
SURROUNDING ENVIRONMENT MONITORING BY A VIDEO
SURVEILLANCE VEHICLE WITH 2-CAMERA OMNI-IMAGING DEVICES

1Chun-Fu Chen (陳俊甫) and

2
Wen-Hsiang Tsai (蔡文祥)

1
Institute of Computer Science and Engineering

2
Department of Computer Science

National Chiao Tung University, Hsinchu, Taiwan
E-mails: whtsai@cis.nctu.edu.tw, iamcjf@gmail.com

ABSTRACT
New vision-based methods for monitoring the

surrounding environment around a video surveillance
vehicle via the use of two 2-camera omni-imaging
devices on the vehicle roof are proposed. To inspect
blind spots around a vehicle, a method of analyzing
automatically the vehicle moving direction by optical
flow analysis in omni-images and generating
corresponding perspective-view images is proposed.
Techniques for monitoring a nearby car from a static or
moving video surveillance vehicle are also proposed.
The 3D data of a detected car are computed using a
space-mapping approach, and a top-view surround map
is generated to help observation of the vehicle
surrounding conditions. Good experimental results
show the feasibility of the proposed system and
techniques.
Keywords: omni-image; video surveillance vehicle;
optical flow analysis; environment monitoring.

1. INTRODUCTION
Nowadays, with the advance of video technologies,
more and more video cameras are used for various
applications. In this study, it is desired to design a video
surveillance system using video cameras on a vehicle,
called video surveillance vehicle, for car-driving
assistance and car surrounding monitoring applications.

In recent years, video surveillance for various
applications has been investigated widely [1-3]. An
omni-camera in a video surveillance system is useful for
localizing objects. It includes a projective camera and a
mirror [4, 5]. Moreover, applications using different
combinations of projective cameras and mirrors to
construct new types of omni-imaging systems have also
been investigated [6, 7]. The large field of view (FOV)
of the omni-camera is a great advantage for monitoring
wide surrounding environments. Some researchers
combined this advantage with the mobility of vehicles
to develop useful applications [9-13]. In addition,

∗ This work was supported financially by the NSC project No.

98-2221-E-009-116-MY3.

optical flow analysis is useful for analyzing motions
within two consecutive image frames. Lucas and
Kanade [14] proposed a method to compute the
displacement of image frame contents within the
neighborhood of a point. In many studies, optical flow
analysis is used to detect ego-motions for analyzing the
car moving direction. Kim and Suga [15] proposed a
method to detect moving obstacles using optical flows
for use by a mobile robot with an omni-camera. Finally,
the topic of vehicle detection has also been widely
studied. For instance, background subtraction is a
common technique used to extract vehicles from images
[16-17]. Also, Tsai et al. [18] detected vehicles in static
images using color and edge information.

In this study, in order to enlarge the FOV’s of
traditional cameras and increase the mobility of the
surveillance cameras, we set up a wide-area vision-
based surveillance system using a video surveillance
vehicle with a pair of 2-camera omni-imaging devices.
It is desired to design the system to possess the
following capabilities:
(1) analyzing vehicle driving directions and generating

corresponding perspective-view images for car
driving assistance;

(2) detecting a nearby static car around a static
surveillance vehicle;

(3) detecting a nearby static or moving car around a
moving surveillance vehicle;

(4) generating a top-view surround map for inspection.
In the remainder of this paper, we describe the system
configuration and the 3D data computation process in
Sec. 2, the proposed technique for car-driving assistance
in Sec. 3, the proposed techniques for monitoring a
nearby car from a static and moving surveillance vehicle
in Secs. 4 and 5, respectively, and some experimental
results in Sec. 6, followed by a conclusion in Sec. 7.

2. SYSTEM CONFIGURATIO AND 3D
DATA COMPUTATION

2.1 System Configuration
As illustrated by Fig. 1, the proposed system includes a
video surveillance vehicle, a pair of 2-camera omni-

imaging devices affixed on the vehicle roof, and two
computers. As illustrated in Fig. 2(a), each omni-
imaging device is composed of two omni-cameras with
hyperboloidal-shaped mirrors attached to each other
coaxially, and is controlled by a computer through a
wireless local network. The video surveillance process
using this system includes two phases, learning and
patrolling. In the former, some system parameters are
learned, and in the latter, the surveillance vehicle is
driven for real security monitoring applications.

