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ABSTRACT 
New vision-based methods for monitoring the 

surrounding environment around a video surveillance 
vehicle via the use of two 2-camera omni-imaging 
devices on the vehicle roof are proposed. To inspect 
blind spots around a vehicle, a method of analyzing 
automatically the vehicle moving direction by optical 
flow analysis in omni-images and generating 
corresponding perspective-view images is proposed. 
Techniques for monitoring a nearby car from a static or 
moving video surveillance vehicle are also proposed. 
The 3D data of a detected car are computed using a 
space-mapping approach, and a top-view surround map 
is generated to help observation of the vehicle 
surrounding conditions. Good experimental results 
show the feasibility of the proposed system and 
techniques. 
Keywords: omni-image; video surveillance vehicle; 
optical flow analysis; environment monitoring. 

1. INTRODUCTION 
Nowadays, with the advance of video technologies, 
more and more video cameras are used for various 
applications. In this study, it is desired to design a video 
surveillance system using video cameras on a vehicle, 
called video surveillance vehicle, for car-driving 
assistance and car surrounding monitoring applications.  

In recent years, video surveillance for various 
applications has been investigated widely [1-3]. An 
omni-camera in a video surveillance system is useful for 
localizing objects. It includes a projective camera and a 
mirror [4, 5]. Moreover, applications using different 
combinations of projective cameras and mirrors to 
construct new types of omni-imaging systems have also 
been investigated [6, 7]. The large field of view (FOV) 
of the omni-camera is a great advantage for monitoring 
wide surrounding environments. Some researchers 
combined this advantage with the mobility of vehicles 
to develop useful applications [9-13]. In addition, 
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optical flow analysis is useful for analyzing motions 
within two consecutive image frames. Lucas and 
Kanade [14] proposed a method to compute the 
displacement of image frame contents within the 
neighborhood of a point. In many studies, optical flow 
analysis is used to detect ego-motions for analyzing the 
car moving direction. Kim and Suga [15] proposed a 
method to detect moving obstacles using optical flows 
for use by a mobile robot with an omni-camera. Finally, 
the topic of vehicle detection has also been widely 
studied. For instance, background subtraction is a 
common technique used to extract vehicles from images 
[16-17]. Also, Tsai et al. [18] detected vehicles in static 
images using color and edge information. 

In this study, in order to enlarge the FOV’s of 
traditional cameras and increase the mobility of the 
surveillance cameras, we set up a wide-area vision-
based surveillance system using a video surveillance 
vehicle with a pair of 2-camera omni-imaging devices. 
It is desired to design the system to possess the 
following capabilities: 
(1) analyzing vehicle driving directions and generating 

corresponding perspective-view images for car 
driving assistance; 

(2) detecting a nearby static car around a static 
surveillance vehicle;  

(3) detecting a nearby static or moving car around a 
moving surveillance vehicle; 

(4) generating a top-view surround map for inspection. 
In the remainder of this paper, we describe the system 
configuration and the 3D data computation process in 
Sec. 2, the proposed technique for car-driving assistance 
in Sec. 3, the proposed techniques for monitoring a 
nearby car from a static and moving surveillance vehicle 
in Secs. 4 and 5, respectively, and some experimental 
results in Sec. 6, followed by a conclusion in Sec. 7. 

2. SYSTEM CONFIGURATIO AND 3D 
DATA COMPUTATION  

2.1 System Configuration 
As illustrated by Fig. 1, the proposed system includes a 
video surveillance vehicle, a pair of 2-camera omni-



imaging devices affixed on the vehicle roof, and two 
computers. As illustrated in Fig. 2(a), each omni-
imaging device is composed of two omni-cameras with 
hyperboloidal-shaped mirrors attached to each other 
coaxially, and is controlled by a computer through a 
wireless local network. The video surveillance process 
using this system includes two phases, learning and 
patrolling. In the former, some system parameters are 
learned, and in the latter, the surveillance vehicle is 
driven for real security monitoring applications. 

In addition, the azimuth angle θ of point P, according to 
the rotational invariance property of omni-imaging, is 
equal to that of the corresponding image point p1 in the 
upper omni-image, and so can be computed in terms of 
the image coordinates of p1 by: 

 

 
Fig. 1: Configuration of proposed surveillance system. 

