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Abstract
An intelligent approach to autonomous land vehicle
(ALV) guidance by line and road following using

clustering, Hough transform, and model matching

techniques is proposed. The purpose of clustering is to
separate the road from the other objects in an input image.
Then, road-model matching is employed to find the best
road-template which can be used to locate the ALV.
Moreover, path lines in the matched road are extracted
using the Hough transform, and line-model matching is
used to find the best line-template which also can be used
to locate the ALV. If no line can be found in the road, we
use the matched road-template to locate the ALV. But if

lines exist, we wuse them to locate the ALV. Several

successful navigations show that the proposed approach is
effective for ALV guidance in common roads.

1. Introduction

Many techniques have been proposed and
implemented for the ALV guidance. In Ku and Tsai [1], a
model-based navigation approach was proposed, and the
corridor contour was used as the model. In Cheng and
Tsai [2], a new navigation approach by model matching
was proposed, where the locations of vertical lines in
indoor environments are used as the model. In outdoor
environments, VITS [3] and Navlab [4] both use color
information in RGB planes for road following. Turk et al.
[3] show that the G-component is useless in their road
segmentation. Navlab [4] analyzes both the color and
texture segmentation results using a standard pattern
classification method involving the mean and the
covariance matrix. Lin and Chen [5] classified the road
into three clusters : sunny road, shadow road and nonroad.
Their analysis and classification are based on the KL-
transformation in the HSI space. Kluge and Thorpe [6]
separated the assumptions made in road modeling into
three loose categories: subconscious, implicit and explicit

models. Also, a new road tracking system, FERMI, was
built to study explicit models and their use. The vision
system in Germany [7], [8], [9] can guide the vehicle on
an autobahn at speeds up to 100 kph, incorporating a
high-speed vision algorithm to track road border lines.
The system has performed both road following and vehicle
following in real-time. UNSCARF [11] wused an
unsupervised clustering technique [15] to classify the
unstructured road into homogeneous regions. Then, small
regions are removed using a shrink and expand algorithm
[16]. Finally, a minimum distance criterion is used to find
the best candidate interpretation by applying a Grassfire
transformation [17]. Kuan, Phipps, and Hsueh [13]
proposed a technique with transformation and classifier
parameters being updated gradually and cyclically
according to the slow change of color and intensity.

In this paper, we propose an intelligent ALV
guidance approach which can detect the road and extract
the lines on the matched road based on a modified
clustering method [15] and the Hough transform [18]. For
clustering, we choose the initial cluster centers by
analyzing the histograms of the R, G and B planes
individually to produce effective clusters. Basically, the
road is divided into three clusters: bright cluster, gray
cluster and dark one. We perform road-model matching
using the gray cluster because it is most likely to be the
road area. The Hough transform does not take much
computing time because the bright pixels on the matched
road are very few (typically, the bright area includes just
the yellow lines on the road). Therefore, real-time
navigation can be carried out. The proposed approach is
proved effective after many practical navigation tests.

The remainder of this paper is organized as follows.
The principle of the proposed approach is presented is
Section 2. In Section 3, the results of some experiments
are described. Finally, some discussions are made in
Section 4.

2. Principle of Proposed Research

An overview of the proposed approach is shown in
Fig. 1. The details are described in the following.



2.1 Model Creation

Assume that the road boundaries and the lines on the
road are straight and parallel to each other, and the
surface is earth-flat. We can represent the location of the
ALV by (d, 6), where d is the distance of the ALV to the
central path line and 6 is the pan angle of the ALV
relative to the road direction. The equations of the two
road boundaries in the vehicle coordination system (VCS)
are assumed to be known. Then, we can transform them
into the image coordination system (ICS) which is
displayed on the TV monitor. Therefore, for each ALV
location (d;, 6;), we can create its corresponding road-
templates ROAD[i][j][a, b, a., b, where a, a: are the
slopes and by, b; are the intercepts of the equations of the
left and right boundaries in the ICS, respectively. The
transformation is shown in Fig. 2(a). We divide the road
width into 23 positions (position interval = 25 cm). Each
position contains 17 pan angles (-16 degree ~ +16 degree,
angle interval = 2 degree). So, the road-model contains
23x17=391 road-templates, and each road-template
represents one ALV location. We use the same method to
create the line-model provided that there are at most three
lines (left, middle and right) on the road. The line-model
also contains 23x17 line-templates, and each line-template
LINE[i][j][a;, bi, am, bm, ar, b also represents an ALV
location (d;, ;). The transformation is shown in Fig. 2(b).
Thus, each ALV location (d;, 8;) can be represented by
ROADi][j][a, by, a;, br] or LINE[i][j][ai, bi, am, bm, ar, bi].

