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ABSTRACT 
A vision-based autonomous vehicle system with a 

tilted 2-mirror omni-camera for use as a machine guide 
dog in outdoor sidewalk environments is proposed. The 
vehicle is guided by localization of along-path 
landmarks, including curb lines, hydrants, and light 
poles. In environment learning, a navigation map 
including a navigation path, along-path landmark 
locations, and relevant environment processing 
parameters is constructed. In the navigation process, a 
new vertical space line detection technique for 
localizing light poles and hydrants appearing in omni-
images is proposed. Also proposed are a new dynamic 
obstacle detection technique which uses ground 
matching tables to localize obstacles, as well as 
dynamic techniques for exposure and threshold 
adjustments for adapting the system to varying outdoor 
conditions. Good experimental results show the 
feasibility of the proposed system. 
Keywords: autonomous vehicle navigation, landmark 
detection, vehicle localization, learning, guidance. 

1. INTRODUCTION 
Guide dogs provide special services to blind people. 
According to the information provided by Taiwan 
Foundation for the Blind and Taiwan Guide Dog 
Association, there are more than fifty thousand blind 
people but just thirty trained guide dogs in Taiwan. 
Hence, it is desired in this study to design a vision-
based autonomous vehicle with wide-view computer 
vision and an along-path localization capability for use 
as a machine dog on the sidewalk. 

About the visual device for use on an autonomous 
vehicle, in contrast with a traditional projective camera, 
an omni-directional camera (omni-camera) has the 
advantage of having a larger field of view (FOV), and 
so is more suitable for the purpose of monitoring a 
larger environment area. In this study, we use a 
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specially-designed omni-camera with two mirrors as the 
visual device on an autonomous vehicle. 

One way to localize a vehicle is to use landmarks. 
Yu and Kim [1] detected particular landmarks in home 
environments and localized the vehicle by the distance 
between the vehicle and each landmark. Tasaki et al. [2] 
conducted vehicle self-localization by tracking space 
points with scale- and rotation-invariant features. Wu 
and Tsai [3] detected circular landmarks on ceilings to 
accomplish indoor vehicle navigation. Siemiątkowska 
and Chojecki [4] used the wall plane landmarks to 
localize a vehicle. Courbon et al. [5] conducted vehicle 
localization by memorizing key views in order along a 
path and compared the current image with them in 
navigation. Besides self-localization, the autonomous 
vehicle has to own more capabilities when navigating in 
more complicated environments. Obstacle avoidance is 
an essential ability for vehicle navigation, and a mobile 
robot system with this capability was proposed by 
Kumar [6]. The mobile robot proposed by Mühlbauer et 
al. [7] not only can navigate by sidewalk following in 
the urban area, but also can interact with people. 

The goal of this study is to train and then guide 
automatically an autonomous vehicle equipped with a 
two-mirror omni-camera mentioned above to work as a 
guide dog to navigate on a sidewalk with colored curb 
lines. The system process includes two phases: learning 
and navigation. In the learning process, we guide the 
autonomous vehicle to navigate on a sidewalk and 
“memorize” along-path landmarks, including light poles 
and hydrants, as well as some related environment 
parameters. Then, in the navigation process the system 
follows the curb line on one side of the sidewalk and 
localizes itself node by node using the learned along-
path landmarks to navigate forward to an appointed goal. 
Some other strategies for reliable navigation such as 
obstacle avoidance and dynamic parameter adjustment 
are also proposed for this system. Contributions made in 
this study include at least the following. 
(1) A method of training an autonomous vehicle for 

outdoor navigation on sidewalks using commonly-
seen landmarks and a navigation map is proposed. 



(2) A new space line detection technique using the 
space-mapping approach [8] is proposed. 

(3) New techniques for detecting hydrants and light 
poles for vehicle localization are proposed. 

(4) A technique of following sidewalk curb lines for 
vehicle navigation is proposed. 

(5) A new obstacle avoidance technique based on the 
use of a ground matching table is proposed. 