In addition, the azimuth angle θ of point P, according to
the rotational invariance property of omni-imaging, is
equal to that of the corresponding image point p1 in the
upper omni-image, and so can be computed in terms of
the image coordinates of p1 by:

Fig. 1: Configuration of proposed surveillance system.

2.2 3D Data Computation
To locate a nearby car, we have to compute the 3D

data of the space points of the car. For this purpose, we
use the method proposed in Yuan, et al. [19].
Specifically, each space point P is imaged by the two
cameras in each omni-imaging device of the proposed
system, resulting in two corresponding image points
with coordinates (u1, v1) and (u2, v2) in the two omni-
images, respectively. Using these coordinates, we look
up a pano-mapping table [8] to find two corresponding
elevation angles α1 and α2 with respect to the two
mirror base centers C1 and C2 of the cameras,
respectively, as illustrated in Fig. 2(a). To find the 3D
coordinates (X, Y, Z) of P in the upper camera
coordinate system (CCS), as shown in Fig. 2(b), we
compute first the distance d between P and the upper
mirror base center C1 according to the triangulation
principle illustrated in Fig. 2(a) to get:

2 1sin(90) sin()
d b

2α α α
=

+ −
 (1)

where the parameter b is the baseline length of the
imaging device. Eq. (1) may be reduced to be:

2
1 2 1

cos ,
sin cos cos sin

bd α
2α α α α

= ×
× − ×

which is equivalent to:

1 1

1 .
cos tan tan

bd
2α α α

= ×
−

As a result, the horizontal distance dw and the vertical
distance Z may be computed by:

1
1 2

cos
tan tan

bdw d α
α α

= =
−

,

 1
1

1 2

tansin
tan tan

bZ d αα
α α

= =
−

. (2)

 1 11 1
2 2 2 2

1 1 1 1

cos sinu v

u v u v
θ − −= =

+ +
. (3)

Finally, we can calculate X and Y by the distance dw
and the azimuth angle θ as follows:

1 2

coscos
tan tan

bX dw θθ
α α

= × =
− ,

1 2

sinsin
tan tan

bY dw θθ
α α

= × =
− . (4)

(a) (b)

Fig. 2: Computing 3D data of space point using a 2-camera
omni-imaging device. (a) Light rays of a space point P
projected into two cameras. (b) A triangle in (a).

3. CAR-DRIVING ASSISTANCE BY
SURROUNDING ENVIRONMENT IMAGES

While driving the video surveillance vehicle, we
want to monitor the surrounding environment
continuously in realtime for driving assistance. Owing
to the wide FOV of the omni-camera and the positions
of the pair of 2-camera omni-imaging devices affixed
on the vehicle roof, the monitoring range of the camera
system covers the entire car surround. Besides, the
omni-images acquired with the omni-camera system
may be used for producing multi-view images and
computing the 3D information of the surrounding
objects. In this study, we develop two environment
monitoring applications using the camera system. One is
to provide the driver a perspective-view image
corresponding to the moving direction of the video
surveillance vehicle, which is useful for inspection of
the possible bind spots around the surveillance vehicle
in order to avoid car accidents during driving. Another
application is to use the proposed system as a driving
recorder which records the surrounding environment
images continuously during driving as a driving history,
allowing the user to inspect, from any selected view
direction, a sequence of perspective-view images of the
vehicle surround, which are constructed in an off-line
fashion from the acquired omni-image sequence.

3.1 Estimation of Optical Flows and Transformation
of Motion Vectors 1 w 1 1 w 1 1 mcos ; sin ;X d Y d Z H .

We detect motion vectors of ground points in the
consecutive omni-images by optical flow analysis using
the method proposed by Lucas-Kanade [14] which
analyzes optical flows of small image regions by
assuming that the displacements of the image content
within a small neighborhood of a point are small and
approximately constant. Next, we compute the direction
angle of the resulting motion vectors by transforming
the vectors from the omni-image plane into the world
coordinate system (WCS), as illustrated in Fig. 3(a).
The configuration of such a transformation of the
motion vector of a space point on the ground is shown
in Fig. 3(b). We divide the transformation process into
three steps as described in the following algorithm.

(a) (b)

Fig. 3: Transforming a motion vector into world coordinate
system. (a) Camera system and motion vector. (b) Ligh ray of
a ground point P projected on a mirror and into a camera.

Algorithm 1: transformation of a motion vector.
Input: the beginning point P1 with coordinates (u1, v1)

in an image frame It and the ending point P2 with
coordinates (u2, v2) in the next frame It+1, both of
the motion vector Vi of a ground point P, and the
pano-mapping table T of the camera.

