derivation of User’s Position and Orientation

Parameters by a Calibration Object

It is known that the parallel edges on a target object

like the rectangular parallelepiped shown in Fig. 6 will

appear to be vanishing lines in an image of the object, and

that each pair of vanishing lines will extend to intersect at

a vanishing point. The camera calibration method

proposed by Wang and Tsai [7] uses the properties of such

vanishing points to compute the camera’s position and

orientation in a world coordinate system. The method was

found in this study to be applicable subtly to solve the

user localization problem, including computations of the

user’s position and orientation.

In detail, let P0 ~ P7 be the eight vertices of a target

object, a rectangular parallelepiped, shown in Fig. 6.

Define two coordinate systems for use here, one being a

world coordinate system (WCS) in which the object is

located, and the other a camera coordinate system (CCS)

built on a camera used to take images of the object. The

origin of the WCS is defined to be vertex P3 of the object

with the X-axis going through edge
2 3P P , the Y-axis

through edge
3 4P P , and the Z-axis through edge

3 6P P .

The world coordinates of the eight vertices of the object

are known in advance by manual measurement.

P0

P5

P4

P6

P7

P3

P1

P2 XY

Z

Fig. 6 The calibration target used in the calibration method adopted
in this study for user localization.

 5

The CCS is shown in Fig. 7 with the camera’s lens

center L as the origin. The V-axis of the CCS is the

optical axis of the camera and the U-W plane is parallel to

the image plane located at V = f, with f being the camera

focal length. The U'-axis and the W'-axis, which are

parallel to the U-axis and the W-axis, respectively, define

the coordinates of any point in the image plane.

W

V

U
f

W’

U’

Z

Y

X

L

Fig. 7 Two coordinate systems: camera coordinate system UVW and

world coordinate system XYZ.

We now define the camera parameters with respect

to the WCS. Suppose that the camera lens center L is

located at world coordinates (xc, yc, zc), and the pan, tilt,

and swing angles of the camera are θ, φ, ψ, respectively.

Based on these parameters, two matrices, one for

translation and the other for rotation, used in the

world-to-camera coordinate transformation can be

defined in the following way:

1 0 0 0

0 1 0 0

0 0 0 1

1c c c

T

x y z

;

1000

0coscossinsincos

0sinsincossincoscoscossinsincoscossin

0sincoscossinsincossinsinsinsincoscos

M . (3)

For brevity of representation, matrix M is denoted

alternatively as

1000

0

0

0

IFC

HEB

GDA

M (4)

where A through I are those in the corresponding entries

of the matrix M in Eq. (3). Now, the coordinate

transformation between the two coordinate systems, from

the world coordinates (x, y, z) to the camera coordinates

(v, u, w), can be written simply as

)()()(

),()()(

),()()(

1,,,1,,, 1

ccc

ccc

ccc

zzIyyHxxG

zzFyyExxD

zzCyyBxxA

MTzyxwuv . (5)

That is, we have

() () ()c c cu D x x E y y F z z ,

() () ()c c cv A x x B y y C z z ,
 () () ()c c cw G x x H y y I z z . (6)

So for any point p at coordinates (x, y, z) in the WCS,

according to the imaging geometry of the pinhole camera

model, the coordinates (u', w') of its corresponding

projection point p' in the image can be computed as:

v

wf

v

uf
wu ,, . (7)

And the vanishing point Vx = (ux
', wx

') in the x-direction

can be computed according to Eqs. (6) and (7) with x

approaching infinity in the following:

() () ()
lim ,

() () ()
, ,

() () ()
lim

() () ()

c c c

x
c c c

x x

c c c

x
c c c

T
D x x E y y F z z

f
A x x B y y C z z D G

u w f f
G x x H y y I z z A A

f
A x x B y y C z z

. (8)

From matrix M defined in Eq. (3), the above equation can

be reduced to be

sinsinsincoscos

sincoscossinsin
,

sinsinsincoscos

cossin
, ffwu xx . (9)

Similarly, by Eqs. (6) and (7) with y approaching

infinity, the vanishing point Vy = (uy
', wy

') in the

y-direction can be derived to be

sinsincoscossin

sinsincossincos
,

sinsincoscossin

coscos
, ffwu yy . (10)

And the coordinates of the vanishing point Vz = (uz
', vz

')

in the z-direction can be computed similarly to be

sincos

coscos
,

sincos

sin
, ffwu zz . (11)

The equations derived above are for use in 3D

applications, but for our study here we are dealing with

2-D cases because we may assume that the user takes

images in a normal posture such that the camera held by

the user is vertical to ground and facing the target.