 

2.2 3D Data Computation  
To locate a nearby car, we have to compute the 3D 

data of the space points of the car. For this purpose, we 
use the method proposed in Yuan, et al. [19]. 
Specifically, each space point P is imaged by the two 
cameras in each omni-imaging device of the proposed 
system, resulting in two corresponding image points 
with coordinates (u1, v1) and (u2, v2) in the two omni-
images, respectively. Using these coordinates, we look 
up a pano-mapping table [8] to find two corresponding 
elevation angles α1 and α2 with respect to the two 
mirror base centers C1 and C2 of the cameras, 
respectively, as illustrated in Fig. 2(a). To find the 3D 
coordinates (X, Y, Z) of P in the upper camera 
coordinate system (CCS), as shown in Fig. 2(b), we 
compute first the distance d between P and the upper 
mirror base center C1 according to the triangulation 
principle illustrated in Fig. 2(a) to get: 
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where the parameter b is the baseline length of the 
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Finally, we can calculate X and Y by the distance dw 
and the azimuth angle θ as follows: 
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(a) (b) 

Fig. 2: Computing 3D data of space point using a 2-camera 
omni-imaging device. (a) Light rays of a space point P 
projected into two cameras. (b) A triangle in (a). 

3. CAR-DRIVING ASSISTANCE BY 
SURROUNDING ENVIRONMENT IMAGES 

While driving the video surveillance vehicle, we 
want to monitor the surrounding environment 
continuously in realtime for driving assistance. Owing 
to the wide FOV of the omni-camera and the positions 
of the pair of 2-camera omni-imaging devices affixed 
on the vehicle roof, the monitoring range of the camera 
system covers the entire car surround. Besides, the 
omni-images acquired with the omni-camera system 
may be used for producing multi-view images and 
computing the 3D information of the surrounding 
objects. In this study, we develop two environment 
monitoring applications using the camera system. One is 
to provide the driver a perspective-view image 
corresponding to the moving direction of the video 
surveillance vehicle, which is useful for inspection of 
the possible bind spots around the surveillance vehicle 
in order to avoid car accidents during driving. Another 
application is to use the proposed system as a driving 
recorder which records the surrounding environment 
images continuously during driving as a driving history, 
allowing the user to inspect, from any selected view 
direction, a sequence of perspective-view images of the 
vehicle surround, which are constructed in an off-line 
fashion from the acquired omni-image sequence. 



3.1 Estimation of Optical Flows and Transformation 
of Motion Vectors 1 w 1 1 w 1 1 mcos ; sin ;X d Y d Z H .

We detect motion vectors of ground points in the 
consecutive omni-images by optical flow analysis using 
the method proposed by Lucas-Kanade [14] which 
analyzes optical flows of small image regions by 
assuming that the displacements of the image content 
within a small neighborhood of a point are small and 
approximately constant. Next, we compute the direction 
angle of the resulting motion vectors by transforming 
the vectors from the omni-image plane into the world 
coordinate system (WCS), as illustrated in Fig. 3(a). 
The configuration of such a transformation of the 
motion vector of a space point on the ground is shown 
in Fig. 3(b). We divide the transformation process into 
three steps as described in the following algorithm. 

 

 
(a) (b) 

Fig. 3: Transforming a motion vector into world coordinate 
system. (a) Camera system and motion vector. (b) Ligh ray of 
a ground point P projected on a mirror and into a camera. 

Algorithm 1: transformation of a motion vector. 
Input: the beginning point P1 with coordinates (u1, v1) 

in an image frame It and the ending point P2 with 
coordinates (u2, v2) in the next frame It+1, both of 
the motion vector Vi of a ground point P, and the 
pano-mapping table T of the camera. 

Output: the directional angle θi of Vi in the WCS. 
Steps. 
1. Compute the elevation-azimuth angle pairs (α1, θ1) 

and (α2, θ2) of the beginning and ending points P1 
and P2, respectively, in the image coordinate system 
(ICS) in the following way. 
1.1 Compute the azimuth angle θ1 of image point P1 

with coordinates (u1, v1) by r1 = (u1
2 + v1

2)–1/2 and 
q1 = sin–1(v1/r1) or cos–1(u1/r1). 