(6) Dynamic camera exposure and image threshold 
adjustment techniques for stable vehicle guidance in 
sidewalk environments are proposed. 
The details of the proposed autonomous vehicle 

system will be introduced in the following sections, 
with the learning process described in Section 2, the 
navigation strategy in Section 3, the proposed hydrant 
and light pole detection techniques using a new space 
line detection technique in Section 4, the proposed curb 
line following and obstacle avoidance techniques in 
Section 5, and some experimental results in Section 6, 
followed by conclusions in the last section. 

2. LEARNING PROCESS 
In the learning process, the camera system is calibrated 
first. Then, the vehicle is navigated through a sidewalk 
to visit desired spots and landmarks to construct a 
navigation path consisting of nodes. Related guidance 
parameters are also computed. A navigation map for 
use in the navigation process is established finally. 

2.1 Construction of Pano-mapping Tables 
The entire system configurations and the used two-
mirror omni-camera are shown in Fig. 1. The camera 
system consists of a bigger hyperboloidal-shaped mirror 
and a smaller one, called Mirror A and Mirror B, 
respectively, subsequently in this paper. This camera 
system is slanted up for an angle of γ and then placed on 
the vehicle for the purpose of “seeing” more of the 
scene in front of the vehicle system. 
 

  
(a)                                      (b) 

Fig. 1: System configurations. (a) The vehicle. (b) Illustration 
of used camera system. 

Instead of computing the camera’s intrinsic and 
extrinsic parameters, we adopt a space-mapping 
technique [8] to “calibrate” the camera system used in 
this study. The idea is to establish a so-called pano-
mapping table to record the relations between image 
points and corresponding world-space points. More 

specifically, as illustrated in Fig. 2, a light ray going 
through a world-space point P with an elevation angle α 
and an azimuth angle θ is projected onto an image point 
p with coordinates (u, v) in the omni-image. A pano-
mapping table as illustrated by Table 1 specifies the 
mapping relations between the coordinates (u, v) of 
each image point p and the azimuth-elevation angle pair 
(θ, α) of the corresponding world-space point P. The 
table is established once in advance and can be used 
forever by table lookup to get the corresponding 3D 
data, (q, a), for each given image pixel with coordinates 
(u, v), and vice versa. For this study, we construct two 
of such tables for Mirrors A and B, respectively. 
 

 
Fig. 2: Principle of imaging a point P using an omni-camera. 
 

Table 1: A pano-mapping table with size M × N. 
 θ1 θ2 θ3 θ4 … θM 

α1 (u11, v11) (u21, v21) (u31, v31) (u41, v41) … (uM1, vM1)
α2 (u12, v12) (u22, v22) (u32, v32) (u42, v42) … (uM2, vM2)
α3 (u13, v13) (u23, v23) (u33, v33) (u43, v43) … (uM3, vM3)
α4 (u14, v14) (u24, v24) (u34, v34) (u44, v44) … (uM4, vM4)
... … … … … … … 
αN (u1N, v1N) (u2N, v2N) (u3N, v3N) (u4N, v4N) … (uMN, vMN)

 

2.2 Learning of Landmarks 
For the purpose to localize the vehicle during the 
navigation process, we use the landmarks of curb lines, 
light poles, and hydrants in this study, which are 
commonly-seen objects on sidewalks. Furthermore, to 
deal with different outdoor environments, two sets of 
parameters are recorded for each landmark detection 
task. One is used to specify an environment window 
which is a rectangular region pre-defined to describe the 
landmark position in the omni-image. The other is used 
to specify an environment intensity which is the mean 
image intensity value in the environment window of an 
omni-image acquired by the camera system after 
manually adjusting the camera exposure to yield a 
suitable image illumination which leads to successful 
landmark detection. By using this environment intensity 
as a reference, the desired landmark can be well 
detected afterward in the vehicle navigation process. 