Accordingly, we can set both the tilt and swing angles φ

and ψ of the camera to be 0. In accordance, the equations

for computing the vanishing point Vy = (uy
', wy

') in the

y-direction derived previously in Eqs. (10) can be

simplified to be

cos

, , 0
sin

y yu w f

. (12)

By using Eq. (12) above, we can derive the pan angle θ,

which may be considered as the user’s orientation, to be

)atan(

yu

f

 . (13)

In addition, we nay regard the user’s position as that

of the camera lens center with world coordinates (xc, yc,

zc). Suppose that P1 at coordinates (x1, y1, z1) and P2 at

coordinates (x2, y2, z2) are any two known points in the

WCS and that their corresponding projection points in the

image plane are P1
' at coordinates (u1

', w1
') and P2

' =

(u2
', w2

'), respectively. By Eq. (8) we have

 ccc

ccc

zzCyyBxxA

zzFyyExxD
fu

111

111

1 ; (14)

 ccc

ccc

zzCyyBxxA

zzIyyHxxG
fw

111

111

1 ; (15)

 cc

ccc

zzCyyBcxxA

zzFyyExxD
fu

222

222

2 ; (16)

 cc

ccc

zzCyyBcxxA

zzIyyHxxG
fw

222

222

2 . (17)

Any three of these four equations can be selected to

derive analytic solutions for the camera position

parameters xc, yc, and zc. Here we take Eqs. (14), (15), and

(16). The three equations can be transformed into

 1 1 1 1

2 2 2 2

3 3 3 3

;

;

c c c

c c c

c c c

a x b y c z d

a x b y c z d

a x b y c z d

 (18)

where

;

;

;

;

1111111

11

11

11

zcybxad

CufFc

BufEb

AufDa

 ;

;

;

;

1212122

12

12

12

zcybxad

CwfIc

BwfHb

AwfGa

 3 2

3 2

3 2

3 3 2 3 2 3 2

;

;

;

.

a fD u A

b fE u B

c fF u C

d a x b y c z

Then, solving the three simultaneous linear equations in

Eqs. (18), we get unique solutions for xc, yc, and zc as:

 6

333

222

111

333

222

111

cba

cba

cba

cbd

cbd

cbd

xc ;

333

222

111

333

222

111

cba

cba

cba

cda

cda

cda

yc ;

333

222

111

333

222

111

cba

cba

cba

dba

dba

dba

zc . (19)

4.4 Derivation of User Position and Orientation

The above derivations of user orientation and

position and (xc, yc, zc) are based on the use of a

calibration object which is a rectangular parallelepiped. It

is found in this study that instead of using inconveniently

a target object in the guidance process for user

localization, the image matching result can be utilized as

a substitute for the target object. Actually, the matching

result can be processed further to find appropriate

vanishing points on which the user localization process

described in the last section can be applied.

Specifically, after matching the query image Iq with

the training image It using SURFs, we discard the pairs

which are not similar, and get two feature-point sets Fq

and Ft, where each feature point in Fq has a corresponding

point in Ft. Then, we choose randomly four pairs of

corresponding feature points from Fq and Ft and use them

to find a projection relationship from Iq to It by a

homographic transformation defined by the following

equation:

111 1 1 1 1 1

121 1 1 1 1 1

132 2 2 2 2 2

212 2 2 2 2 2

23 3 3 3 3 3

3 3 3 3 3 3

4 4 4 4 4 4

4 4 4 4 4 4

1 0 0 0

0 0 0 1

1 0 0 0

0 0 0 1

1 0 0 0

0 0 0 1

1 0 0 0

0 0 0 1

hx y x x y x

hx y x y y y

hx y x x y x

hx y x y y y

hx y x x y x

x y x y y y

x y x x y x

x y x y y y

1

1

2

2

2 3

23 3

31 4

32 4

x

y

x

y

x

h y

h x

h y

.