1.2 Using (u1, v1) to look up the pano-mapping table 
T  to obtain the elevation angle α1 of P1. 

1.3 Do similarly to obtain the elevation-azimuth 
angle pair (α2, θ2) for image point P2. 

2. Transform the image coordinate (u1, v1) of point P1 
in image It to world coordinates (X, Y, Z) of point P 
in the following way. 
2.1 Compute the horizontal distance dw between P 

and the center C1 of the mirror base by dw = 

Hm×cot(α1) where the distance between the 
center C1 and the ground is known to be Hm. 

2.2 Compute as follows the world coordinates (X1, 
Y1, Z1) of point P1 according to the property of 
rotational invariance of omni-imaging: 

θ θ× = × =  =
2.3 Do similarly to compute (X2, Y2, Z2) for point P2. 

3. Compute the directional angle θi of motion vector Vi 
with respect to the X-axis in the WCS by 
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By Algorithm 1, we can transform all the motion 
vectors produced by optical flow analysis into the WCS 
and get the directional angles of all the motion vectors 
for use in analyzing the moving direction of the video 
surveillance vehicle, as described next. 
3.2 Computation of Vehicle Moving Direction 

After all the outlier and noise motion vectors with 
too short or too long lengths are eliminated, we compute 
the mean of the remaining motion vectors and use it to 
decide the moving direction of the surveillance vehicle. 
We do this by classifying the mean value, which is an 
angle, into three categories, moving forward, turn to the 
left, and turn to the right, using three angle ranges as 
listed in Table 1, which are determined by experiments. 

 

Table 1: Ranges for classifying mean of motion vectors into 
three vehicle moving directions. 

State Degree 
Moving forward 261°~ 279° 
Turn to the left 180°~260° 

Turn to the right 280°~ 360° 
 

The above rule for deciding the vehicle moving 
direction is designed for analyzing a single image frame. 
When the vehicle is moving with continuous image 
frames being acquired for analysis, we use the concept 
of finite automata (FA) to determine the vehicle moving 
direction in a more refined way based on the criterion of 
giving a second chance to the current state before it is 
changed. The detail of the proposed FA is shown in Fig. 
4(a) where if the moving direction analysis result for the 
next cycle is identical to that of the current cycle, the 
input to the FA is taken to be “1”; else, to be “0.” Note 
that we take the current state in the FA as the moving 
direction of the surveillance vehicle in the current cycle. 

On the other hand, it is observed that for different 
cases of vehicle moving directions (left, forward, and 
right), the computed motion vectors show different 
patterns at different regions in the omni-image. 
Therefore, it is erroneous to analyze the motion vectors 
in an unchanged detection region in the omni-image all 
the time. To solve this problem, we select appropriate 
detection regions for the three vehicle moving direction 
cases, respectively, and change the detection region 
dynamically in accordance with the previous moving 
direction decision result, as illustrated in Fig. 4(b). 
3.3 Generation of Perspective-view Image 

After deciding the moving direction of the vehicle, 
we use the current omni-image frame Io to construct a 
perspective-view image Ip of the scene in that direction 
in realtime for the driver to inspect to avoid collisions 



with approaching vehicles and pedestrians. The 
construction is based on the use of the pano-mapping 
table [8] again. The major steps include: (1) map each 
pixel p in IP with coordinates (k, l) to a pair of elevation 
and azimuth angles, (α, θ), in the pano-mapping table 
according to the geometry of the desired perspective 
transformation; (2) find the image coordinates (u, v) in 
the table corresponding to (α, θ); and (3) fill the value 
of pixel p in IP with that of the pixel at coordinates (u, v) 
in Io. The detail of mapping (k, l) to (α, θ) in Step (1) is 
described as follows, where it is assumed that Ip is at a 
distance D to the mirror base center Om and has Mp×Np 

pixels, and that Ip is the image of a planar rectangular 
W×H region AP perpendicular to the floor, as illustrated 
by Fig. 5. 