3. NAVIGATION STRATEGY 

3.1 Principle of Navigation Process  
The vehicle is guided to visit sequentially each node 
recorded in the navigation map by following the curb 



line and avoiding collisions with along-path known or 
unknown obstacles. Also, the vehicle localizes its 
position by landmarks, corrects the odometer readings 
and adjusts relevant guidance parameters using 
techniques of dynamic image threshold and camera 
exposure adjustment at each path node. 

3.2 Vehicle Localization by Curbs and Landmarks 
The odometer readings provide posture information of 
the vehicle, including its position (Px, Py) and 
orientation Pth in the world space when navigating to 
each path node. These data become imprecise owing to 
incremental mechanic errors after the vehicle navigates 
for a certain time period. Thus, it is desired to adjust the 
vehicle posture node by node in the navigation. We use 
the recorded curb line orientations as well as hydrant or 
light pole positions to localize the vehicle in this study. 

In more detail, as shown in Fig. 3, in each 
navigation cycle, after adjusting the vehicle to orient to 
the recorded direction Pth at a certain node, we detect 
the nearby curb line segment to obtain its slope angle q ′ 
with respect to the vehicle. Then, we retrieve the 
recorded slope angle q of the curb line segment at the 
current node, compute the difference qadj = q ′  - q, 
modify the orientation reading of the vehicle’s odometer 
for the amount of qadj, and take the result to be the 
correct current orientation Pth′ of the vehicle. 

Next, we detect the hydrant or light pole landmark 
at the current node, if any, to obtain its location (Xlm, Ylm) 
with respect to the vehicle. Then, we retrieve the 
recorded position (PX, PY) of the hydrant or light pole, 
and use them together with the correct vehicle 
orientation Pth′to compute the correct vehicle position 
(Xc, Yc) in the world space by: 
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Finally, we replace imprecise position readings of the 
odometer, (PX′, PY′), by the computed position (Xc, Yc). 

3.3 Dynamic Exposure Adjustment 
According to the experimental result shown in Fig. 4, 
we found that there exits a specific range of camera 
exposure values in which the exposure value has an 
approximate linear relation with the image intensity Y. 
Thus, we can estimate an appropriate value E for 
camera exposure adjustment before image taking by: 
 E = fexp(Y) = mY + b. (1) 
Thus, in this study we propose an efficient 2-stage 
scheme to automatically adjust the camera exposure 
value to obtain the previously-mentioned environment 
intensity Y in the previously-mentioned environment 
window in an image. First, we use a bisection scheme to 
adjust the exposure to find a specific range [E1, E2] with 
which yields a range [Y1, Y2] of proper image intensities. 
Next, we utilize linear interpolation to adjust the 
exposure to a value Ed which yields the desired 
environment intensity Y by the following equation: 
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Fig. 3: A recoded vehicle position V and the current vehicle 
position V′. 
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Fig. 4: A relationship between the exposure value and the 
image intensity obtained in an experiment. 

4. LIGHT POLE AND HYDRANT DETECTION 
USING NEW SPACE LINE DETECTION 

TECHNIQUE 
In contrast to the function of a traditional projective 
camera, the projection of a space line on an omni-image 
using an omni-camera is not a line, but a conic-section 
curve [9]. Wu and Tsai [9] detected such curves formed 
by an H-shaped landmark for use in automatic 
helicopter landing using the hyperboloidal mirror 
parameters and some geometric relationship. 

Based on the use of pano-mapping tables which 
involve no camera parameters and so are more 
convenient for applications, we propose a new space 
line detection technique in this study. Instead of 
deriving the formula of the projected conic section 
curve of a space line in the omni-image, we obtain a 
formula which describes a space plane going through 
the space line and the mirror center. Furthermore, for 
the simpler type of space line which is perpendicular to 
the ground, we can derive an analytic formula to 
compute its 3D position information directly based on 
the results of the proposed line detection method. 
Finally, by the use of this vertical space line detection 
technique, we also propose new schemes for light pole 
and hydrant localization in this study. The details are 
described in the following. 