(20)

where (xi, yi), i = 1~4 and (xi', yi'), i = 1~4 are the

coordinates of the four chosen points pi in Fq and those of

the corresponding four chosen points pi
' in Ft; and hij are

the elements of the homography matrix H specified as

follows:

 11 12 13

21 22 23

31 32 1

h h h

H h h h

h h

.
 (21)

Eqs. (20) describes a linear system which may be solved

to obtain the elements hij in matrix H. However, H so

computed might not be good enough because the the four

matching-point pairs (pi, pi
') were chosen randomly.

Therefore, we check the goodness of the computed H by

the following way: (1) map the coordinates (xj, yj) of each

feature point pj in Fq by H in the following way:

 11 12 13

21 22 23

31 32 1 1

''
j j

''
j j

w x h h h x

w y h h h y

w h h

 (22)

to get a pair of coordinates (xj
”, yj

”); (2) compute the

distance dj between the computed coordinates (xj
”, yj

”)

and the coordinates (xj
', yj

') of the feature point pj
' in Ft

corresponding to pj; (3) if d is smaller than a pre-selected

threshold t, then we call this feature-point pair (pj, pj
') an

inlier; otherwise, an outlier; (4) if the number of inliers is

larger than two times that of the outliers, then take the

current H as a good homography matrix and exit,

otherwise, take another set of 4 feature-point pairs from

Fq and Ft again and repeat the above steps until done.

Next, to show the mapping specified by the

computed homography matrix H clearly for visual

inspection, we apply H to find the projection of the four

corners of the query image Iq onto the training image It,

and draw the result as a red or green quadrilateral like the

three examples shown in Fig. 8. From the drawn red

quadrilateral overlaid on the training image in each

example, we can see that the four corner points of the

query image appear respectively at the correct

corresponding points in the training image. Furthermore,

the upper and lower sides of the red quadrilateral, though

appearing in the training image, actually are exactly the

vanishing lines of the query image. Therefore, we

compute the coordinates (uy
', vy

') of the intersection point

of the two vanishing lines for use as a vanishing point

which is finally used for user localization as described

previously to get the orientation and position of the user

as described by Eqs. (13) and (19).

(a) (b)

(c)

Fig. 8 Three examples of projection from the query image (left) to the

training image (right) drawn as a red or green quadrilateral.

5. AUGMENTED REALITY-BASED

TECHNIQUES FOR BUILDING INTRODUCTION

AND STREET GUIDANCE

5.1 Augmenting Names and Information of Buildings

on User-view Images

In this section, we describe the method we propose

to calculate the position of a concerned building

appearing on the user’s mobile-device screen according to

the image matching result, and augment accordingly the

corresponding building information at a correct position

on the mobile-device screen.

Firstly, the position for building-information

augmentation on the mobile-device screen is computed

according to the drawn red quadrilateral mentioned

previously. The top-left corner of the red quadrilateral is

used as the anchor point for displaying the augmented

information, as illustrated by the example shown in Fig.

9(a). And if the top-left corner of the red quadrilateral is

out of the image, then the anchor point is taken to be just

the top-left corner of the mobile-device screen, as

 7

illustrated by the example shown in Fig. 9(b). Afterwards,

we augment at the anchor point relevant building

information, which includes the building’s name, distance,

and orientation, as illustrated by the two examples shown

in Fig. 9. Of course, other more relevant information may

also be shown.

(a) (b)

Fig. 9 Using top-left corner of quadrilateral as anchor point for

information augmentation.

5.2 Path Planning and AR-based Guidance

The proposed AR-based street guidance process in

concept is based on the use of a path planned by use of

the Dijkstra algorithm from the user’s current position to

a selected destination which is a building along the street.

More specifically, at first the user is asked to select a

building to visit as the destination node Nd, and then to

take an image of the nearest building around him/her in

the street for user localization. Next, the user’ current

position yielded by the user localization process is taken

as the start node Ns, and the Dijkstra algorithm is applied

to plan a path from Ns to Nd. Then, AR-based street

guidance is started in a pedestrian dead reckoning (PDR)

fashion. That is, the user is guided to the next node Ni in

the planned path and asked to take an image of the nearby

building there for the system to conduct user localization

to confirm his/her arrival at Ni correctly. The system then

updates the user position as the current node and guides

the user to the next node Ni+1 in the planned path. Such a

process is repeated until reaching the destination node.