 

 
(a) 

   
(b) 

Fig. 4: Decision of vehicle moving direction. (a) Finite 
automaton for deciding vehicle moving direction. (b) 
Detection regions for 3 cases of vehicle moving directions. 

 
 

 

(a) (b) 
Fig. 5: Generation of perspective-view image. (a) Top view. 
(b) A detal. 

 

A. Computing the azimuth angle θ ⎯ 
The angle φ spanned by the width W of Ip as shown in 

Fig. 5(a) may be derived by the law of cosines to satisfy 
the equality of W2 = D2 + D2 − 2×D×D×cosφ so that φ 
may be computed to be φ = cos−1[1 − W2/(2D2)]. Also, 
we have β = (π  − φ)/2. Let Pij denote the intersection 
point of the light ray RP projected onto the image point 
p on the planar region AP. Then, we may compute the 
distance d between Pij and the border point Pr shown in 
Fig. 5(b) by linear proportionality to be d = k×W/MP 

because region AP has a width of W, image Ip has a 
width of Mp, and pixel p has the horizontal coordinate k. 

Furthermore, the distance L between Pij and the 
mirror base center Om shown in Fig. 5(b) satisfies the 
equality of L2 = D2 + d2 − 2×d×D×cosβ. And the 
distance h from Pij to the line segment OmPr may be 
computed to be h = d×sinβ. Finally, the azimuth angle 
θ  of Pij with respect to OmPr satisfies the equation sinθ 
= h/L which, by the equalities derived above, leads to: 

 θ = sin−1(h/L) = 1

2 2

sin
2 cos

d
D d d D

βsin .
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B. Computing the elevation angle α ⎯ 
As illustrated in Fig. 6, the height of region AP is H 

and image Ip is divided into Np intervals vertically. So, 
by linear proportionality, the height of Pij is just Hp = 
(l×H)/Np where l is the vertical coordinate of pixel p. 
Finally, by trigonometry the elevation angle α may be 
derived to be α = tan−1(Hp/L). Note that in the above 
derivations, the start direction (specified by the line 
segment OmPr) of the angle φ  spanned by the width W 
of Ip, as shown in Fig. 6, coincides with the horizontal 
direction (i.e., with the direction of 0o). The azimuth 
angle θ is measured from this direction.  
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Fig. 6: Lateral view of perspective-view image. 

 

3.4 Construction of Perspective-Mapping Tables 
In the previous process of generating perspective-

view images, we have the mappings (k, l) → (α, θ) → 
(u, v). This means that we can generate a new type of 
table, called perspective-mapping table, to record the 
mapping (k, l) → (u, v) directly (skipping (α, θ)) to 
accelerate the speed of generating the perspective-view 
image. Furthermore, for monitoring of the vehicle 
surround, generation of perspective-view images of the 
six directions of 0o, 60o, …, 300o around the vehicle are 
sufficient. Therefore, we create six perspective-mapping 
tables of these directions for use in this study. Some 
experimental results are shown in Fig. 7. 

4. MONITORING OF A NEARBY STATIC 
CAR FROM A STATIC VEHICLE 

The proposed method for monitoring a nearby static 
car when the video surveillance vehicle is also in a 
static state include the major steps of (1) nearby car 
detection; (2) car window side extraction; (3) car 
distance estimation; and (4) surround map generation. 
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The final result is a top-view surround map showing the 
graphic shapes of the detected nearby car and the 
surveillance vehicle located in relative postures 
(positions and orientations). 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 7: Car direction detection and generated images. (a) 
Turning to left. (c) Turning to right. (e) Moving forward. 
(b), (d), and (f) Corresponding perspective-view images. 

 
4.1 Nearby Vehicle Detection 

To detect the existence of a nearby static car, we have 
to segment out the objects existing in an omni-image 
first. We assume the environment to be a drive way or a 
parking lot where the road surface is roughly uniform in 
gray color. To conduct object segmentation, first we 
“learn” the gray value of the road surface from the two 
omni-images acquired with the two cameras in each 
omni-imaging device. Each original omni-image Io then 
is transformed into a grayscale one Ig. A region of the 
ground is manually selected next, and the mean gray 
value gm of the region is computed. A difference image f 
then is generated by subtracting gm from the gray value 
of each pixel in Ig. Possible car regions are segmented 
out from Ig by thresholding the difference image f into a 
binary image B by moment-preserving thresholding 
proposed by Tsai [21]. Noise components are removed 
from B finally using a region growing scheme. A result 
of this process is shown in Fig. 8. 