4.1 Proposed Technique for Space Line Detection 
Suppose that a space line L is projected by Mirror A 
onto an omni-image as shown in Fig. 5 and that P is an 



arbitrary space point on L. Firstly, we consider a way to 
represent the vector VP which goes through P and the 
mirror center OA in the camera system. As shown in Fig. 
6(a), the light ray which goes through the space point P 
is reflected by Mirror A to project onto the image plane 
to form an image point p with coordinates (u, v). By 
looking up the pano-mapping table using (u, v), we can 
get the elevation-azimuth angle pair (a, q) of P. 
Accordingly, it can be figured out from Fig. 6(a) that 
vector VP can be described as (Px′, Py′, Pz′)T with Px′ = 
cosa×cosq, Py′ = cosa×sinq, Pz′ = sina where T means 
transpose. But the omni-camera is tilted for an angle of 
g  as mentioned previously. Therefore, the vector should 
be rotated for g  for use in an un-tilted camera 
coordinate system (CCS) as shown in Fig. 6(b), leading 
to the following result: 

 NS⋅VQ = (l, m, n)⋅(X, Y, Z) = lX + mY + nZ = 0. (4) 

where “⋅” means the inner product operation. Similarly, 
vector VP is also perpendicular to NS, so we have: 

 NS⋅VP = (l, m, n)⋅(Px, Py, Pz) = lPx + mPy + nPz = 0. (5) 
By Eq. (3), we can transform Eq. (5) to be: 

 
1 0 0
0 cos( ) sin( )
0 sin( ) cos( )

x x

P y y

z z

P P
V P P '

P P
γ γ
γ γ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

'

'
 

cos cos
cos sin cos sin sin

cos sin sin cos

α θ
α θ γ α γ

α θ α γ

×⎡ ⎤
⎢ ⎥= × × + ×⎢ ⎥
⎢ ⎥− × + ×⎣ ⎦

. (3) 

 

 
Fig. 5: A space line L projected onto omni-image as a curve IL. 
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 (a) (b) 
Fig. 6: Illustrations of vector VP from OA to P. (a) A space 
point with elevation angle α and azimuth angle θ. (b) Camera 
coordinate system (CCS). 
 

Next, considering the space line L projected onto 
the omni-image as the image line IL as shown in Fig. 5, 
we want to find a space plane S which goes through L 
and the mirror center OA. For this, suppose that the 
normal vector of S is denoted as NS = (l, m, n) and let Q 
be a point on S with coordinates (X, Y, Z). Since NS is 
perpendicular to the vector VQ which goes through Q 
and the mirror center OA with coordinates (0, 0, 0), we 
can derive the following equation to describe (X, Y, Z): 

cos sin cos sin sin
cos cos

l m α θ γ α γ
α θ

× × + ×
+ ×

×  

cos sin sin cos 0
cos cos

n α θ α γ
α θ

− × + ×
+ × =

×
. (6) 

It is desired to obtain from Eq. (6) the three unknown 
parameters l, m, and n which represent the normal of the 
space plane Q. For this purpose, we divide Eq. (6) by n 
to get the following form: 

 B + Aa0+ a1 = 0 (7) 

where A = m/n, B = l/n, and 

0
cos sin cos sin sin

cos cos
a α θ γ α γ

α θ
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=
× , 
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α θ
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=
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Eq. (7) means that we may use two parameters A and B 
to represent the original three ones l, m, n. Accordingly, 
we can use a simple 2D Hough transform technique to 
obtain the parameters A and B. 

Furthermore, if L is a vertical space line 
(perpendicular to the ground in the world space), it 
means that the normal vector of the space plane S is 
parallel to the ground. Then, it is easy to figure out that 
m is equal to zero and Eq. (7) can be reduced to be of 
the form: 
 B = －a1 (8) 

where B = l/n and 

1
cos sin sin cos

cos cos
a α θ α γ

α θ
− × + ×

=
× . 