2.2 Color Image Reduction and Clustering

To reduce the image size, the pixels are sampled
from the original image with the interval of 5 pixels in
both the horizontal and vertical directions, and the upper
portion is discarded because it does not contain any road
area. For clustering, we use a modified ISODATA
algorithm [13], called the ICC (Initial-Center-Choosing)
algorithm, to divide the reduced RGB color image into
three clusters:

<1> cluster-0: dark area, like the shadows and trees;

<2> cluster-1: gray area, the main body of road,

<3> cluster-2: bright area, like the sky and yellow lines

on the road.

The ICC algorithm is described as follows. Assume that
we want to divide the road into i clusters. We first observe
the histogram of the R-plane, and divide all the pixels into
2i pieces of the same size as shown in Fig. 3, ie.,

V 0 <k <i-1,wehave

Z[pixel no. ofg.l.(s)]: Z[pixel no. ofg.l.(t)]
1)
where g. 1. means gray level. Then, 7, is taken to be the R-

component of the candidate center of cluster k. Using the
same criterion on the G-plane and B-plane, we can find

the G-component g, and B-component 5, . We then use

[7:,&;.b,] as the initial center of cluster k, k=0, 1, ..., i-1.

Comparing with the result which uses gray-level-
averaging to set the initial center of cluster k to be

255 % 255 *i 255 .k 2
G-nl| 7 {GE-D] 7 [G-D

as shown in Fig. 4 (c), we can find that the result of the
ICC algorithm shown in Fig. 4 (b) is better. These results
are obtained by running these two algorithms for 3 cycles.
Fig. 5 shows two source images with high intensity and
low intensity and the corresponding clustering results in
(@) and (b), respectively. It can be seen that the ICC
algorithm is not sensitive to the change of intensity. This
is another advantage of the ICC algorithm.

2.3 Road-Model Matching

There are two possible criteria for model matching:
<1> maximum-bounded-pixel-number matching
(MBPNM):
We define the bounded-area as the area bounded by
the two lines of the road-template, and the bounded-
pixels as all the pixels belonging to cluster-1 (most
likely to be the road area) in the bounded-area. If a
road-template includes within its two boundary lines
the largest number of bounded-pixels, it can be
regarded as the best matched one.

<2>. maximum-bounded-pixel-ratio matching
(MBPRM):
We define

maximum bounded pixel ratio
= (bounded-pixels) / (total number of pixels in the
bounded area). 3)

Then, a road-model can be considered to be the best
matched one if it has the maximum bounded pixel
ratio.

The matched road-templates represented by the two
red lines using the MBPNM and MBPRM are shown in



Fig. 6. It can be seen that the shadow area is included in (a)

and excluded in (b), so we adopt the MBPNM criterion in
our approach because the shadow area should be regarded
as part of the road. Also, we do not use the entire road-
template to do the matching because it waste too much
time; we only use the neighboring ones in the model
around the reference road-template to perform the
matching. The reference road-template is the road-
template at the current ALV location which is estimated
from the ALV location of the last cycle through control
information as shown in Fig. 7.

2.4 Extracting Lines on Matched Road-Template using
Hough Transform

After finding out the best road-template, we use the
Hough transform to extract the lines in the bounded-area
of the matched road-template. This does not take too
much time because very few pixels belong to cluster-2
(bright area, typically the yellow lines) in the bounded-
area. Furthermore, we search the surrounding area of the
three lines of the reference line-template to find the peaks
in the p-6 Hough counting space to save the computation
time, where the reference line-template is the line-
template of the current estimated ALV location. We
extract at most three lines in the bounded-area to satisfy
the assumption, and these lines are taken to match line by
line the corresponding lines of the line-templates around
the reference-point to find their corresponding best line-
templates. Finally, these best line-templates are combined
to estimate a reasonable ALV location.