Guidance of the user in each step of this process is

accomplished by showing a guidance arrow on the

use-held mobile-device screen. More details are described

in the following algorithm.

Algorithm 4. AR-based guidance by path planning

using the Dijkstra algorithm.

Input: a user identified by the proposed system.

Output: guidance of the user to a destination node.

Steps.

1. Ask the user to select a building he/she wants to visit

as the destination node Nd.

2. Ask the user to take an image of a nearby building for

recognition to conduct user localization, and use the

resulting user position as the start node Ns.

3. Find a shortest path P by the Dijkstra algorithm from

Ns to Nd, and let the nodes in the path be denoted as

{N1, N2, …, Nn} where N1 = Ns and Nn = Nd.

4. Set i = 1 and get the initial node Ni = N1 = Ns in P.

5. Guide the user from node Ni to the next node Ni+1 in P

by drawing an AR-based guidance arrow on the user’s

mobile-device screen pointing to a direction Darrow

computed in the following way:

5.1) compute the next-node direction Di from Ni to Ni+1;

5.2) take to be the reading of the electronic compass

built in the user-held mobile device as the current

user’s direction Duser

5.3) compute the guidance-arrow direction Darrow in

terms of Di and Duser according to Algorithm 5

(described in the next section).

6. While the user is walking, update the direction Darrow

of the guidance arrow in the following way and display

it continuously:

6.1) update the value of Duser by checking the new

reading of the electronic compass;

6.2) compute a new direction Darrow
' for the guidance

arrow in terms of the data of both the next-node

direction Di and the updated Duser according to

Algorithm 5 (described in the next section).

7. Ask the user at the just-reached spot (not necessarily

Ni+1) to take an image of a nearby building again for

recognition to conduct user localization, and check the

yielded user’s position to perform one of the following

four cases:

7.1) if the user has not arrived at node Ni+1, go to Step 6;

7.2) if the user has arrived at node Ni+1, then set i = i + 1

and go to Step 5;

7.3) if the user has arrived at the destination node Nn,

then go to Step 8;

7.4) if the user has arrived at a node Nother other than

Ni+1 and Nn, then set Nother as a new start node Ns,

and go to Step 3 to re-plan a new path and start a

new guidance session.

8. Show the message “GOAL” as well as an introduction

to the destination building on the mobile-device scree.

In the above algorithm, checking if the user has

arrived at a certain node Ni is accomplished by checking

if the user position is within a certain range of the node.

5.3 Generation of AR-based Guidance Arrow

In Steps 5 and 6 of Algorithm 4, a guidance arrow is

generated and overlaid on the street-scene image acquired

by the mobile-device camera and shown on the device

screen to guide the user to the next node or to the

destination in the planned path. The direction Darrow of the

arrow is computed is computed according to Algorithm 5

described in this section.

Algorithm 5. Generation of a guidance arrow.
Input: the current node Ni of the planned path P (which

is also the user’s current location), the next node Ni+1

of P, and the user’s direction Duser taken to be the

electronic-compass reading value.

Output: a proper guidance arrow drawn on the device.

Steps.
1. Compute the direction Di from Ni to Ni+1.

2. Select a proper guidance arrow according to Di and

Duser in the following way:

2.1) if 45
o
(Di – Duser)<45

o
, select a forward arrow;

2.2) if 45
o
(Di Duser)<135

o
, select a left-turn arrow;

2.3) if 135
o
(Di Duser)<225

o
, select a backward arrow;

2.4) if 225
o
(Di Duser)<315

o
, select a right-turn arrow.

3. Update the arrow to point to the correct direction and

draw it on the user’s mobile-device screen.

6. EXPERIMENTAL RESULTS

An area taken for conducting AR-based tour guidance

experiments in this study is an avenue in the campus of

 8

National Chiao Tung University with five large buildings

alongside. An experimental result of the guidance process

using the proposed system along a path in the tour area is

shown in Fig. 10. The interface for selecting the

destination building is shown in Fig. 10(a). Fig. 10(b)

shows an arrow guiding the user to the next node. Fig.

10(c) shows an updated arrow when the user turned left.

Figs. 10(d) and (e) are two results of guiding the user to

the next nodes after updating the user’s location. Fig. 10(f)

shows the message “GOAL” augmented on the device

screen when the user arrived at the destination.