Accordingly, we can use an even simpler 1D Hough 
transform to find the parameter B. The detail of this 
transform is described in the following. 

First, establish a 1D Hough space H with parameter 
B and initialize all cell counts to be zero. Also, for each 
point p on the vertical line L at coordinates (u, v) in the 
given omni-image, look up the pano-mapping table to 
obtain an elevation and azimuth angle pair (a, θ), 
compute B by Eq. (8) using θ and a, and increment by 1 
the value of the cell with parameter B in H. Finally, find 
the cell value with the maximum value Bo in the Hough 
space H as the desired parameter B appearing in Eq. (8), 
which describes the vertical line L. 

4.2 3D Data Computation for a Vertical Space Line 
A vertical space line L is projected by Mirrors A and B 
onto the image plane as two image lines IL1 and IL2, 
respectively, as shown in Fig. 7. The center OA of 
Mirror A is located at coordinates (0, 0, 0) in the camera 



coordinate system (CCS). Thus, denoting the length of 
the baseline connecting the two mirror centers OA and 
OB as b and taking into consideration of the tilt angle 
g of the camera system, we can derive easily the 
position of the center OB of Mirror B to be (0, bsinγ, 
bcosγ) in the CCS. Next, according to Eq. (4), the 
equations of the two space planes S1 and S2 going 
through L and the mirror centers, OA and OΒ, 
respectively, can be described by: 

 l1X + m1Y + n1Z = 0; (9) 
 l2X + m2(Y - bsinγ ) + n2(Z - bcosγ) = 0 (10) 

where (l1, m1, n1) represents the normal vector of S1 and 
(l2, m2, n2) represents that of S2. 
 

γγ

 
Fig. 7: A vertical space line projected onto two mirrors in the 
used two-mirror omni-camera. 
 

In addition, by the reason that the space line L is 
perpendicular to the ground, we know that m1 and m2 
are both zero. Thus, the above two space plane 
equations may be reduced to be: 
 l1X + n1Z = 0; (11) 
 l2X + n2(Z - bcosγ) = 0 (12) 
or equivalently, to be: 
 B1X + Z = 0; (13) 
 B2X + (Z - bcosγ) = 0 (14) 
where B1 = l1/n1 and B1 = l2/n2. Solving Eqs. (13) and 
(14), we can obtain the following equations to describe 
the position of the vertical space line L: 

 
2 1

cosbX
B B
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where B1 = l1/n1, B1 = l2/n2. 

4.3 Light Pole Localization for Vehicle Guidance 
The idea of the proposed method for light pole 
localization is to use the two vertical boundary lines of 
the light pole to estimate the position of the light pole 
using the formulas derived in the last section. 

Firstly, we apply Canny edge detection to the omni-
image to obtain an edge point image which includes the 
boundary points of the light pole. Then, we apply the 
above-mentioned 1D Hough transform to find the 
parameters B1 and B2 of Eq. (8) which describe the two 
vertical boundary lines of the light pole, respectively. 
Accordingly, we compute the locations of the two light 
pole boundary lines on the ground, denoted as Gin and 

Gout, respectively, in the CCS using Eq. (15). Finally, 
we compute the distance d between Gin and Gout, and 
check if d is close to the pre-measured diameter of the 
light pole within a tolerable range ⎯ if so, then we 
compute the center position between Gin and Gout for 
use as the light pole position; otherwise, regard the 
detected object as not a light pole. A result of light pole 
detection and localization using the above method is 
shown in Fig. 8. 
 

    
(a)                                                (b) 

Fig. 8: A result of light pole detection. (a) Detected boundary 
lines (one in red and the other in green). (b) Localized light 
pole (yellow dot) between two boundary lines (red and light 
blue dots) with respect to vehicle (blue dot). 