2.5 Line-Model Matching

Without loss of generality, we first take the left
extracted line to perform the matching. We want to find
the best line-template T. whose left line is the most similar
to the left extracted line. We define

similarity = 1/A, O]
where A=the area bounded by the left extracted line and
the left line of the line-template as shown
Then, the matched line-template T. = (d. ,0L ) has the
maximum similarity. If the middle or the right extracted
line exists, we can use the same criterion to obtain their
corresponding best line-templates Ty = (dm ,0m ) and Tr =
(dr ,6r ), respectively. After the T., Tu and Tr are
computed, the most meaningful ALV location T can be
derived as follows("=" represents "is similar to"):

if TL = Twum = Tk, then set
T=(T+Tm+Tr)/3 = ( (dL+dm+dr)/3 , (OL+Om+
Or)/3)

in Fig. 8.

o

else if only T; = T; (i#j, i, j= L, M, R), then set
T=(Ti+T;)/2 = ((di+d;)/2 , (6:+6;)/2)
else (Tv, Tw and Tr are not similar to each other) set
T=Txk, where Tk is the most similar to the
reference line-template, k=L, M, R. 5)
Because there are three lines on the road, we can locate
ALV accurately even though there is noise like shadows,
people, cars or degraded regions existing on roadsides. If
noise appears on the rightside, we can use the left or even
the middle line to locate the ALV. Similarly, we can locate
the ALV using the right or even the middle line if the
noise appears on the leftside. Moreover, if noise exists on
both sides, the middle line which is seldom affected by
shadows or other noise can be used to locate the ALV.
Finally, if no line can be extracted in the road, we can still
use the best road-template obtained from the road-model
matching to locate the ALV. This flexible process makes
the ALV guidance steady.

2.6 Wheel Control

After the most possible ALV location T is found, we
choose an appropriate turn angle to guide the ALV closely
to the given path. A closeness distance measure from the
ALV to the given path is defined to be

L@ = (p;) + (D7) (6)
where pr and p; are the corresponding distances from

the front and the rear wheels of the ALV to the given path
after the ALV traverses a distance S with the turn angle &
as shown in Fig. 9. A smaller value of 7, means that the
ALV is closer to the path.

It must be careful that allowing the ALV to turn a
larger angle does not mean that better navigation can be
achieved. It may cause serious twist. On the other hand, a
smaller range of turn angles may cause only a slight
closeness to the given path. Thus, there is a tradeoff
between smoothness and closeness.

3. Experimental Results

Using the proposed guidance method, a prototype
ALV constructed in this study for testing can navigate
smoothly along part of the campus road in National Chiao
Tung University for about 150m. The width of the road is
6.8 m, and there are three yellow lines on the road. The
average speed is 30 cm/sec, and the average cycle time is
about 2.1 sec. The ALV can navigate steadily in spite of
the fact that there are shades, vehicles, people or degraded
regions on the roadsides. It is also not sensitive to sudden
changes of intensity because of the effective ICC clustering



algorithm from which we can obtain the appropriate
clusters after running the algorithm for only three cycles.

4. Discussions

The largest angle allowing the ALV to turn is a
tradeoff between the smoothness of navigation and the
closeness to the given path. In our experiment, we found
through many iterative navigations that a turn from -5
degrees to +5 degrees is a good compromise. Also, we
change the power at the right time to make the speed
stable on both ascending and descending roads by
checking an encoder which can report the distance
between two continuous cycles. The road-model and line-
model are created based on the assumption that the road
boundaries and the lines on the road are straight and
parallel to each other. So, when the ALV meets the curved
road, it can not navigate regularly because of the violation
to the assumption. Guidance on the curved road based on
the model matching technique is a good topic for future
study. Additionally, the problems caused by the change of
sunshine direction, selections of different features on the
road and seeking effective algorithms to solve the
encountered problems are also future directions of studies.
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algorithm for 3 cycles. (a). The source color Fig. 8 The area A bounded by the extracted left
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Fig. 6 Two matched road-templates represented
by the red lines based on two different
methods. (a). Result using MBPNM.
(b). Result using MBPRM. Fig. 9 A closeness distance measure L’(,)_(D;)’,(Dg)‘,
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