Output: the directional angle θi of Vi in the WCS.
Steps.
1. Compute the elevation-azimuth angle pairs (α1, θ1)

and (α2, θ2) of the beginning and ending points P1
and P2, respectively, in the image coordinate system
(ICS) in the following way.
1.1 Compute the azimuth angle θ1 of image point P1

with coordinates (u1, v1) by r1 = (u1
2 + v1

2)–1/2 and
q1 = sin–1(v1/r1) or cos–1(u1/r1).

1.2 Using (u1, v1) to look up the pano-mapping table
T to obtain the elevation angle α1 of P1.

1.3 Do similarly to obtain the elevation-azimuth
angle pair (α2, θ2) for image point P2.

2. Transform the image coordinate (u1, v1) of point P1
in image It to world coordinates (X, Y, Z) of point P
in the following way.
2.1 Compute the horizontal distance dw between P

and the center C1 of the mirror base by dw =

Hm×cot(α1) where the distance between the
center C1 and the ground is known to be Hm.

2.2 Compute as follows the world coordinates (X1,
Y1, Z1) of point P1 according to the property of
rotational invariance of omni-imaging:

θ θ× = × = =
2.3 Do similarly to compute (X2, Y2, Z2) for point P2.

3. Compute the directional angle θi of motion vector Vi
with respect to the X-axis in the WCS by

1 12 1 2 1
2 2 2 2

2 1 2 1 2 1 2 1

sin or cos .
() () () ()

i
Y Y X X

Y Y X X Y Y X X
θ − −

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟− + − − + −⎝ ⎠ ⎝ ⎠

By Algorithm 1, we can transform all the motion
vectors produced by optical flow analysis into the WCS
and get the directional angles of all the motion vectors
for use in analyzing the moving direction of the video
surveillance vehicle, as described next.
3.2 Computation of Vehicle Moving Direction

After all the outlier and noise motion vectors with
too short or too long lengths are eliminated, we compute
the mean of the remaining motion vectors and use it to
decide the moving direction of the surveillance vehicle.
We do this by classifying the mean value, which is an
angle, into three categories, moving forward, turn to the
left, and turn to the right, using three angle ranges as
listed in Table 1, which are determined by experiments.

Table 1: Ranges for classifying mean of motion vectors into
three vehicle moving directions.

State Degree
Moving forward 261°~ 279°
Turn to the left 180°~260°

Turn to the right 280°~ 360°

The above rule for deciding the vehicle moving
direction is designed for analyzing a single image frame.
When the vehicle is moving with continuous image
frames being acquired for analysis, we use the concept
of finite automata (FA) to determine the vehicle moving
direction in a more refined way based on the criterion of
giving a second chance to the current state before it is
changed. The detail of the proposed FA is shown in Fig.
4(a) where if the moving direction analysis result for the
next cycle is identical to that of the current cycle, the
input to the FA is taken to be “1”; else, to be “0.” Note
that we take the current state in the FA as the moving
direction of the surveillance vehicle in the current cycle.

On the other hand, it is observed that for different
cases of vehicle moving directions (left, forward, and
right), the computed motion vectors show different
patterns at different regions in the omni-image.
Therefore, it is erroneous to analyze the motion vectors
in an unchanged detection region in the omni-image all
the time. To solve this problem, we select appropriate
detection regions for the three vehicle moving direction
cases, respectively, and change the detection region
dynamically in accordance with the previous moving
direction decision result, as illustrated in Fig. 4(b).
3.3 Generation of Perspective-view Image

After deciding the moving direction of the vehicle,
we use the current omni-image frame Io to construct a
perspective-view image Ip of the scene in that direction
in realtime for the driver to inspect to avoid collisions

with approaching vehicles and pedestrians. The
construction is based on the use of the pano-mapping
table [8] again. The major steps include: (1) map each
pixel p in IP with coordinates (k, l) to a pair of elevation
and azimuth angles, (α, θ), in the pano-mapping table
according to the geometry of the desired perspective
transformation; (2) find the image coordinates (u, v) in
the table corresponding to (α, θ); and (3) fill the value
of pixel p in IP with that of the pixel at coordinates (u, v)
in Io. The detail of mapping (k, l) to (α, θ) in Step (1) is
described as follows, where it is assumed that Ip is at a
distance D to the mirror base center Om and has Mp×Np

pixels, and that Ip is the image of a planar rectangular
W×H region AP perpendicular to the floor, as illustrated
by Fig. 5.