4.4 Hydrant Localization for Vehicle Guidance 
To detect a hydrant in an omni-image, we utilize the hue 
and saturation values in the HSI color model to extract 
the hydrant contour in order to ignore the influence of 
the varying image intensity caused by the time-changing 
lighting condition in the outdoor environment. 
Specifically, after applying the dynamic exposure 
adjustment process mentioned previously, we scan each 
pixel p in the input image I and compute its hue value 
huv and saturation value suv, and if huv is within a certain 
range RH of hue values and suv is within another range 
RS of saturation values, then we regard p as a hydrant 
feature point. Examples of hydrant feature point 
detection results are shown in Fig. 10(a) and 10(b). 

After all of the feature points are extracted, we 
apply the erosion and dilation operations to them to 
remove small noise points, and conduct connected 
component labeling to find the largest connected 
component M in input image I. Then, we compute the 
covariance matrix Cx of the image coordinates of all the 
feature points of M using principal component analysis 
to obtain two eigenvalues l1 and l2, and two 
corresponding eigenvectors e1(u1, v1) and e2(u2, v2) of Cx. 
Finally, we compute the length ratio η of the two 
eigenvalues of Cx and the rotational angle ω between 
the ICS for use as the features of the hydrant, as 
illustrated in Fig. 9, according to the following 
equations: w = tan–1(v1/u1), h = l1/l2. 

Moreover, because different projections of the 
same hydrant on omni-images taken at different 
positions are usually similar, we can record as many 
different extracted hydrant contours as possible in order 
to “learn” the hydrant contour more precisely. For this, 
we guide the vehicle to take a number of omni-images 
from different directions at different positions. And for 



each obtained image Ii, we compute two features ωi and 
ηi in the previous way after extracting the hydrant 
feature points. Then, from all the values of ωi and ηi, we 
select their maximum and minimum ones to form two 
ranges of the hydrant features. After this learning 
process, if the computed rotational angle ω and the 
length ratio η  in hydrant detection are not in the 
learned ranges, we decide that the result of detection is 
not a hydrant, and vice versa. 
 

  
(a)                                   (b) 

Fig. 9: Principal component analysis for hydrant detection. (a) 
Detected principal axis and eigenvectors. (b) Illustration of 
rotational angle w. 
 

The idea of the proposed hydrant localization 
method is to detect the vertical axis line of the hydrant 
using principal component analysis, and localize the 
hydrant by this line. More specifically, we compute the 
center CA with coordinates (uA, uA) of the hydrant using 
its feature points detected in a pre-selected image region 
formed by light rays reflected by Mirror A. We also 
compute similarly the center CB with coordinates (uB, uB) 
of the hydrant using its feature points detected in a pre-
selected image region formed by light rays reflected by 
Mirror B. Both the image points CA and CB correspond 
to the center point of the hydrant in the real-world space. 
Then, by using (uA, vA) and (uB, vB), we look up the 
pano-mapping table to obtain the corresponding 
elevation-azimuth angle pairs (aA, θA) and (aB, qB) of 
CA and CB, respectively. And by Eq. (8), we compute 
the parameter BA corresponding to CA using (aA, θΑ) as 
well as the parameter BB corresponding to CB using (αB, 
θB). Finally, by the use of BA and BB

cos cos
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P
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α θ

, we can find out the 
axis L of the hydrant through CA and CB in the input 
image, and by Eq. (15) we can compute the position of 
L for use as that of the hydrant. A result of hydrant 
detection and localization using the above method is 
shown in Figs. 10(c) and 10(d). 

5. LINE FOLLOWING AND OBSTACLE 
AVOIDANCE TECHNIQUES 

5.1 Curb Line Detection and Following Technique 
When not using landmarks to estimate its location, the 
vehicle system navigates on the sidewalk mainly by 
curb line following, which includes three major stages 
as described in the following.  
Stage 1 ⎯ extracting and locating curb feature points. 