 

   
(a) (b) (c) 

Fig. 8: Nearby car detection result. (a) Original image. (b) 
Binary image with ground portion in (a) removed before 
noise elimination. (b) Image after noise elimination. 
 

4.2 Car Window Side Extraction  
We try to detect the edge points of the car window 

from the omni-image, as illustrated in Fig. 9, by 
scanning the points on a radial line, starting from the 
image center to the image boundary. In this process, it is 
necessary to make sure that the points extracted are not 
just noise points. For this, only a sufficiently large 
number of consecutive points on the radial line are 
considered as a window edge. The detail is described as 
follows. 

 

 
Fig. 9: Detecting window edge points in binary image. 

Algorithm 2: detecting car window edge points. 
Input: a binary image B with detected car body pixels 

labeled by 1 and others labeled by 0. 
Output: car window edge points. 
Steps. 
1. (Collecting car door pixels) Scan the car body pixels 

labeled by 1 sequentially on each unscanned radial 
line, starting from the image center, and perform the 
following two steps. 
1.1 Collect pixels sufficiently close to each other 

(apart for a distance smaller than a threshold 
TH1). 

1.2 If the number of points so collected is large 
enough (larger than a threshold TH2), then go to 
Step 2; else, abandon the collected pixels and go 
to Step 1 if there is any unscanned radial line or 
exit if none. 

2. (Collecting car window pixels) Continue scanning on 
the radial line to collect non-car body pixels labeled 
by 0 sequentially, and perform the following two 
steps. 
2.1 Collect pixels sufficiently close to each other 

(apart for a distance smaller than TH1). 
2.2 If the number of points so collected is large 

enough (larger than TH2), then go to Step 3; else, 
abandon the collected pixels and go to Step 1 if 
there is any unscanned radial line or exit if none. 

3. (Marking a car window edge pixel) Mark the 
beginning pixel of the collected ones in Step 2 as a 
car window edge pixel and go to Step 1 if there is any 
unscanned radial line or exit if none. 

 

Algorithm 2 above is performed for each of the two 
omni-images acquired by each omni-imaging device 
used in this study. However, we cannot confirm that all 
the collected window edge points by Algorithm 2 are 
useful. We have to find out the real point pairs of the 
window edges collected from the two omni-images. The 
detail to do so is described in the following algorithm. 
Algorithm 3: collecting useful pairs of corresponding 
points of the car window edge. 



Input: two sets Bupper and Blower of candidate window 
edge pixels collected by Algorithm 2 from the 
omni-images acquired respectively by a pair of 
upper and lower cameras. 

Output: a set Bcar of real consecutive pixel pairs of the 
car window edge. 

Steps. 
1. For each unscanned azimuth angle θ, starting from 

0o, check if there exist two pixels in the sets Bupper 
and Blower, respectively, which have the same 
azimuth angle θ; if so, mark them as a candidate 
pair. 

2. For every two consecutive candidate pairs of Bupper 
(or Blower), if the difference between the radius 
distances of the two pairs is smaller than a threshold 
value TH3 and the difference between the azimuth 
angles of the two pairs is smaller than another 
threshold value TH4, then mark the two pairs as 
useful pairs. 

3. Check if the number of useful pairs in Bupper (or 
Blower) is larger than a third threshold value TH5, then 
mark the pixels in all the useful pairs as coming 
from the car window edge and put them into the 
desired set Bcar for computing the 3D data of the car 
window and exit; else, abandon the collected useful 
pairs so far and go to Step 2 if there are more than 
two unchecked candidate pairs; or exit, else. 

A result of the above algorithm is shown in Fig. 10.  
 

  
(a) (b) 

Figure 10: Car window side extraction. (a) Input image. 
(b) Result (red points) of extraction superimposed on (a). 