(a)

(b)

Fig. 4: Decision of vehicle moving direction. (a) Finite
automaton for deciding vehicle moving direction. (b)
Detection regions for 3 cases of vehicle moving directions.

(a) (b)
Fig. 5: Generation of perspective-view image. (a) Top view.
(b) A detal.

A. Computing the azimuth angle θ ⎯
The angle φ spanned by the width W of Ip as shown in

Fig. 5(a) may be derived by the law of cosines to satisfy
the equality of W2 = D2 + D2 − 2×D×D×cosφ so that φ
may be computed to be φ = cos−1[1 − W2/(2D2)]. Also,
we have β = (π − φ)/2. Let Pij denote the intersection
point of the light ray RP projected onto the image point
p on the planar region AP. Then, we may compute the
distance d between Pij and the border point Pr shown in
Fig. 5(b) by linear proportionality to be d = k×W/MP

because region AP has a width of W, image Ip has a
width of Mp, and pixel p has the horizontal coordinate k.

Furthermore, the distance L between Pij and the
mirror base center Om shown in Fig. 5(b) satisfies the
equality of L2 = D2 + d2 − 2×d×D×cosβ. And the
distance h from Pij to the line segment OmPr may be
computed to be h = d×sinβ. Finally, the azimuth angle
θ of Pij with respect to OmPr satisfies the equation sinθ
= h/L which, by the equalities derived above, leads to:

 θ = sin−1(h/L) = 1

2 2

sin
2 cos

d
D d d D

βsin .
β

−
⎛ ⎞×
⎜ ⎟
⎜ ⎟+ − × × ×⎝ ⎠

 (5)

B. Computing the elevation angle α ⎯
As illustrated in Fig. 6, the height of region AP is H

and image Ip is divided into Np intervals vertically. So,
by linear proportionality, the height of Pij is just Hp =
(l×H)/Np where l is the vertical coordinate of pixel p.
Finally, by trigonometry the elevation angle α may be
derived to be α = tan−1(Hp/L). Note that in the above
derivations, the start direction (specified by the line
segment OmPr) of the angle φ spanned by the width W
of Ip, as shown in Fig. 6, coincides with the horizontal
direction (i.e., with the direction of 0o). The azimuth
angle θ is measured from this direction.

ρe

N

Om

D

H

ρs

ρq
Hp

NQ

l

ρe

N

Om

D

H

ρs

ρq
Hp

NQ

l

Fig. 6: Lateral view of perspective-view image.

3.4 Construction of Perspective-Mapping Tables
In the previous process of generating perspective-

view images, we have the mappings (k, l) → (α, θ) →
(u, v). This means that we can generate a new type of
table, called perspective-mapping table, to record the
mapping (k, l) → (u, v) directly (skipping (α, θ)) to
accelerate the speed of generating the perspective-view
image. Furthermore, for monitoring of the vehicle
surround, generation of perspective-view images of the
six directions of 0o, 60o, …, 300o around the vehicle are
sufficient. Therefore, we create six perspective-mapping
tables of these directions for use in this study. Some
experimental results are shown in Fig. 7.

4. MONITORING OF A NEARBY STATIC
CAR FROM A STATIC VEHICLE

The proposed method for monitoring a nearby static
car when the video surveillance vehicle is also in a
static state include the major steps of (1) nearby car
detection; (2) car window side extraction; (3) car
distance estimation; and (4) surround map generation.

Om

Pij

β
PrD

h
θ

(d
L P

W

φ
β

Om D

θ

pi

The final result is a top-view surround map showing the
graphic shapes of the detected nearby car and the
surveillance vehicle located in relative postures
(positions and orientations).

(a) (b)

(c) (d)

(e) (f)

Fig. 7: Car direction detection and generated images. (a)
Turning to left. (c) Turning to right. (e) Moving forward.
(b), (d), and (f) Corresponding perspective-view images.