First, we detect the curb feature points in the image 
region formed by light rays reflected by Mirror A using 

the HSI color model by the method we use for detecting 
the hydrant as discussed previously. Then, we conduct 
the erosion and dilation processes to eliminate small 
noise points. Also, we scan each feature point in a 
raster-scan order to find the inner boundary points of 
the curb line. And by looking up the pano-mapping 
table, we get the elevation-azimuth angle pair (a, q) 
using the image coordinates (u, v) of each boundary 
point P so found. Assume that the coordinates of P in 
the CCS are (X, Y, Z) which we want to compute now. 
Then, the vector VP from P to Mirror A’s center OA in 
the CCS may be described by Eq. (3), which we repeat 
below: 

θ γ α γ
α θ α γ

×⎡
α

⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= × × + ×⎢VP = ⎥ ⎢ ⎥
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 (a) (b) 

  
 (c) (d) 
Fig.10: Results of hydrant detection and localization. (a) 
Segmentation result using original threshold values. (b) 
Segmentation result after dynamic exposure adjustment and 
thresholding. (c) Detected vertical axis of hydrant (green 
lines). (d) Estimated hydrant position (green dot). 
 
Besides, because the height H of the center of Mirror A 
is known in advance, we can derive further that Y = -H. 
Hence, by the proportions among Px, PY, and PZ and the 
known value of Y, the coordinates X and Z may be 
computed to be: 

(cos cos )
cos sin cos sin sin

HX − α θ
α θ γ α γ

× ×
=

× × + ×
; 

( cos sin sin cos )
cos sin cos sin sin
HZ − α θ α γ

α θ γ α γ
× − × + ×

=
× × + ×

. (16) 

Stage 2 ⎯ curb line localization. 
Using the computed positions (X, Y, Z) of the 

boundary points of the curb line, we adopt a line 
regression scheme to compute the equation of the line 
on the X-Z plane with the following equation: 
 Z = aX + b. (17) 
Next, we compute the sum of the square errors Se of 
fitting the boundary points to a line by the following 
equation: 



 Se = S [Zi – (aXi + b)]2. (18) 1i
n
=

Accordingly, we apply the proposed dynamic threshold 
adjustment scheme to adjust the saturation threshold 
values in a pre-learned range to detect the curb line and 
find the fitting line Lbest with the minimum sum of 
square errors. Then, by Eq. (17), we compute the slope 
angle θ of Lbest with respect to the moving direction of 
the vehicle and the distance d of Lbest to the vehicle by 
the following equation: 
 q = tan–1(1/a);  d = |b|/ 21 a+ . (19) 

Stage 3 ⎯ navigation by line following 
According to the computed q and d above, we 

adjust the speed and orientation of the vehicle to keep 
the navigation path at an appreciate distance to the curb 
line and parallel to the curb line if the vehicle is at a 
position with a safe distance to the curb. Otherwise, we 
slow down the vehicle and turn it progressively to make 
it to be toward a safe region with respect to the curb line 
in order to prevent it from falling out of the sidewalk. A 
result of curb line detection is shown in Fig. 11. 
 

       
 (a) (b) 
Fig.11: Curb line detection. (a) Segmentation result. (b) 
Extracted curb points (red dots) and fitting line (yellow dots). 
 

5.2 Obstacle avoidance technique 
A ground point will be projected by the two mirrors 
onto the image plane at two different positions. 
Accordingly, the idea of the proposed obstacle detection 
technique is to record first the relation between every 
two manually-selected corresponding ground points in 
the image regions RA and RB formed respectively by 
light rays reflected by Mirrors A and B, respectively, 
into a specific table, called ground matching table Tm, 
as illustrated in Fig. 12, and then to use Tm to inspect an 
object to see whether it is flat on the ground or not for 
the purpose of detecting obstacles on the navigation 
path. More details of the proposed method for the 
learning and navigation phases are described next. 
The learning stage --- 