(a) (b) (c)

(d) (e) (f)

Fig. 10. An example of intermediate experimental results of a guidance

process conducted by use of the proposed system.

Some more experimental results of image recognition

by the method proposed in Sec. 4 are shown in Fig. 11.

Figs. 11(a) and (b) are two input images which were

taken by the user. They also appear in the left parts of

Figs. 11(c) and (d), respectively. The right parts in Figs.

11(c) and (d) are the recognition results in which red

quadrilateral rectangles are drawn to verify the

correctness of the matchings. Two more examples are

shown in Figs. (e) through (h).

7. CONCLUSIONS

A system for AR-based tour guidance along streets

has been proposed for use on a user-held mobile device.

The system shows an augmented arrow in every guidance

step on the mobile-device screen to lead the user to a goal

building, and augment the building information on the

screen for inspection. Techniques proposed to design such

a system include a method for street-building recognition

SURF matching; a method for speeding up feature

matching using a k-d tree; a computer vision-based

method for user localization; a method for path planning

by the Dijkstra algorithm; and a method for creating

guidance arrows in realtime to lead the user to the

destination. The experimental results have revealed the

feasibility of the proposed system for real applications.

Future studies may be directed to user localization

with street images taken with tilt angles; use of other

devices to implement the system, likes Google glass;

providing a more convenient way to learn the

environment map and an automatic way to construct the

database; conducting experiments under different weather

conditions and in various street scenes, etc.

(a) (b)

(c) (d)

(e) (f)

(g)

(h)

Fig. 11 Results of image recognition.

REFERENCES
[1] MapFan.com. (2015, June). “MapFan AR Global,” [online],

available: https://www.mapfan.com/iphone /arg/
[2] G. Reitmayr and T. W. Drummond, “Going out: robust

model-based tracking for outdoor augmented reality,” Proc.
IEEE/ACM Int. Symp. on Mixed & Augmented Reality, 2006, Santa
Barbara, CA, pp. 109-118, Oct. 2006.

[3] T. Grosch, “PanoAR: Interactive Augmentation of
Omni-Directional Images with Consistent Lighting,” Proc. CV/CG
Collaboration Techniques & Applications, INRIA Rocquencourt,
France, pp. 25-34, 2005.

[4] W. Narzt, G. Pomberger, A. Ferscha, D. Kolb, R. Muller, J.
Wieghardt, H. Hortner, and C. Lindinger, “Augmented reality
navigation systems,” Universal Access in the Inform. Soc., Vol. 4,
Issue 3, pp 177-187, March 2006.

[5] M. Krichenbauer, G. Yamamoto, T. Taketomi, C. Sandor, H. Kato,
“Towards Augmented Reality User Interfaces in 3D Media
Production,” Proc. IEEE/ACM Int. Symp. on Mixed & Augmented
Reality, 2014, Munich, Germany, pp. 23-28, Sept. 2014.

[6] Herbert Bay, T. Tuytelaars and L. Van Gool, "SURF: Speeded Up
Robust Features," Proc. 9th European Conf. on CV, Graz, Austria,
pp. 404-417, May 2006.

[7] L. L. Wang and W. H. Tsai, "Camera calibration by vanishing lines
for 3D computer vision," IEEE Trans. PAMI, Vol. 13, No. 3, pp.
370-376, March 1991.

[8] B. Katz, et al. “Navig: Augmented reality guidance system for the
visually impaired,” Virtual Reality, Vol. 16, No. 4, pp. 253–269,
June 2012.

[9] Google. (2015, March). “Google Goggles: use pictures to search the
web,” [online], available: http://www.google.com/mobile/goggles

[10] Kooaba. (2015, March). “Kooaba Visual Search: get instant product
information,” [online], available: http://www.kooaba.com.

[11] Amazon. (2015, March). “Amazon Remembers: create a visual list
of products,” [online], available: http://www.amazon.com/gp/
remembers.

[12] H. Kato and M. Billinghurst, “Marker Tracking and HMD
Calibration for a Video-based Augmented Reality Conferencing
System,” Proc. IEEE & ACM Int. Workshop on Augmented Reality,
San Francisco, CA, pp. 85-64, Oct. 1999.

https://www.mapfan.com/iphone%20/arg/