4.1 Nearby Vehicle Detection

To detect the existence of a nearby static car, we have
to segment out the objects existing in an omni-image
first. We assume the environment to be a drive way or a
parking lot where the road surface is roughly uniform in
gray color. To conduct object segmentation, first we
“learn” the gray value of the road surface from the two
omni-images acquired with the two cameras in each
omni-imaging device. Each original omni-image Io then
is transformed into a grayscale one Ig. A region of the
ground is manually selected next, and the mean gray
value gm of the region is computed. A difference image f
then is generated by subtracting gm from the gray value
of each pixel in Ig. Possible car regions are segmented
out from Ig by thresholding the difference image f into a
binary image B by moment-preserving thresholding
proposed by Tsai [21]. Noise components are removed
from B finally using a region growing scheme. A result
of this process is shown in Fig. 8.

(a) (b) (c)

Fig. 8: Nearby car detection result. (a) Original image. (b)
Binary image with ground portion in (a) removed before
noise elimination. (b) Image after noise elimination.

4.2 Car Window Side Extraction
We try to detect the edge points of the car window

from the omni-image, as illustrated in Fig. 9, by
scanning the points on a radial line, starting from the
image center to the image boundary. In this process, it is
necessary to make sure that the points extracted are not
just noise points. For this, only a sufficiently large
number of consecutive points on the radial line are
considered as a window edge. The detail is described as
follows.

Fig. 9: Detecting window edge points in binary image.

Algorithm 2: detecting car window edge points.
Input: a binary image B with detected car body pixels

labeled by 1 and others labeled by 0.
Output: car window edge points.
Steps.
1. (Collecting car door pixels) Scan the car body pixels

labeled by 1 sequentially on each unscanned radial
line, starting from the image center, and perform the
following two steps.
1.1 Collect pixels sufficiently close to each other

(apart for a distance smaller than a threshold
TH1).

1.2 If the number of points so collected is large
enough (larger than a threshold TH2), then go to
Step 2; else, abandon the collected pixels and go
to Step 1 if there is any unscanned radial line or
exit if none.

2. (Collecting car window pixels) Continue scanning on
the radial line to collect non-car body pixels labeled
by 0 sequentially, and perform the following two
steps.
2.1 Collect pixels sufficiently close to each other

(apart for a distance smaller than TH1).
2.2 If the number of points so collected is large

enough (larger than TH2), then go to Step 3; else,
abandon the collected pixels and go to Step 1 if
there is any unscanned radial line or exit if none.

3. (Marking a car window edge pixel) Mark the
beginning pixel of the collected ones in Step 2 as a
car window edge pixel and go to Step 1 if there is any
unscanned radial line or exit if none.

Algorithm 2 above is performed for each of the two
omni-images acquired by each omni-imaging device
used in this study. However, we cannot confirm that all
the collected window edge points by Algorithm 2 are
useful. We have to find out the real point pairs of the
window edges collected from the two omni-images. The
detail to do so is described in the following algorithm.
Algorithm 3: collecting useful pairs of corresponding
points of the car window edge.

Input: two sets Bupper and Blower of candidate window
edge pixels collected by Algorithm 2 from the
omni-images acquired respectively by a pair of
upper and lower cameras.

Output: a set Bcar of real consecutive pixel pairs of the
car window edge.

Steps.
1. For each unscanned azimuth angle θ, starting from

0o, check if there exist two pixels in the sets Bupper
and Blower, respectively, which have the same
azimuth angle θ; if so, mark them as a candidate
pair.

2. For every two consecutive candidate pairs of Bupper
(or Blower), if the difference between the radius
distances of the two pairs is smaller than a threshold
value TH3 and the difference between the azimuth
angles of the two pairs is smaller than another
threshold value TH4, then mark the two pairs as
useful pairs.

3. Check if the number of useful pairs in Bupper (or
Blower) is larger than a third threshold value TH5, then
mark the pixels in all the useful pairs as coming
from the car window edge and put them into the
desired set Bcar for computing the 3D data of the car
window and exit; else, abandon the collected useful
pairs so far and go to Step 2 if there are more than
two unchecked candidate pairs; or exit, else.

A result of the above algorithm is shown in Fig. 10.

(a) (b)

Figure 10: Car window side extraction. (a) Input image.
(b) Result (red points) of extraction superimposed on (a).