 
4.3 Car Distance Estimation 

Each useful pair in Bcar has two corresponding image 
points, one from the upper omni-image and the other 
from the lower omni-image. Their coordinates therefore 
can be used to compute 3D data of the corresponding 
space point Pi according to the process described in Sec. 
2.2 (see Eqs. (2) and (4)), with the height and distance 
of the space point with respect to the mirror base center 
being specified as Z and dw, respectively, there. Here, 
let the height and the distance of the space point 
corresponding to each useful pair collected in Bcar be 
denoted as Hi and Di, respectively, and let the total 
number of useful pairs in Bcar be denoted as n. Then, we 
compute the mean values of all Hi and Di, respectively, 
and take them to represent the height Hcar and distance 
Dcar of the detected car. Also, we take the azimuth angle 
θcar (mentioned in Step 1 of Algorithm 3) of the middle 
of all the useful pairs in Bcar to be the azimuth angle θcar 

of the detected car. These data are used for generating a 
surround map, as described next. 
4.4 Generation of a Top-view Surround Map 

With the horizontal distance Dcar and the azimuth 
angle θcar, the relative position of the detected car can be 
described by the coordinates (ucar, vcar) in a top-view 2D 
coordinate system created as the desired surround map, 
where (ucar, vcar) are computed as: 

ucar = (Dcar×cosθcar)/ratio; vcar = (Dcar×sinθcar)/ratio 
with ratio being a factor to scale the real distance Dcar in 
the WCS down into the top-view 2D coordinate system. 

To generate the surround map, first we initialize a 
gray background image I like that of an asphalt road. 
Then, we paste a graphic shape of the surveillance 
vehicle at the center of image I. Finally, we select the 
front-right corner of the surveillance vehicle shape as 
the origin (0, 0) of the mentioned top-view 2D 
coordinate system and paste a graphic shape of the 
detected nearby car on I at coordinates (ucar, vcar) 
computed above. A result is shown in Fig. 11. 

 

carθ

 
Fig. 11: A surround map from the top view. 

5. MONITORING OF A NEARBY STATIC OR 
MOVING CAR FROM A MOVING 

SURVEILLANCE VEHICLE 
When the surveillance vehicle is moving, the method 

of the last section is not applicable for nearby car 
detection. Instead, optical flow analysis is used in this 
study, based on the observation: if the concerned object 
is higher than the ground, its motion appearing in the 
image will produce motion vectors with larger lengths. 
This property may be used to segment the car from the 
background. Four major steps are performed for 
monitoring a static or moving nearby car when the 
surveillance vehicle is moving: (1) motion vector 
computation; (2) nearby car detection; (3) car distance 
estimation; and (4) surround map generation. 
5.1 Nearby Car Detection by Motion Vectors 

First, we divide the omni-image into blocks and use 
the center points of the blocks to compute the motion 
vectors by optical flow analysis. The motion vectors 
then are transformed from the ICS into the WCS by 
Algorithm 1. Next, we make use of the above-
mentioned property to extract roughly the motion 
vectors of a nearby car in the following way: (1) 
compute the average L and the standard deviation S of 
the lengths of all the motion vectors; (2) classify each 
motion vector Vi as from the ground if Vi < L – S; as 
from the car if Vi > L + S; and as ambiguous, else; (3) 



take as the desired rough car region all those blocks 
with corresponding motion vectors classified as from 
the car. A result of this process is shown in Fig. 12(a). 

 

  
(a) (b) (c) 

Fig. 12: Near by car detection with surveillance vehicle 
moving. (a) Rough car detection result. (b) Result of k-
mean clustering and region growing. (c) Binary image 
corresponding to (b). 

 

Furthermore, it is desired to detect more precisely the 
car body pixels from the rough car region. For this, we 
use the k-means algorithm with k = 3, meaning the three 
classes of car body, car window, and noise. The input 
feature is pixel color. Having the result of the algorithm, 
we apply region growing to obtain the car body region, 
starting from the largest cluster with its center’s color 
different from that of the ground, gm, which was learned 
in advance (see Sec. 4.1). During the process, pixels 
with colors close to gm are also ignored, and only those 
with colors close to that of the cluster center are grown. 
A result of this process is shown in Figs. 12(b) and (c). 
5.2 Car Distance Estimation and Surround Map 