In the learning stage, after setting the ground 
matching table Tm, if the two corresponding image 
points listed in Tm, which appear in RA and RB, 
respectively, are both projections from a single ground 
point as shown in Fig. 13(a), then their intensity values 
must be identical or very close in magnitude. However, 
if there is an obstacle appearing in RA or RB as shown in 
Fig. 12(b), then the two corresponding image points in 
RA and RB will not both be projections of a single 
ground point G, but be a projection of G and another of 
an object point F so that their intensity values will be 
different. Based on observation of this phenomenon, we 

can detect obstacle object points in the following way: 
look up the ground matching table Tm to get every pair 
of corresponding image points and check their intensity 
values: if different, then label the image points as 
coming from an obstacle object point; else, from a 
ground point. After collecting the obstacle object points 
found in this way, we compute finally the mean Hobs 
and the variance Varobs of the hue values of each point 
in the HSI color model for use in the navigation phase. 
 

 Ground matching table

Fig. 12: Illustration of constructing the ground matching table. 
 

  
(a) (b) 

Fig. 13: Two side views of the vehicle and a ground P. (a) 
Without obstacles. (b) With an obstacle in front. 

 
The navigation phase --- 

In the navigation phase, by the use of the HSI color 
model, we classify the image points by the learned color 
information, Hobs and Varobs, of the obstacle into 
obstacle points if the hue value of a point is within the 
distance of two Varobs from Hobs. Then, we detect the 
obstacle bottom boundary by scanning each radial line 
in the image, starting from the lower image boundary; 
and takes the first found feature points as the bottom 
boundary points. A result of such obstacle bottom 
boundary detection is shown in Fig. 14. Furthermore, 
for each detected obstacle bottom boundary point, we 
look up the pano-mapping table to find corresponding 
elevation and azimuth pair (a, q), and use Eq. (16) to 
compute the position of the point. Finally, we calculate 
the average of the positions of all the bottom boundary 
points for use as the obstacle location. Finally, to 
conduct obstacle avoidance, the approach we use is to 
insert additional nodes into the navigation path to guide 
the vehicle to change its path to pass the obstacle, as 
illustrated in Fig. 15. 

6. EXPERIMENTAL RESULTS 
Many learning and navigation processes have been 
conducted successfully in our experiments After the 
learning process, a navigation map is constructed. An 
example of such maps is shown in Fig. 16. In the 
navigation process, the vehicle navigated alone the 
recorded navigation path nodes by curb line following. 
By the techniques of the dynamic exposure and 
threshold adjustment, the vehicle detected pre-selected 
landmarks in images acquires with suitable camera 



exposures and localized their positions with respect to 
the vehicle. Also, after detecting an obstacle, the vehicle 
created a new path with extra nodes to pass the obstacle 
without collisions. The process is repeated until the 
vehicle reached a terminal node. A path map with a 
record of the visited nodes in a navigation process is 
shown in Fig. 17. 
 

  
 (a) (b) 
Fig.14: Results of dynamic obstacle detection and localization. 
(a) Segmentation result with obstacle bottom detected (red 
points). (b) Estimated obstacle position (red point) as average 
of detected obstacle bottom points. 
 

 
Fig. 15: Illustration of inserting a path node Nodeavoid for 

 
obstacle avoidance in original navigation path. 

 

 
Fig.16: Illustration of a navigation map. 

 

7. CONCLUSIONS 
A vision-based a vigation system utonomous vehicle na
for use as a machine guide dog in sidewalk 
environments has been proposed in this study. To 
implement such as a system, several new techniques has 
been proposed, including: 1) a method to train the 
vehicle system for the purpose of learning guidance 
parameters related to the environment; 2) a learning 
process to guide the vehicle to navigate on a sidewalk 
and construct a navigation map; 3) a new space line 
detection technique based on the pano-mapping 
technique; 4) several landmark detection and 
localization techniques (including those for the curb line, 

hydrant, and light pole); 5) techniques for dynamic 
camera exposure and threshold adjustments which can 
be employed to handle different lighting conditions; and 
6) a new obstacle detection technique using a ground 
matching table. Good experimental results show the 
feasibility of the proposed system and methods. 
 

 
orded map of a navigation process (blue points 
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