4.3 Car Distance Estimation

Each useful pair in Bcar has two corresponding image
points, one from the upper omni-image and the other
from the lower omni-image. Their coordinates therefore
can be used to compute 3D data of the corresponding
space point Pi according to the process described in Sec.
2.2 (see Eqs. (2) and (4)), with the height and distance
of the space point with respect to the mirror base center
being specified as Z and dw, respectively, there. Here,
let the height and the distance of the space point
corresponding to each useful pair collected in Bcar be
denoted as Hi and Di, respectively, and let the total
number of useful pairs in Bcar be denoted as n. Then, we
compute the mean values of all Hi and Di, respectively,
and take them to represent the height Hcar and distance
Dcar of the detected car. Also, we take the azimuth angle
θcar (mentioned in Step 1 of Algorithm 3) of the middle
of all the useful pairs in Bcar to be the azimuth angle θcar

of the detected car. These data are used for generating a
surround map, as described next.
4.4 Generation of a Top-view Surround Map

With the horizontal distance Dcar and the azimuth
angle θcar, the relative position of the detected car can be
described by the coordinates (ucar, vcar) in a top-view 2D
coordinate system created as the desired surround map,
where (ucar, vcar) are computed as:

ucar = (Dcar×cosθcar)/ratio; vcar = (Dcar×sinθcar)/ratio
with ratio being a factor to scale the real distance Dcar in
the WCS down into the top-view 2D coordinate system.

To generate the surround map, first we initialize a
gray background image I like that of an asphalt road.
Then, we paste a graphic shape of the surveillance
vehicle at the center of image I. Finally, we select the
front-right corner of the surveillance vehicle shape as
the origin (0, 0) of the mentioned top-view 2D
coordinate system and paste a graphic shape of the
detected nearby car on I at coordinates (ucar, vcar)
computed above. A result is shown in Fig. 11.

carθ

Fig. 11: A surround map from the top view.

5. MONITORING OF A NEARBY STATIC OR
MOVING CAR FROM A MOVING

SURVEILLANCE VEHICLE
When the surveillance vehicle is moving, the method

of the last section is not applicable for nearby car
detection. Instead, optical flow analysis is used in this
study, based on the observation: if the concerned object
is higher than the ground, its motion appearing in the
image will produce motion vectors with larger lengths.
This property may be used to segment the car from the
background. Four major steps are performed for
monitoring a static or moving nearby car when the
surveillance vehicle is moving: (1) motion vector
computation; (2) nearby car detection; (3) car distance
estimation; and (4) surround map generation.
5.1 Nearby Car Detection by Motion Vectors

First, we divide the omni-image into blocks and use
the center points of the blocks to compute the motion
vectors by optical flow analysis. The motion vectors
then are transformed from the ICS into the WCS by
Algorithm 1. Next, we make use of the above-
mentioned property to extract roughly the motion
vectors of a nearby car in the following way: (1)
compute the average L and the standard deviation S of
the lengths of all the motion vectors; (2) classify each
motion vector Vi as from the ground if Vi < L – S; as
from the car if Vi > L + S; and as ambiguous, else; (3)

take as the desired rough car region all those blocks
with corresponding motion vectors classified as from
the car. A result of this process is shown in Fig. 12(a).

(a) (b) (c)

Fig. 12: Near by car detection with surveillance vehicle
moving. (a) Rough car detection result. (b) Result of k-
mean clustering and region growing. (c) Binary image
corresponding to (b).

Furthermore, it is desired to detect more precisely the
car body pixels from the rough car region. For this, we
use the k-means algorithm with k = 3, meaning the three
classes of car body, car window, and noise. The input
feature is pixel color. Having the result of the algorithm,
we apply region growing to obtain the car body region,
starting from the largest cluster with its center’s color
different from that of the ground, gm, which was learned
in advance (see Sec. 4.1). During the process, pixels
with colors close to gm are also ignored, and only those
with colors close to that of the cluster center are grown.
A result of this process is shown in Figs. 12(b) and (c).
5.2 Car Distance Estimation and Surround Map

Generation
To estimate the location of a nearby car detected as

above, the approach we adopt is to match the detected
car region by a car mask to estimate the car position,
which includes two stages: (1) generation of car masks
by transforming a pre-selected car model of the shape
of a rectangular parallelepiped from the WCS into the
ICS; and (2) computation of the nearby car location by a
template matching scheme.
A. Generation of car masks

By imagining a rectangular-parallelepiped-shaped car
model on the X-Y plane as shown in Fig. 13(a), it is
desired to transform the model onto the image plane as
shown in Fig. 13(b) to generate a series of car masks,
which then are used to match the detected car shape in
order to locate the car. To generate a car mask, under
the assumption that the mirror base center Om of the
omni-camera is located at coordinates (X0, Y0, Z0) in the
WCS, for each space point P with world coordinates (X,
Y, Z) of the car model, we compute first the distance
between P and Om as d = [(Xi – X0)2 + (Yi – Y0)2]–1/2
Then, we can compute, according to the discussions of
Sec. 2.2, the elevation-azimuth angle pair to be

θ = cos–1[(Xi – X0)/d] = sin–1[(Yi – Y0)/d],
ρ = (π/2) − tan−1[(Zi − Z0)/d].