Generation 
To estimate the location of a nearby car detected as 

above, the approach we adopt is to match the detected 
car region by a car mask to estimate the car position, 
which includes two stages: (1) generation of car masks 
by transforming a pre-selected car model of the shape 
of a rectangular parallelepiped from the WCS into the 
ICS; and (2) computation of the nearby car location by a 
template matching scheme. 
A. Generation of car masks 

By imagining a rectangular-parallelepiped-shaped car 
model on the X-Y plane as shown in Fig. 13(a), it is 
desired to transform the model onto the image plane as 
shown in Fig. 13(b) to generate a series of car masks, 
which then are used to match the detected car shape in 
order to locate the car. To generate a car mask, under 
the assumption that the mirror base center Om of the 
omni-camera is located at coordinates (X0, Y0, Z0) in the 
WCS, for each space point P with world coordinates (X, 
Y, Z) of the car model, we compute first the distance 
between P and Om as d = [(Xi – X0)2 + (Yi – Y0)2]–1/2 
Then, we can compute, according to the discussions of 
Sec. 2.2, the elevation-azimuth angle pair to be  

θ = cos–1[(Xi – X0)/d] = sin–1[(Yi – Y0)/d], 
ρ = (π/2) − tan−1[(Zi − Z0)/d]. 

Then, we look up the pano-mapping table of the camera 
to find the corresponding image coordinates (u, v) of a 
pixel of the desired car mask. 
B. Computing the car location by template matching 

To locate the detected car in the omni-image, then we 
use template matching to superimpose each of the 
generated car mask on the detected car region as shown 
in Fig. 13 using the previously-computed coordinates of 
the mask points. Then, we check the overlapping ratio 
of each matching, and find out the optimal mask M 
which yields the largest ratio. The center of M is finally 
computed and taken to be the position of the detected 
car. A graphic shape for the detected nearby car then is 
drawn on the desired surround map accordingly in a 
way of scaling down like that described in Sec. 4.4. A 
result of this process is shown in Fig. 14. 
 

 
(a) (b) (c) 

Fig. 13: Car location by matching car mask and car region. (a) 
Car model in WCS. (b) The mask image. (c) Result of 
matching detected car by a mask. 

 

  
(a) (b) 

Fig. 14: Detecting static nearby car from moving vehicle. (a) 
Original image. (b) Generated surround map (direction of car 
is 180o reversed when compared with real situation in (a)). 

6. EXPERIMENTAL RESULTS 
Many experiments were conducted on an open space 

area, including a parking lot and a spacious around-
campus road with asphalt surfaces. Some experimental 
results have been shown previously. One more result of 
static nearby car detection from a static vehicle is shown 
in Fig. 15. Another result of nearby car detection from a 
moving vehicle is shown in Fig. 16. Though it is worth 
to conduct accuracy analysis about various detection 
results, all the results indicate that the proposed system 
is practical for real applications. 

7. CONCLUSIONS 
In this study, a video surveillance system utilizing a 

pair of 2-camera omni-imaging devices equipped on the 
roof of a video surveillance vehicle to monitor the 
surrounding environment has been proposed. 
Specifically, a technique for detecting vehicle driving 
directions and generating corresponding perspective-
view images for car-driving assistance has been 
proposed. Also have been proposed are techniques for 
detecting a nearby static car from a static surveillance 



vehicle as well as for detecting a nearby static or 
moving car from a moving vehicle. Corresponding top-
view surround maps can also be generated to help the 
driver to inspect the vehicle surround conditions. The 
experimental results show the feasibility of the proposed 
system and techniques. Future studies may be directed 
to detecting multiple nearby cars or persons from a 
moving surveillance vehicle, and improving the 
computation speed of the system.  

 

  
(a) (b) (c) 

Fig. 15: Result of detecting a nearby static car from a static 
vehicle. (a) & (b) Two original image frames. (c) Generated 
surround map (car direction is 180o reversed). 
 

  
(a) (b) (c) 

  
(d) (e) (f) 

Fig. 16: Result of nearby static car detection from a moving 
vehicle. (a)-(c) Original image frames. (d)-(f) Respective 
generated surround maps (car direction is 180o reversed). 
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