Then, we look up the pano-mapping table of the camera
to find the corresponding image coordinates (u, v) of a
pixel of the desired car mask.
B. Computing the car location by template matching

To locate the detected car in the omni-image, then we
use template matching to superimpose each of the
generated car mask on the detected car region as shown
in Fig. 13 using the previously-computed coordinates of
the mask points. Then, we check the overlapping ratio
of each matching, and find out the optimal mask M
which yields the largest ratio. The center of M is finally
computed and taken to be the position of the detected
car. A graphic shape for the detected nearby car then is
drawn on the desired surround map accordingly in a
way of scaling down like that described in Sec. 4.4. A
result of this process is shown in Fig. 14.

(a) (b) (c)

Fig. 13: Car location by matching car mask and car region. (a)
Car model in WCS. (b) The mask image. (c) Result of
matching detected car by a mask.

(a) (b)

Fig. 14: Detecting static nearby car from moving vehicle. (a)
Original image. (b) Generated surround map (direction of car
is 180o reversed when compared with real situation in (a)).

6. EXPERIMENTAL RESULTS
Many experiments were conducted on an open space

area, including a parking lot and a spacious around-
campus road with asphalt surfaces. Some experimental
results have been shown previously. One more result of
static nearby car detection from a static vehicle is shown
in Fig. 15. Another result of nearby car detection from a
moving vehicle is shown in Fig. 16. Though it is worth
to conduct accuracy analysis about various detection
results, all the results indicate that the proposed system
is practical for real applications.

7. CONCLUSIONS
In this study, a video surveillance system utilizing a

pair of 2-camera omni-imaging devices equipped on the
roof of a video surveillance vehicle to monitor the
surrounding environment has been proposed.
Specifically, a technique for detecting vehicle driving
directions and generating corresponding perspective-
view images for car-driving assistance has been
proposed. Also have been proposed are techniques for
detecting a nearby static car from a static surveillance

vehicle as well as for detecting a nearby static or
moving car from a moving vehicle. Corresponding top-
view surround maps can also be generated to help the
driver to inspect the vehicle surround conditions. The
experimental results show the feasibility of the proposed
system and techniques. Future studies may be directed
to detecting multiple nearby cars or persons from a
moving surveillance vehicle, and improving the
computation speed of the system.

(a) (b) (c)

Fig. 15: Result of detecting a nearby static car from a static
vehicle. (a) & (b) Two original image frames. (c) Generated
surround map (car direction is 180o reversed).

(a) (b) (c)

(d) (e) (f)

Fig. 16: Result of nearby static car detection from a moving
vehicle. (a)-(c) Original image frames. (d)-(f) Respective
generated surround maps (car direction is 180o reversed).

REFERENCES
[1] C. Micheloni, G.L. Foresti, C. Piciarelli and L. Cinque,

“An autonomous vehicle for video surveillance of indoor
environments,” IEEE Trans. on Vehicular Technology, vol.
56, no. 2, March 2007.

[2] G.L. Foresti, C. Micheloni and L. Snidaro, “Event
classification for automatic visual-based surveillance of
parking lots,” Proc. 17th Int’l Conf. on Pattern
Recognition, vol. 3, pp. 314–317, 2004.

[3] M. Bramberger, R. P. Pflugfelder, A. Maier, B. Rinner, B.
Strobl and H. Schwabach, “A smart camera for traffic
surveillance,” Proc. 1st Workshop on Intelligent Solutions
in Embedded Systems, pp. 153–164, Vienna, Austria, 2003.

[4] Y. Onoe, N. Yokoya, K Yamazawa, and H. Takemura,
“Visual surveillance and monitoring system using an
omnidirectional video camera,” Proc. 1998 Int’l Conf. on
Pattern Recog, vol. 1, pp. 588–592, Brisbane, Australia,
Aug. 16-20, 1998.

[5] T. Mituyosi, Y. Yagi, and M. Yachida, “Real-time human
feature acquisition and human tracking by omnidirectional
image sensor,” Proc. IEEE Int’l Conf. on Multisensor
Fusion & Integration for Intelligent Systems, pp. 258-263,
Tokyo, Japan, July-Aug. 2003.

[6] L. He, C. Luo, F. Zhu, Y. Hao, J. Ou and J. Zhou, “Depth
map regeneration via improved graph cuts using a novel

omnidirectional stereo sensor,”Proc. 11th IEEE Int’l Conf.
on Computer Vision (ICCV2007), pp. 1-8, Oct. 14-21, Rio
de Janeiro, Brazil, 2007.

[7] H. Koyasu, J. Miura, and Y. Shirai, “Realtime
omnidirectional stereo for obstacle detection and tracking
in dynamic environments,” Proc. 2001 IEEE/RSJ Int’l
Conf. on Intelligent Robots and Systems, pp. 31-36, Maui,
Hawaii, USA, Oct./Nov, 2001.

[8] S. W. Jeng and W. H. Tsai, “Using pano-mapping tables
for unwarping of omni-images into panoramic and
perspective-view images,” Journal of IET Image
Processing, Vol. 1, No. 2, pp. 149-155, June 2007.

[9] T. Ehlgen and T. Pajdla, “Maneuvering aid for large
vehicle using omnidirectional cameras,” IEEE Workshop
on Applications of Computer Vision, pp. 17–17, Austin,
Texas, US, Feb. 2007.

[10] T. Gandhi and M.M. Trivedi, “Motion analysis for event
detection and tracking with a mobile omni-directional
camera,” ACM Multimedia Systems Journal, Special
Issue on Video Surveillance, vol. 10, no. 2, pp. 131–143,
2004.

[11] N. Murakami, A. Ito, Jeffrey D. Will , Michael Steffen,
K. Inoue, K. Kita, S. Miyaura, “Development of a
teleoperation system for agricultural vehicles,”
Computers and Electronics in Agriculture, vol. 63, pp.
81-88, Aug. 2008.

[12] R. Aufrère, J. Gowdy, C. Mertz, C. Thorpe, C.C. and
T.Y. Wang, “Perception for collision avoidance and
autonomous driving,” Mechatronics, Vol. 13, pp. 1149-
1163, 2003.

[13] C. Hughes, M. Glavin, E. Jones and P. Denny, “Wide-
angle camera technology for automotive applications: a
review,” IEEE Trans. on Intelligent Transportation
Systems, vol. 3, no. 1, pp. 19–31, 2009.

[14] B. D. Lucas and T. Kanade, “An iterative image
registration technique with an application to stereo
vision,” Proc. 7th Int’l Joint Conf. on Artificial
Intelligence, Vancouver, Canada, pp. 674–679, 1981.

[15] J. Kim and Y. Suga, “An omnidirectional vision-based
moving obstacle in mobile robot,” Int’l J. of Control,
Automation, & Systems, vol. 5, no. 6, pp. 663-673, Dec.
2007.

[16] S. Gupte, O. Masoud, R.F. K. Martin, and N.P.
Papanikolopoulos, “Detection and classification of
vehicles,” IEEE Trans. on Intelligent Transportation
Systems, vol. 3, no. 1, Mar. 2002.

[17] R. Cucchiara, M. Piccardi, and P. Mello, “Image
analysis and rule-based reasoning for a traffic
monitoring system,” IEEE Trans. on Intelligent
Transportation Systems, vol. 1, no. 2, June 2000.

[18] L. W. Tsai, J. W. Hsieh and K. C. Fan, “Vehicle
detection using normalized color and edge map,” IEEE
Trans. on Image Processing, vol. 16, no. 3, Mar. 2007.

[19] P. H. Yuan, K. F. Yang and W. H. Tsai, “Security
monitoring around a video surveillance car with a pair
of two-camera omni-directional imaging devices,” Proc.
2010 Workshop on Image Processing, Computer
Graphics, & Multimedia Technologies, Int’l Computer
Symp., pp. 325-330, Tainan, Taiwan, Dec. 2010.

[20] C. J. Wu, “New localization and image adjustment
techniques using omni-cameras for autonomous vehicle
applications,” Ph. D. Dissertation, Institute of Computer
Science and Engineering, National Chiao Tung
University, Hsinchu, Taiwan, July 2009.

[21] W. H. Tsai, “Moment-preserving thresholding: a new
approach,” Computer Vision, Graphics, and Image
Processing, vol. 29, no. 3, pp. 377-393, 1985.

	ABSTRACT

